Package ‘IPMRF’

August 9, 2017

Type Package
Title Intervention in Prediction Measure (IPM) for Random Forests
Version 1.2
Date 2017-08-09
Author Irene Epifanio, Stefano Nembrini
Maintainer Irene Epifanio <epifanio@uji.es>
Imports party, randomForest, gbm
Suggests mlbench, randomForestSRC, ranger
License GPL-3
NeedsCompilation no
Repository CRAN
Date/Publication 2017-08-09 12:14:05 UTC

R topics documented:

IPMRF-package .. 2
ipmgbmnew ... 3
ipmparty .. 4
ipmpartynew ... 7
ipmranger .. 9
ipmrangernew ... 11
ipmrf ... 12
ipmrfnew .. 14

Index 17
IPMRF-package

Intervention in Prediction Measure (IPM) for Random Forests

Description

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>IPMRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>1.2</td>
</tr>
<tr>
<td>Date:</td>
<td>2017-08-09</td>
</tr>
</tbody>
</table>

Main Functions:

- ipmparty: IPM casewise with CIT-RF by party for OOB samples
- ipmpartynew: IPM casewise with CIT-RF by party for new samples
- ipmrf: IPM casewise with CART-RF by randomForest for OOB samples
- ipmrfnew: IPM casewise with CART-RF by randomForest for new samples
- ipmranger: IPM casewise with RF by ranger for OOB samples
- ipmrangernew: IPM casewise with RF by ranger for new samples
- ipmgbmnew: IPM casewise with GBM by gbm for new samples

Author(s)

Irene Epifanio, Stefano Nembrini

References

See Also

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1650-8
Description

The IPM of a new case, i.e. one not used to grow the forest and whose true response does not need to be known, is computed as follows. The new case is put down each of the \(ntree \) trees in the forest. For each tree, the case goes from the root node to a leaf through a series of nodes. The variable split in these nodes is recorded. The percentage of times a variable is selected along the case’s way from the root to the terminal node is calculated for each tree. Note that we do not count the percentage of times a split occurred on variable \(k \) in tree \(t \), but only the variables that intervened in the prediction of the case. The IPM for this new case is obtained by averaging those percentages over the \(ntree \) trees.

Usage

\[
\text{ipmgbmnew}(\text{marbolr, da, ntree})
\]

Arguments

- \text{marbolr}: Generalized Boosted Regression object obtained with \texttt{gbm}.
- \text{da}: Data frame with the predictors only, not responses, for the new cases. Each row corresponds to an observation and each column corresponds to a predictor, which obviously must be the same variables used as predictors in the training set.
- \text{ntree}: Number of trees.

Details

All details are given in Epifanio (2017).

Value

It returns IPM for new cases. It is a matrix with as many rows as cases are in \text{da}, and as many columns as predictors are in \text{da}.

Note

See Epifanio (2017) about the parameters of RFs to be used, the advantages and limitations of IPM, and in particular when CART is considered with predictors of different types.

Author(s)

Stefano Nembrini
References

See Also

`ipmparty`, `ipmrf`, `ipmranger`, `ipmpartynew`, `ipmrfnew`

Examples

```r
## Not run:
library(party)
library(gbm)
gbm=gbm(score ~ ., data = readingSkills, n.trees=50, shrinkage=0.05, interaction.depth=5,
bag.fraction = 0.5, train.fraction = 0.5, n.minobsinnode = 1,
cv.folds = 0, keep.data=F, verbose=F)
apply(ipmgbmnew(gbm,readingSkills[,,-4],50),FUN=mean,2)->gbm_ipm
gbm_ipm
## End(Not run)
```

Description

The IPM for a case in the training set is calculated by considering and averaging over only the trees where the case belongs to the OOB set. The case is put down each of the trees where the case belongs to the OOB set. For each tree, the case goes from the root node to a leaf through a series of nodes. The variable split in these nodes is recorded. The percentage of times a variable is selected along the case’s way from the root to the terminal node is calculated for each tree. Note that we do not count the percentage of times a split occurred on variable k in tree t, but only the variables that intervened in the prediction of the case. The IPM for this case is obtained by averaging those percentages over only the trees where the case belongs to the OOB set. The random forest is based on CIT (Conditional Inference Trees).

Usage

`ipmparty(marbol, da, ntree)`
Arguments

marbol: Random forest obtained with \code{cforest}. Responses can be of the same type supported by \code{cforest}, not only numerical or nominal, but also ordered responses, censored response variables and multivariate responses.

da: Data frame with the predictors only, not responses, of the training set used for computing \code{marbol}. Each row corresponds to an observation and each column corresponds to a predictor. Predictors can be numeric, nominal or an ordered factor.

ntree: Number of trees in the random forest.

Details

All details are given in Epifanio (2017).

Value

It returns IPM for cases in the training set. It is estimated when they are OOB observations. It is a matrix with as many rows as cases are in \code{da}, and as many columns as predictors are in \code{da}. IPM can be estimated for any kind of RF computed by \code{cforest}, including multivariate RF.

Note

See Epifanio (2017) about advantages and limitations of IPM, and about the parameters to be used in \code{cforest}.

Author(s)

Irene Epifanio

References

See Also

\code{ipmpartynew}, \code{ipmrf}, \code{ipmranger}, \code{ipmfnew}, \code{ipmrangernew}, \code{ipmgbmnw}

Examples

#Note: more examples can be found at
#https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1650-8

Example from \code{\link[party]{varimp}} in \pkg{party}
Classification RF
Not run:
library(party)

from help in varimp by party package
set.seed(290875)
readingSkills.cf <- cforest(score ~ ., data = readingSkills,
control = cforest_unbiased(mtry = 2, ntree = 50))

standard importance
varimp(readingSkills.cf)

the same modulo random variation
varimp(readingSkills.cf, pre1.0.0 = TRUE)

conditional importance, may take a while...
varimp(readingSkills.cf, conditional = TRUE)

End(Not run)

#IMP based on CIT-RF (party package)
library(party)

ntree<-50
#readingSkills: data from party package
da<-readingSkills[,1:3]
set.seed(290875)
readingSkills.cf3 <- cforest(score ~ ., data = readingSkills,
control = cforest_unbiased(mtry = 3, ntree = 50))

#IPM case-wise computed with OOB with party
pupf<-ipmparty(readingSkills.cf3 ,da,ntree)

global IPM
pua<-apply(pupf,2,mean)
pua

Example from \code{\link[RandomForestSRC]{var.select}} in \pkg{randomForestSRC}
Multivariate mixed forests

Not run:
library(randomForestSRC)

#from help in var.select by randomForestSRC package
mtcars.new <- mtcars
mtcars.new$ cyl <- factor(mtcars.new$ cyl)
mtcars.new$ carb <- factor(mtcars.new$ carb, ordered = TRUE)
mv.obj <- rfsrc(cbind(carb, mpg, cyl) ~ ., data = mtcars.new,
importance = TRUE)
var.select(mv.obj, method = "vh.vimp", nrep = 10)
different variables are selected if var.select is repeated

End(Not run)

#IMP based on CIT-RF (party package)
library(randomForestSRC)
mtcars.new <- mtcars

ntree<-500
da<-mtcars.new[,3:10]
mc.cf <- cforest(carb+ mpg+ cyl ~., data = mtcars.new,
control = cforest_unbiased(mtry = 8, ntree = 500))

#IPM case-wise computing with OOB with party
pupf<-ipmparty(mc.cf,da,ntree)

#global IPM
pua<apply(pupf,2,mean)
pua

disp and hp are consistently selected as more important if repeated

ipmpartynew

IPM casewise with CIT-RF by party for new cases, whose responses do not need to be known

Description

The IPM of a new case, i.e. one not used to grow the forest and whose true response does not need to be known, is computed as follows. The new case is put down each of the \(ntree \) trees in the forest. For each tree, the case goes from the root node to a leaf through a series of nodes. The variable split in these nodes is recorded. The percentage of times a variable is selected along the case’s way from the root to the terminal node is calculated for each tree. Note that we do not count the percentage of times a split occurred on variable \(k \) in tree \(t \), but only the variables that intervened in the prediction of the case. The IPM for this new case is obtained by averaging those percentages over the \(ntree \) trees. The random forest is based on CIT (Conditional Inference Trees).

Usage

`ipmpartynew(marbol, da, ntree)`

Arguments

- **marbol** Random forest obtained with `cforest`. Responses in the training set can be of the same type supported by `cforest`, not only numerical or nominal, but also ordered responses, censored response variables and multivariate responses.
Data frame with the predictors only, not responses, for the new cases. Each row corresponds to an observation and each column corresponds to a predictor, which obviously must be the same variables used as predictors in the training set. Predictors can be numeric, nominal or an ordered factor.

Number of trees in the random forest.

Details

All details are given in Epifanio (2017).

Value

It returns IPM for new cases. It is a matrix with as many rows as cases are in da, and as many columns as predictors are in da. IPM can be estimated for any kind of RF computed by cforest, including multivariate RF.

Note

See Epifanio (2017) about advantages and limitations of IPM, and about the parameters to be used in cforest.

Author(s)

Irene Epifanio

References

See Also

ipmparty, ipmrf, ipmranger, ipmrfnew, ipmrangernew, ipmgbmnew

Examples

```
Cnote: more examples can be found at
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1650-8

## Example from \code{\link[party]{varimp}} in \pkg{party}
## Classification RF
## -----------------------------------------------

library(party)
```
ipmranger

```r
#IMP based on CIT-RF (party package)
n.tree = 50
#readingSkills: data from party package
da = readingSkills[,1:3]
set.seed(290875)
readingSkills.cf3 <- cforest(score ~ ., data = readingSkills,
control = cforest_unbiased(mtry = 3, n.tree = 50))

#new case
nativeSpeaker = 'yes'
age = 8
shoeSize = 28
da1 = data.frame(nativespeaker, age, shoeSize)

#IPM case-wise computed for new cases for party package
pupfn = ipmpartynew(readingSkills.cf3, da1, n.tree)
pupfn
```

Description

The IPM for a case in the training set is calculated by considering and averaging over only the trees where the case belongs to the OOB set. The case is put down each of the trees where the case belongs to the OOB set. For each tree, the case goes from the root node to a leaf through a series of nodes. The variable split in these nodes is recorded. The percentage of times a variable is selected along the case’s way from the root to the terminal node is calculated for each tree. Note that we do not count the percentage of times a split occurred on variable k in tree t, but only the variables that intervened in the prediction of the case. The IPM for this case is obtained by averaging those percentages over only the trees where the case belongs to the OOB set. The random forest is based on a fast implementation of CART-RF.

Usage

`ipmranger(marbolr, da, n.tree)`

Arguments

- `marbolr` Random forest obtained with `ranger`. Responses can be of the same type supported by `ranger`. Note that not only numerical or nominal, but also ordered responses, censored response variables and multivariate responses can be considered with `ipmparty`.
- `da` Data frame with the predictors only, not responses, of the training set used for computing `marbolr`. Each row corresponds to an observation and each column corresponds to a predictor. Predictors can be numeric, nominal or an ordered factor.
- `n.tree` Number of trees in the random forest.
Details

All details are given in Epifanio (2017).

Value

It returns IPM for cases in the training set. It is estimated when they are OOB observations. It is a matrix with as many rows as cases are in da, and as many columns as predictors are in da.

Note

See Epifanio (2017) about the parameters of RFs to be used, the advantages and limitations of IPM, and in particular when CART is considered with predictors of different types.

Author(s)

Stefano Nembrini, Irene Epifanio

References

See Also

ipmparty, ipmrf, ipmpartynew, ipmrfnew, ipmrangernew, ipmgbmnew

Examples

```
#Note: more examples can be found at
#https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1650-8

## Not run:
library(ranger)
num.trees=500
rf <- ranger(Species ~ ., data = iris, keep.inbag = TRUE,num.trees=num.trees)

IPM=apply(ipmranger(rf,iris[,<-5],num.trees),FUN=mean,2)
```

End(Not run)
Description

The IPM of a new case, i.e. one not used to grow the forest and whose true response does not need to be known, is computed as follows. The new case is put down each of the \(ntree \) trees in the forest. For each tree, the case goes from the root node to a leaf through a series of nodes. The variable split in these nodes is recorded. The percentage of times a variable is selected along the case’s way from the root to the terminal node is calculated for each tree. Note that we do not count the percentage of times a split occurred on variable \(k \) in tree \(t \), but only the variables that intervened in the prediction of the case. The IPM for this new case is obtained by averaging those percentages over the \(ntree \) trees.

The random forest is based on a fast implementation of CART.

Usage

`ipmrangetnew(marbolr, da, ntree)`

Arguments

- `marbolr`: Random forest obtained with `ranger`. Responses can be of the same type supported by `ranger`. Note that not only numerical or nominal, but also ordered responses, censored response variables and multivariate responses can be considered with `ipmparty`.
- `da`: Data frame with the predictors only, not responses, for the new cases. Each row corresponds to an observation and each column corresponds to a predictor, which obviously must be the same variables used as predictors in the training set.
- `ntree`: Number of trees in the random forest.

Details

All details are given in Epifanio (2017).

Value

It returns IPM for new cases. It is a matrix with as many rows as cases are in \(da \), and as many columns as predictors are in \(da \).

Note

See Epifanio (2017) about the parameters of RFs to be used, the advantages and limitations of IPM, and in particular when CART is considered with predictors of different types.
Author(s)

Stefano Nembrini, Irene Epifanio

References

See Also

ipmparty, ipmrfr, ipmranger, ipmpartynew, ipmrfrnew, ipmgbmnew

Examples

```r
## Not run:
library(ranger)
num.trees=500
rf <- ranger(Species ~ ., data = iris,keep.inbag = TRUE,num.trees=num.trees)
IPM_complete=apply(ipmrangernew(rf,iris[,-5],num.trees),FUN=mean,2)
## End(Not run)
```

Description

The IPM for a case in the training set is calculated by considering and averaging over only the trees where the case belongs to the OOB set. The case is put down each of the trees where the case belongs to the OOB set. For each tree, the case goes from the root node to a leaf through a series of nodes. The variable split in these nodes is recorded. The percentage of times a variable is selected along the case’s way from the root to the terminal node is calculated for each tree. Note that we do not count the percentage of times a split occurred on variable k in tree t, but only the variables that intervened in the prediction of the case. The IPM for this case is obtained by averaging those percentages over only the trees where the case belongs to the OOB set. The random forest is based on CART.

Usage

```r
ipmrfr(marbolr, da, ntree)
```
Arguments

marbolr Random forest obtained with randomForest. Responses can be of the same type supported by randomForest. Note that not only numerical or nominal, but also ordered responses, censored response variables and multivariate responses can be considered with ipmparty.

da Data frame with the predictors only, not responses, of the training set used for computing marbolr. Each row corresponds to an observation and each column corresponds to a predictor. Predictors can be numeric, nominal or an ordered factor.

ntree Number of trees in the random forest.

Details

All details are given in Epifanio (2017).

Value

It returns IPM for cases in the training set. It is estimated when they are OOB observations. It is a matrix with as many rows as cases are in da, and as many columns as predictors are in da.

Note

See Epifanio (2017) about the parameters of RFs to be used, the advantages and limitations of IPM, and in particular when CART is considered with predictors of different types.

Author(s)

Irene Epifanio

References

See Also

ipmparty, ipmranger, ipmpartynew, ipmrfnew, ipmrangernew, ipmgbmnew

Examples

C#Note: more examples can be found at
Chttps://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1650-8

Not run:

library(mlbench)
data(PimaIndiansDiabetes2)
Diabetes <- na.omit(PimaIndiansDiabetes2)

set.seed(2016)
require(randomForest)
ri<- randomForest(diabetes ~ ., data=Diabetes, ntree=500, importance=TRUE,
keep.inbag=TRUE,replace = FALSE)

GVIM and PVIM (CART-RF)
im=importance(ri)
im
rank
ii=apply(im,2,rank)
ii

IPM by classes
attach(Diabetes)
puac=matrix(0,nrow=2,ncol=dim(da)[2])
puac[1,]=apply(pupf[diabetes=='neg',],2,mean)
puac[2,]=apply(pupf[diabetes=='pos',],2,mean)
colnames(puac)=colnames(da)
rownames(puac)=c('neg', 'pos')
puac

rank IPM
global rank
rank(puac)
rank by class
apply(puac,1,rank)

End (Not run)

ipmrfnew

IPM casewise with **CART-RF** by **randomForest** for new cases, whose responses do not need to be known

Description

The IPM of a new case, i.e. one not used to grow the forest and whose true response does not need to be known, is computed as follows. The new case is put down each of the *ntree* trees in the forest.
For each tree, the case goes from the root node to a leaf through a series of nodes. The variable split in these nodes is recorded. The percentage of times a variable is selected along the case’s way from the root to the terminal node is calculated for each tree. Note that we do not count the percentage of times a split occurred on variable k in tree t, but only the variables that intervened in the prediction of the case. The IPM for this new case is obtained by averaging those percentages over the ntree trees.

The random forest is based on CART.

Usage

ipmrfnew(marbolr, da, ntree)

Arguments

marbolr Random forest obtained with randomForest. Responses can be of the same type supported by randomForest. Note that not only numerical or nominal, but also ordered responses, censored response variables and multivariate responses can be considered with ipmparty.

da Data frame with the predictors only, not responses, for the new cases. Each row corresponds to an observation and each column corresponds to a predictor, which obviously must be the same variables used as predictors in the training set.

ntree Number of trees in the random forest.

Details

All details are given in Epifanio (2017).

Value

It returns IPM for new cases. It is a matrix with as many rows as cases are in da, and as many columns as predictors are in da.

Note

See Epifanio (2017) about the parameters of RFs to be used, the advantages and limitations of IPM, and in particular when CART is considered with predictors of different types.

Author(s)

Irene Epifanio

References

See Also

ipmparty, ipmrf, ipmranger, ipmpartynew, ipmrangernew, ipmgbmnew

Examples

#Note: more examples can be found at
#https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1650-8

library(mlbench)
data(PimaIndiansDiabetes2)
Diabetes <- na.omit(PimaIndiansDiabetes2)

set.seed(2016)
require(randomForest)
ri <- randomForest(diabetes ~ ., data=Diabetes, ntree=500, importance=TRUE, keep.inbag=TRUE, replace = FALSE)

#new cases
da1=rbind(apply(diabetes[Diabetes[,9]=='pos',1:8],2,mean),
apply(diabetes[Diabetes[,9]=='neg',1:8],2,mean))

#IPM case-wise computed for new cases for randomForest package
ntree=500
pupfn=ipmrfnew(ri, as.data.frame(da1),ntree)
pupfn
Index

*Topic **Generalized Boosted Regression**
IPMRF-package, 2

*Topic **Random forest**
IPMRF-package, 2

*Topic **Variable importance measure**
IPMRF-package, 2

*Topic **multivariate**
 ipmgbmnew, 3
 ipmparty, 4
 ipmpartynew, 7
 ipmranger, 9
 ipmrangernew, 11
 ipmrf, 12
 ipmrfnew, 14

*Topic **tree**
 ipmgbmnew, 3
 ipmparty, 4
 ipmpartynew, 7
 ipmranger, 9
 ipmrangernew, 11
 ipmrf, 12
 ipmrfnew, 14

cforest, 5, 7, 8

gbm, 3
 ipmgbmnew, 3, 5, 8, 10, 12, 13, 16
 ipmparty, 4, 4, 8, 10, 12, 13, 16
 ipmpartynew, 4, 5, 7, 10, 12, 13, 16
 ipmranger, 4, 5, 8, 9, 12, 13, 16
 ipmrangernew, 5, 8, 10, 11, 13, 16
 IPMRF (IPMRF-package), 2
 ipmrf, 4, 5, 8, 10, 12, 12, 16
 IPMRF-package, 2
 ipmrfnew, 4, 5, 8, 10, 12, 13, 14

randomForest, 13, 15
ranger, 9, 11