Package ‘IRon’

June 14, 2022

Type Package
Title Solving Imbalanced Regression Tasks
Version 0.1.2
Description Imbalanced domain learning has almost exclusively focused on solving classification tasks, where the objective is to predict cases labelled with a rare class accurately. Such a well-defined approach for regression tasks lacked due to two main factors. First, standard regression tasks assume that each value is equally important to the user. Second, standard evaluation metrics focus on assessing the performance of the model on the most common cases. This package contains methods to tackle imbalanced domain learning problems in regression tasks, where the objective is to predict extreme (rare) values.

The methods contained in this package are: 1) an automatic and non-parametric method to obtain such relevance functions; 2) visualisation tools; 3) suite of evaluation measures for optimisation/validation processes; 4) the squared-error relevance area measure, an evaluation metric tailored for imbalanced regression tasks.

URL https://github.com/nunompmoniz/IRon
BugReports https://github.com/nunompmoniz/IRon/issues
License CC0
Encoding UTF-8
LazyData true
LinkingTo Rcpp
Depends R (>= 2.10)
Imports Rcpp, stats, ggpubr, gridExtra, ggplot2, robustbase, scam
Suggests rpart, e1071, earth, randomForest, mgcv, reshape
RoxygenNote 7.1.1
NeedsCompilation yes
Author Nuno Moniz [cre, aut],
Rita P. Ribeiro [aut],
Miguel Margarido [ctb]
Description

Dataset with acceleration target value w.r.t. 14 nominal and numerical variables

Usage

```r
data(accel)
```

Format

A "data.frame" structure with 1732 observations, 3 nominal and 11 numerical predictor variables

Source

UCI Archive

References

Examples

```r
data(accel)
head(accel)
```
eval.stats Predictive Modelling Evaluation Statistics

Description
Evaluation statistics including standard and non-standard evaluation metrics. Returns a structure of data containing the results of several evaluation metrics (both standard and some focused on the imbalanced regression problem).

Usage
eval.stats(formula, train, test, y_pred, phi.parms = NULL, cf = 1.5)

Arguments
formula A model formula
train A data.frame object with the training data
test A data.frame object with the test set
y_pred A vector with the predictions of a given model
phi.parms The relevance function providing the data points where the pairs of values-relevance are known (use ?phi.control() for more information). If this parameter is not defined, this method will create a relevance function based on the data.frame variable in parameter train. Default is NULL
cf The coefficient used to calculate the boxplot whiskers in the event that a relevance function is not provided (parameter phi.parms)

Value
A list with four slots for the results of standard and relevance-based evaluation metrics
overall Results for standard metrics MAE, MSE and RMSE, along with Pearson’s Correlation, bias, variance and the Squared Error Relevance Area metric.

Examples
library(IRon)

if(requireNamespace("earth")) {
 data(accel)
 form <- acceleration ~ .
 ind <- sample(1:nrow(acc), 0.75*nrow(acc))
 train <- accel[ind,]
 test <- accel[-ind,]
ph <- phi.control(accel$acceleration)

m <- earth::earth(form, train)
preds <- as.vector(predict(m,test))

eval.stats(form, train, test, preds)
eval.stats(form, train, test, preds, ph)
eval.stats(form, train, test, preds, ph, cf=3) # Focusing on extreme outliers

Description

The data are a subsample of 500 observations from a data set that originate in a study where air pollution at a road is related to traffic volume and meteorological variables, collected by the Norwegian Public Roads Administration. The response variable (column 1) consist of hourly values of the logarithm of the concentration of NO2 (particles), measured at Alnabru in Oslo, Norway, between October 2001 and August 2003. The predictor variables (columns 2 to 8) are the logarithm of the number of cars per hour, temperature 2 meter above ground (degree C), wind speed (meters/second), the temperature difference between 25 and 2 meters above ground (degree C), wind direction (degrees between 0 and 360), hour of day and day number from October 1. 2001.

Usage

data(NO2Emissions)

Format

A "data.frame" structure with 500 observations, 8 numerical variables

Source

StatLib

Examples

data(NO2Emissions)
head(NO2Emissions)
Description

The phi function retrieves the relevance value of the values in a target variable. It does so by resorting to the Piecewise Cubic Hermite Interpolation Polynomial method for interpolating over a set of maximum and minimum relevance points. The notion of relevance is associated with rarity. Nonetheless, this notion may depend on the domain experts knowledge.

Usage

\[
\text{phi}(y, \text{phi.parms} = \text{NULL})
\]

Arguments

- **y**: The target variable of a given data set
- **phi.parms**: The relevance function providing the data points where the pairs of values-relevance are known

Value

A vector with the relevance values of a given target variable

Examples

```r
library(IRon)
data(accel)

ind <- sample(1:nrow(accel),0.75*nrow(accel))

train <- accel[ind,]
test <- accel[-ind,]

ph <- phi.control(train$acceleration)
phis <- phi(test$acceleration,phi.parms=ph)

plot(test$acceleration,phis,xlab="Y",ylab="Relevance")
```
phi.control

Description
This procedure enables the generation of a relevance function that performs a mapping between the values in a given target variable and a relevance value that is bounded by 0 (minimum relevance) and 1 (maximum relevance). This may be obtained automatically (based on the distribution of the target variable) or by the user defining the relevance values of a given set of target values - the remaining values will be interpolated.

Usage

phi.control(
 y, phi.parms, method = phiMethods, extr.type = NULL, control.pts = NULL, asym = TRUE, ...
)

Arguments

y The target variable of a given data set
phi.parms The relevance function providing the data points where the pairs of values-relevance are known
method The method used to generate the relevance function (extremes or range)
extr.type Type of extremes to be considered: low, high or both (default)
control.pts Parameter required when using 'range' method, representing a 3-column matrix of y-value, corresponding relevance value (between 0 and 1), and the derivative of such relevance value
asym Boolean for assymetric interpolation. Default TRUE, uses adjusted boxplot. When FALSE, uses standard boxplot.
... Misc data to be added to the relevance function

Value
A list with three slots with information concerning the relevance function

method The method used to generate the relevance function (extremes or range)
npts ?
control.pts Three sets of values identifying the target value-relevance-derivate for the first low extreme value, the median, and first high extreme value
Examples

```r
library(IRon)

data(accel)

ind <- sample(1:nrow(accel), 0.75*nrow(accel))

train <- accel[ind,]
test <- accel[-ind,]

ph <- phi.control(train$acceleration); phiPlot(test$acceleration, ph)
ph <- phi.control(train$acceleration, extr.type="high"); phiPlot(test$acceleration, ph)
ph <- phi.control(train$acceleration, method="range",
control.pts=matrix(c(10,0,0,15,1,0),byrow=TRUE,ncol=3)); phiPlot(test$acceleration, ph)
```

Description

The `phiPlot` function uses a dataset `ds` containing many `y` values to produce a line plot of `phi` versus `y` and a boxplot of `y`, and aligns them, one above the other. The first extreme value on either side of the boxplot should correspond to the point where `phi` becomes exactly 1 on the line plot. This function is dependent on the `robustbase`, `ggplot2` and `ggpubr` packages, and will not work without them.

Usage

```r
phiPlot(ds, phi.parms = NULL, limits = NULL, xlab = "y", ...)
```

Arguments

- `ds` : Dataset of `y` values
- `phi.parms` : The relevance function providing the data points where the pairs of values-relevance are known. Default is `NULL`
- `limits` : Vector with values to draw limits. Default is `NULL`
- `xlab` : Label of the x axis. Default is `y`
- `...` : Extra parameters when deriving the relevance function

Value

A line plot of `phi` versus `y`, as well as a boxplot of `y`

Examples

```r
ds <- rnorm(1000, 30, 10); phi.parms <- phi.control(ds); phiPlot(ds, phi.parms)
ds <- rpois(100, 3); phiPlot(ds)
```
Non-Standard Evaluation Metrics

Description

Obtains the squared error of predictions for a given subset of relevance.

Usage

```r
ser(trues, preds, phi.trues = NULL, ph = NULL, t = 0)
```

Arguments

- `trues`: Target values from a test set of a given data set. Should be a vector and have the same size as the variable `preds`.
- `preds`: Predicted values given a certain test set of a given data set. Should be a vector and have the same size as the variable `preds`.
- `phi.trues`: Relevance of the values in the parameter `trues`. Use `?phi()` for more information. Defaults to NULL.
- `ph`: The relevance function providing the data points where the pairs of values-relevance are known. Default is NULL.
- `t`: Relevance cut-off. Default is 0.

Details

Squared Error-Relevance Metric (SER)

Value

Squared error for for cases where the relevance of the true value is greater than `t` (SERA)

Examples

```r
library(IRon)
library(rpart)

if(requireNamespace("rpart")) {  
data(accel)

  form <- acceleration ~ .

  ind <- sample(1:nrow(accel),0.75*nrow(accel))

  train <- accel[ind,]
  test <- accel[-ind,]

  ph <- phi.control(accel$acceleration)
```
Squared Error-Relevance Area (SERA)

Description

Computes an approximation of the area under the curve described by squared error of predictions for a sequence of subsets with increasing relevance.

Usage

```r
sera(
    trues,
    preds,
    phi.trues = NULL,
    ph = NULL,
    pl = FALSE,
    m.name = "Model",
    step = 0.001,
    return.err = FALSE,
    norm = FALSE
)
```

Arguments

- `trues`: Target values from a test set of a given data set. Should be a vector and have the same size as the variable `preds`.
- `preds`: Predicted values given a certain test set of a given data set. Should be a vector and have the same size as the variable `preds`.
- `phi.trues`: Relevance of the values in the parameter `trues`. Use `?phi` for more information. Defaults to NULL.
- `ph`: The relevance function providing the data points where the pairs of values-relevance are known. Default is NULL.
- `pl`: Boolean to indicate if an illustration of the curve should be provided. Default is FALSE.
- `m.name`: Name of the model to be appended in the plot title.
sera

step
Relevance intervals between 0 (min) and 1 (max). Default 0.001

return.err
Boolean to indicate if the errors at each subset of increasing relevance should be
returned. Default is FALSE

norm
Normalize the SERA values for internal optimisation only (TRUE/FALSE)

Value
Value for the area under the relevance-squared error curve (SERA)

Examples
library(IRon)
library(rpart)

if(requireNamespace("rpart")) {
 # data accel
 form <- acceleration ~ .
 ind <- sample(1:nrow(accel), 0.75*nrow(accel))
 train <- accel[ind,]
 test <- accel[-ind,]

 ph <- phi.control(accel$acceleration)
 m <- rpart::rpart(form, train)
preds <- as.vector(predict(m, test))

 trues <- test$acceleration
 phi.trues <- phi(test$acceleration, ph)

 sera(trues, preds, phi.trues)
 sera(trues, preds, phi.trues, pl=TRUE, m.name="Regression Trees")
 sera(trues, preds, phi.trues, pl=TRUE, return.err=TRUE)
}

Index

* datasets
 accel, 2
 NO2Emissions, 4

accel, 2

eval.stats, 3

NO2Emissions, 4

phi, 5
phi.control, 6
phiPlot, 7

ser, 8
sera, 9