Package ‘ISR’

April 22, 2022

Title The Iterated Score Regression-Based Estimation Algorithm

Date 2022-04-22

Version 2022.4.22

Description Algorithm to handle with PCA-based missing data, where ISR is for PCA-based missing data with high correlation and DISR is for distributed PCA-based missing data. The philosophy of the package is described in Guo G. (2020) <doi:10.1080/02331888.2020.1823979>.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Imports MASS, stats

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

Depends R (>= 3.5.0)

NeedsCompilation no

Author Guangbao Guo [aut, cre] (<https://orcid.org/0000-0002-4115-6218>),
Haoyue Song [aut],
Lixing Zhu [aut]

Maintainer Guangbao Guo <ggb111111111163.com>

Repository CRAN

Date/Publication 2022-04-22 12:00:03 UTC

R topics documented:

CKD ... 2
DISR ... 3
HCV ... 4
ISR ... 4
Mean ... 5
MMLPCA .. 6
Description
chronic kidney disease

Usage
data("CKD")

Format
The format is: num [1:400, 1:18] 48 7 62 48 51 60 68 24 52 53 ... - attr(*, "dimnames")=List of 2
..$: NULL ..$: chr [1:18] "age" "bp" "sg" "al" ...

Details
There are 1010 missing values in the data set, accounting for 14.03 percent.

Source
Dr.P.Soundarapandian.M.D.,D.M (Senior Consultant Nephrologist), Apollo Hospitals, Managiri,
Madurai Main Road, Karaikudi, Tamilnadu, Indi

References

Examples
data(CKD)
maybe str(CKD) ; plot(CKD) ...
DISR

Distributed iterated score regression

Description

Calculate the estimator on the DISR method

Usage

```r
DISR(data = 0, data0, real = TRUE, example = FALSE, D)
```

Arguments

- **data** is the original data set
- **data0** is the missing data set
- **real** is to judge whether the data set is a real missing data set
- **example** is to judge whether the data set is a simulation example
- **D** is the number of nodes

Value

- **XDISR** is the estimator on the DISR method
- **MSEDISR** is the MSE value of the DISR method
- **MAEDISR** is the MAE value of the DISR method
- **REDISR** is the RE value of the DISR method
- **GCVDISR** is the GCV value of the DISR method
- **timeDISR** is the time cost of the DISR method

Examples

```r
library(MASS)
n=100;p=10;per=0.1
X0=data=matrix(mvrnorm(n*p,0,1),n,p)
m=round(per*n*p,digits=0)
mr=sample(1:(n*p),m,replace=FALSE)
X0[mr]=NA;data0=X0
DISR(data=data,data0=data0,real=FALSE,example=FALSE,D=2)
```
Description

Hepatitis C virus

Usage

data("HCV")

Format

The format is: num [1:615, 1:13] 1 1 1 1 1 1 1 1 1 1 ... - attr(*, "dimnames")=List of 2 ..$: chr [1:615] "1" "2" "3" "4"$: chr [1:13] "Category" "Age" "Sex" "ALB" ...

Details

There are 31 missing values in the data set, accounting for 0.39 percent.

Source

UCI repository

References

Examples

data(HCV)

maybe str(HCV) ; plot(HCV) ...

ISR

Iterated score regression

Description

Calculate the estimator on the ISR method

Usage

ISR(data = 0, data0, real = TRUE, example = FALSE)
Mean

Arguments

- `data` is the original data set
- `data0` is the missing data set
- `real` is to judge whether the data set is a real missing data set
- `example` is to judge whether the data set is a simulation example

Value

- `XISR` is the estimator on the ISR method
- `MSEISR` is the MSE value of the ISR method
- `MAEISR` is the MAE value of the ISR method
- `REISR` is the RE value of the ISR method
- `GCVISR` is the GCV value of the ISR method
- `timeISR` is the time cost of the ISR method

Examples

```r
library(MASS)
n=100;p=10;per=0.1
X0=data=matrix(mvrnorm(n*p,0,1),n,p)
m=round(per*n*p,digits=0)
mr=sample(1:(n*p),m,replace=FALSE)
X0[mr]=NA;data0=X0
ISR(data=data,data0=data0,real=FALSE,example=FALSE)
```

Mean

Mean method

Description

Caculate the estimator on the Mean method

Usage

```r
Mean(data = 0, data0, real = TRUE, example = FALSE)
```

Arguments

- `data` is the original data set
- `data0` is the missing data set
- `real` is to judge whether the data set is a real missing data set
- `example` is to judge whether the data set is a simulation example
Value

- `XMean` is the estimator on the Mean method
- `MSEMean` is the MSE value of the Mean method
- `MAEMean` is the MAE value of the Mean method
- `REMean` is the RE value of the Mean method
- `GCVMean` is the GCV value of the Mean method
- `timeMean` is the time cost of the Mean method

Examples

```r
library(MASS)
n=100;p=10;per=0.1
X0=data=matrix(mvrnorm(n*p,0,1),n,p)
m=round(per*n*p,digits=0)
mr=sample(1:(n*p),m,replace=FALSE)
X0[mr]=NA;data0=X0
Mean(data=data,data0=data0,real=FALSE,example=FALSE)
```

Description

Calculate the estimator on the ISR method

Usage

```r
MMLPCA(data = 0, data0, real = TRUE, example = FALSE)
```

Arguments

- `data` is the original data set
- `data0` is the missing data set
- `real` is to judge whether the data set is a real missing data set
- `example` is to judge whether the data set is a simulation example

Value

- `XMMMLPCA` is the estimator on the MMLPCA method
- `MSEMMLPCA` is the MSE value of the MMLPCA method
- `MAEMMLPCA` is the MAE value of the MMLPCA method
- `REMMMLPCA` is the RE value of the MMLPCA method
- `GCVMMLPCA` is the GCV value of the MMLPCA method
- `timeMMLPCA` is the time cost of the MMLPCA method
Examples

```r
library(MASS)
n=100;p=10;per=0.1
X0=data=matrix(mvrnorm(n*p,0,1),n,p)
m=round(per*n*p,digits=0)
mr=sample(1:(n*p),m,replace=FALSE)
X0[mr]=NA;data0=X0
MMLPCA(data=data,data0=data0,real=FALSE,example=FALSE)
```

MNIPALS

Modified nonlinear iterative partial least squares method

Description

Calculate the estimator on the MNIPALS method

Usage

```
MNIPALS(data = 0, data0, real = TRUE, example = FALSE)
```

Arguments

- `data` is the original data set
- `data0` is the missing data set
- `real` is to judge whether the data set is a real missing data set
- `example` is to judge whether the data set is a simulation example

Value

- `XMNIPALS` is the estimator on the MNIPALS method
- `MSEMNIPALS` is the MSE value of the MNIPALS method
- `MAEMNIPALS` is the MAE value of the MNIPALS method
- `REMNNIPALS` is the RE value of the MNIPALS method
- `GCVMNIPALS` is the GCV value of the MNIPALS method
- `timeMNIPALS` is the time cost of the MNIPALS method

Examples

```r
library(MASS)
n=100;p=10;per=0.1
X0=data=matrix(mvrnorm(n*p,0,1),n,p)
m=round(per*n*p,digits=0)
mr=sample(1:(n*p),m,replace=FALSE)
X0[mr]=NA;data0=X0
MNIPALS(data=data,data0=data0,real=FALSE,example=FALSE)
```
MRPCA

Modified regularized PCA

Description

Calculate the estimator on the MRPCA method.

Usage

```r
MRPCA(data = 0, data0, real = TRUE, example = FALSE)
```

Arguments

- `data` is the original data set.
- `data0` is the missing data set.
- `real` is to judge whether the data set is a real missing data set.
- `example` is to judge whether the data set is a simulation example.

Value

- `XMRPCA` is the estimator on the MRPCA method.
- `MSEMRPCA` is the MSE value of the MRPCA method.
- `MAEMRPCA` is the MAE value of the MRPCA method.
- `REMRPCA` is the RE value of the MRPCA method.
- `GCVMRPCA` is the GCV value of the MRPCA method.
- `timeMRPCA` is the time cost of the MRPCA method.

Examples

```r
library(MASS)
n=100;p=10;per=0.1
X0=data=matrix(mvrnorm(n*p,0,1),n,p)
m=round(per*n*p,digits=0)
mr=sample(1:(n*p),m,replace=FALSE)
X0[mr]=NA;data0=X0
MRPCA(data=data,data0=data0,real=FALSE,example=FALSE)
```
orange

Description

orange

Usage

data("orange")

Format

The format is: num [1:12, 1:8] 4.79 4.58 4.71 6.58 NA ... - attr(*, "dimnames")=List of 2 ..$: chr [1:12] "1" "2" "3" "4"$: chr [1:8] "Color.intensity" "Odor.intensity" "Attack.intensity" "Sweet" ...

Details

There are 19 missing values in the data set, accounting for 19.79 percent.

Source

http://factominer.free.fr/missMDA/index.html

References

Examples

data(orange)

maybe str(orange) ; plot(orange) ...

ozone

Description

ozone

Usage

data("ozone")
Format

A data frame with 112 observations on the following 11 variables.

- `maxO3` a numeric vector
- `T9` a numeric vector
- `T12` a numeric vector
- `T15` a numeric vector
- `Ne9` a numeric vector
- `Ne12` a numeric vector
- `Ne15` a numeric vector
- `Vx9` a numeric vector
- `Vx12` a numeric vector
- `Vx15` a numeric vector
- `maxO3v` a numeric vector

Details

There are 115 missing values in it, accounting for 9.96 percent.

Source

http://factominer.free.fr/missMDA/index.html

References

Examples

data(ozone)
maybe str(ozone); plot(ozone) ...

Description

Beijing PM2.5

Usage

data("PM2.5")
Format

The format is: num [1:43824, 1:12] 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 ... - attr(*, "dimnames")=List of 2 ..$: chr [1:43824] "1" "2" "3" "4"$: chr [1:12] "year" "month" "day" "hour" ...

Details

It records 43824 daily measurements on 12 variables and there are 2067 missing values on 2067 measurements, accounting for 0.00393.

Source

UCI repository

References

Examples

data(PM2.5)
maybe str(PM2.5) ; plot(PM2.5) ...

Description

Travel reviews

Usage

data("review")

Format

The format is: num [1:980, 1:10] 0.93 1.02 1.22 0.45 0.51 0.99 0.9 0.74 1.12 0.7 ... - attr(*, "dimnames")=List of 2 ..$: chr [1:980] "User_1" "User_2" "User_3" "User_4"$: chr [1:10] "Category_1" "Category_2" "Category_3" "Category_4" ...

Details

980 travelers’ reviews of 10 different types of travel facilities in East Asia

Source

UCI repository
References

Examples

```r
data(review)  
## maybe str(review) ; plot(review) ...
```

Description

Calculate the estimator on the SR method

Usage

```
SR(data = 0, data0, real = TRUE, example = FALSE)
```

Arguments

- `data` is the original data set
- `data0` is the missing data set
- `real` is to judge whether the data set is a real missing data set
- `example` is to judge whether the data set is a simulation example

Value

- `XSR` is the estimator on the SR method
- `MSESR` is the MSE value of the SR method
- `MAESR` is the MAE value of the SR method
- `RESR` is the RE value of the SR method
- `GCVSR` is the GCV value of the SR method
- `timeSR` is the time cost of the SR method

Examples

```
library(MASS)
n=100;p=10;per=0.1
X0=data.matrix(mvrnorm(n*p,0,1),n,p)
m=round(per*n*p,digits=0)
mr=sample(1:(n*p),m,replace=FALSE)
X0[mr]=NA;data0=X0
SR(data=data,data0=data0,real=FALSE,example=FALSE)
```
Index

* datasets
 - CKD, 2
 - HCV, 4
 - orange, 9
 - ozone, 9
 - PM2.5, 10
 - review, 11

CKD, 2
DISR, 3
HCV, 4
ISR, 4
Mean, 5
MMLPCA, 6
MNIPALS, 7
MRPCA, 8
orange, 9
ozone, 9
PM2.5, 10
review, 11
SR, 12