Package ‘ISS’

July 7, 2023

Type Package
Title Isotonic Subgroup Selection
Version 1.0.0
Description Methodology for subgroup selection in the context of isotonic regression including methods for sub-Gaussian errors, classification, homoscedastic Gaussian errors and quantile regression. See the documentation of ISS(). Details can be found in the paper by Müller, Reeve, Cannings and Samworth (2023) <arXiv:2305.04852v2>.
License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.2.3
Imports parallel, stats, Rdpack (>= 0.7)
RdMacros Rdpack
NeedsCompilation no
Author Manuel M. Müller [aut, cre],
 Henry W. J. Reeve [aut],
 Timothy I. Cannings [aut],
 Richard J. Samworth [aut]
Maintainer Manuel M. Müller <mm2559@cam.ac.uk>
Repository CRAN
Date/Publication 2023-07-06 22:10:02 UTC

R topics documented:

dag_test_FS ... 2
dag_test_Holm ... 3
dag_test_ISS .. 3
dag_test_MG .. 4
get_boundary_points .. 5
get_DAG ... 6
get_p_classification .. 7
get_p_Gaussian ... 8
Description

Implements the fixed sequence testing procedure of familywise error rate control. The sequence is given through ordering elements of `p_order` increasingly.

Usage

```
dag_test_FS(p_order, p, alpha, decreasing = FALSE)
```

Arguments

- `p_order` a numeric vector or matrix with one column whose order determines the sequence of tests.
- `p` a numeric vector taking values in (0, 1] such that `length(p) == nrow(p_order)` if `p_order` is a matrix (or `length(p) == length(p_order)` if `p_order` is a numeric vector).
- `alpha` a numeric value in (0, 1] specifying the Type I error rate.
- `decreasing` a boolean value determining whether the order of `p_order` should be understood in decreasing order.

Value

A boolean vector of the same length as `p` with each element being TRUE if the corresponding hypothesis is rejected and FALSE otherwise.

Examples

```
p_order <- c(0.5, 0, 1)
p <- c(0.01, 0.1, 0.05)
alpha <- 0.05
dag_test_FS(p_order, p, alpha, decreasing = TRUE)
```
Description

Given a vector of p-values, each concerning a row in the matrix \(X_0\), \texttt{dag_test_Holm()} first applies Holm's method to the p-values and then also rejects hypotheses corresponding to points coordinate-wise greater or equal to any point whose hypothesis has been rejected.

Usage

\[
\texttt{dag_test_Holm}(X_0, p, \alpha)
\]

Arguments

- \(X_0\) a numeric matrix giving points corresponding to hypotheses.
- \(p\) a numeric vector taking values in \((0, 1]\) such that \(\text{length}(p) = \text{nrow}(X_0)\).
- \(\alpha\) a numeric value in \((0, 1]\) specifying the Type I error rate.

Value

A boolean vector of the same length as \(p\) with each element being TRUE if the corresponding hypothesis is rejected and FALSE otherwise.

Examples

\[
\begin{align*}
X_0 & \leftarrow \text{rbind}(c(0.5, 0.5), c(0.8, 0.9), c(0.4, 0.6)) \\
p & \leftarrow c(0.01, 0.1, 0.05) \\
\alpha & \leftarrow 0.05 \\
dag_test_Holm(X_0, p, \alpha)
\end{align*}
\]

Description

Implements the DAG testing procedure given in Algorithm 1 by Müller et al. (2023).

Usage

\[
\texttt{dag_test_ISS}(X_0, p, \alpha)
\]
Arguments

- \(X_0 \): a numeric matrix giving points corresponding to hypotheses.
- \(p \): a numeric vector taking values in \((0, 1]\) such that \(\text{length}(p) = \text{nrow}(X_0)\).
- \(\alpha \): a numeric value in \((0, 1]\) specifying the Type I error rate.

Value

A boolean vector of the same length as \(p \) with each element being TRUE if the corresponding hypothesis is rejected and FALSE otherwise.

References

Examples

```r
X0 <- rbind(c(0.5, 0.6), c(0.8, 0.9), c(0.9, 0.8))
p <- c(0.02, 0.025, 0.1)
alpha <- 0.05
dag_test_ISS(X0, p, alpha)
```

Description

Implements the graph-testing procedures proposed by Meijer and Goeman (2015) for one-way logical relationships. Here implemented for the specific application to isotonic subgroup selection.

Usage

```r
dag_test_MG(
  X0,
  p,
  alpha,
  version = c("all", "any"),
  leaf_weights,
  sparse = FALSE
)
```
get_boundary_points

Arguments

X0 a numeric matrix giving points corresponding to hypotheses.
p a numeric vector taking values in (0, 1] such that length(p) == nrow(X0).
alpha a numeric value in (0, 1] specifying the Type I error rate.
version either "all" for the all-parent version of the procedure or "any" for the any-parent version of the procedure.
leaf_weights optional weights for the leaf nodes. Would have to be a numeric vector of the same length as there are leaf nodes in the DAG (resp. polytree, see sparse) induced by X0.
sparse a logical value specifying whether X0 should be used to induce a DAG (FALSE) or a polytree (TRUE).

Value

A boolean vector of the same length as p with each element being TRUE if the corresponding hypothesis is rejected and FALSE otherwise.

References

Examples

X0 <- rbind(c(0.5, 0.6), c(0.8, 0.9), c(0.9, 0.8))
p <- c(0.02, 0.025, 0.1)
alpha <- 0.05
dag_test_MG(X0, p, alpha)
dag_test_MG(X0, p, alpha, version = "any")
dag_test_MG(X0, p, alpha, sparse = TRUE)

Description

Given a set of points, returns the minimal subset with the same upper hull.

Usage

generic_function(X)

Arguments

X a numeric matrix with one point per row.
Value

A numeric matrix of the same number of columns as X.

Examples

```r
X <- rbind(c(0, 1), c(1, 0), c(1, 0), c(1, 1))
get_boundary_points(X)
```

Description

This function is used to construct the induced DAG, induced polyforest and reverse topological orderings thereof from a numeric matrix X_0. See Definition 2 in Müller et al. (2023).

Usage

```r
get_DAG(X0, sparse = FALSE, twoway = FALSE)
```

Arguments

- **X0**: a numeric matrix.
- **sparse**: logical. Either the induced DAG (FALSE) or the induced polyforest (TRUE) is constructed.
- **twoway**: logical. If FALSE, only leaves, parents, ancestors and reverse topological ordering are returned. If TRUE, then roots, children and descendants are also provided.

Value

A list with named elements giving the leaves, parents, ancestors and reverse topological ordering and additionally, if twoway == TRUE, the roots, children and descendants, of the constructed graph.

References

Examples

```r
X <- rbind(
  c(0.2, 0.8), c(0.2, 0.8), c(0.1, 0.7),
  c(0.2, 0.1), c(0.3, 0.5), c(0.3, 0)
)
get_DAG(X0 = X)
get_DAG(X0 = X, sparse = TRUE, twoway = TRUE)
```
Description

Calculate the p-value in Definition 21 of Müller et al. (2023).

Usage

get_p_classification(X, y, x0, tau)

Arguments

X
a numeric matrix specifying the covariates.

y
a numeric vector with length(y) == nrow(X) and all((y >= 0) & (y <= 1))
specifying the responses.

x0
a numeric vector specifying the point of interest, such that length(x0) == ncol(X).

tau
a single numeric value in [0, 1) specifying the threshold of interest.

Value

A single numeric value in (0, 1).

References

Examples

set.seed(123)
n <- 100
d <- 2
X <- matrix(runif(d * n), ncol = d)
eta <- function(x) sum(x)
X_eta <- apply(X, MARGIN = 1, FUN = function(x) 1 / (1 + exp(-eta(x))))
y <- as.numeric(runif(n) < X_eta)
get_p_classification(X, y, x0 = c(1, 1), tau = 0.6)
get_p_classification(X, y, x0 = c(1, 1), tau = 0.9)
get_p_Gaussian

Description

Calculate the p-value in Definition 19 of Müller et al. (2023).

Usage

```r
get_p_Gaussian(X, y, x0, tau)
```

Arguments

- `X`: a numeric matrix specifying the covariates.
- `y`: a numeric vector with `length(y) == nrow(X)` specifying the responses.
- `x0`: a numeric vector specifying the point of interest, such that `length(x0) == ncol(X)`.
- `tau`: a single numeric value specifying the threshold of interest.

Value

A single numeric value in (0, 1].

References

Examples

```r
set.seed(123)
n <- 100
d <- 2
X <- matrix(runif(d * n), ncol = d)
eta <- function(x) sum(x)
y <- apply(X, MARGIN = 1, FUN = eta) + rnorm(n, sd = 1)
get_p_Gaussian(X, y, x0 = c(1, 1), tau = 1)
get_p_Gaussian(X, y, x0 = c(1, 1), tau = -1)
```
Description

Calculate the p-value in Definition 1 of Müller et al. (2023).

Usage

\texttt{get_p_subGaussian(X, y, x0, sigma2, tau)}

Arguments

\begin{itemize}
\item \texttt{X} \hspace{1cm} a numeric matrix specifying the covariates.
\item \texttt{y} \hspace{1cm} a numeric vector with length(y) == nrow(X) specifying the responses.
\item \texttt{x0} \hspace{1cm} a numeric vector specifying the point of interest, such that length(x0) == ncol(X).
\item \texttt{sigma2} \hspace{1cm} a single positive numeric value specifying the variance parameter.
\item \texttt{tau} \hspace{1cm} a single numeric value specifying the threshold of interest.
\end{itemize}

Value

A single numeric value in (0, 1].

References

Examples

\begin{verbatim}
set.seed(123)
n <- 100
d <- 2
X <- matrix(runif(d*n), ncol = d)
eta <- function(x) sum(x)
y <- apply(X, MARGIN = 1, FUN = eta) + rnorm(n, sd = 0.5)
get_p_subGaussian(X, y, x0 = c(1, 1), sigma2 = 0.25, tau = 1)
get_p_subGaussian(X, y, x0 = c(1, 1), sigma2 = 0.25, tau = 3)
\end{verbatim}
get_p_subGaussian_NM

Description

Calculate the p-value in Definition 18 of Müller et al. (2023).

Usage

get_p_subGaussian_NM(X, y, x0, sigma2, tau, rho = 0.5)

Arguments

- **X**: a numeric matrix specifying the covariates.
- **y**: a numeric vector with length(y) == nrow(X) specifying the responses.
- **x0**: a numeric vector specifying the point of interest, such that length(x0) == ncol(X).
- **sigma2**: a single positive numeric value specifying the variance parameter.
- **tau**: a single numeric value specifying the threshold of interest.
- **rho**: a single positive numeric value serving as hyperparameter.

Value

A single numeric value in (0, 1].

References

Examples

```r
set.seed(123)
n <- 100
d <- 2
X <- matrix(runif(d * n), ncol = d)
eta <- function(x) sum(x)
y <- apply(X, MARGIN = 1, FUN = eta) + rnorm(n, sd = 0.5)
get_p_subGaussian_NM(X, y, x0 = c(1, 1), sigma2 = 0.25, tau = 3)
get_p_subGaussian_NM(X, y, x0 = c(1, 1), sigma2 = 0.25, tau = 1)
get_p_subGaussian_NM(X, y, x0 = c(1, 1), sigma2 = 0.25, tau = 1, rho = 2)
```
get_p_value

Description
A wrapper function used to call the correct function for calculating the p-value.

Usage
get_p_value(
 p_value_method = c("sub-Gaussian-normalmixture", "sub-Gaussian", "Gaussian", "classification", "quantile"),
 X,
 y,
 x0,
 tau,
 sigma2,
 rho = 1/2,
 theta = 1/2
)

Arguments
p_value_method one of c("sub-Gaussian", "sub-Gaussian-normalmixture", "Gaussian", "classification", "quantile") specifying which p-value construction should be used. See Definitions 1, 18, 19 and 21 and Lemma 24 by Müller et al. (2023) respectively. For p_value_method == "quantile", the version with the p-value from Definition 19 is implemented.
X a numeric matrix specifying the covariates.
y a numeric vector with length(y) == nrow(X) specifying the responses.
x0 a numeric vector specifying the point of interest, such that length(x0) == ncol(X).
tau a single positive numeric value specifying the threshold of interest.
sigma2 a single positive numeric value specifying the variance parameter (required only if p_value_method %in% c("sub-Gaussian", "sub-Gaussian-normalmixture").
rho a single positive numeric value serving as hyperparameter (required only if p_value_method == "sub-Gaussian-normalmixture").
theta a single numeric value in (0, 1) specifying the quantile of interest when p_value_method == "quantile". Defaults to 1/2, i.e.--the median.

Value
A single numeric value in (0, 1).
References

Examples

```r
set.seed(123)
n <- 100
d <- 2
X <- matrix(runif(d * n), ncol = d)
etta <- function(x) sum(x)
X_eta <- apply(X, MARGIN = 1, FUN = function(x) 1 / (1 + exp(-eta(x))))
y <- as.numeric(runif(n) < X_eta)
get_p_value(p_value_method = "classification", X, y, x0 = c(1, 1), tau = 0.6)
get_p_value(p_value_method = "classification", X, y, x0 = c(1, 1), tau = 0.9)

X_eta <- apply(X, MARGIN = 1, FUN = eta)
y <- X_eta + rcauchy(n)
get_p_value(p_value_method = "quantile", X, y, x0 = c(1, 1), tau = 1/2)
get_p_value(p_value_method = "quantile", X, y, x0 = c(1, 1), tau = 3)
get_p_value(p_value_method = "quantile", X, y, x0 = c(1, 1), tau = 3, theta = 0.95)
```

Description

The function implements the combination of p-value calculation and familywise error rate control through DAG testing procedures described in Müller et al. (2023).

Usage

```r
ISS(
  X,
  y,
  tau,
  alpha = 0.05,
  m = nrow(X),
  p_value = c("sub-Gaussian-normalmixture", "sub-Gaussian", "Gaussian", "classification", "quantile"),
  sigma2,
  rho = 1/2,
  FWER_control = c("ISS", "Holm", "MG all", "MG any", "split", "split oracle"),
  minimal = FALSE,
  split_proportion = 1/2,
  eta = NA,
  theta = 1/2
)
```
Arguments

- **X**: a numeric matrix specifying the covariates.
- **y**: a numeric vector with \(\text{length}(y) = \text{nrow}(X) \) specifying the responses.
- **tau**: a single numeric value specifying the threshold of interest.
- **alpha**: a numeric value in \((0, 1]\) specifying the Type I error rate.
- **m**: an integer value between 1 and \(\text{nrow}(X) \) specifying the size of the subsample of \(X \) at which the hypotheses should be tested.
- **p_value**: one of \("\text{sub-Gaussian}\", "\text{sub-Gaussian-normalmixture}\", "\text{Gaussian}\", "\text{classification}\", "\text{quantile}\") specifying which p-value construction should be used. See Definitions 1, 18, 19 and 21 and Lemma 24 by Müller et al. (2023) respectively. For \(p_\text{value} = "\text{quantile}\)”, the version with the p-value from Definition 19 is implemented.
- **sigma2**: a single positive numeric value specifying the variance parameter (only needed if \(p_\text{value}\%\in\%\("\text{sub-Gaussian}\", "\text{sub-Gaussian-normalmixture}\")\)).
- **rho**: a single positive numeric value serving as hyperparameter (only used if \(p_\text{value}\) == "\text{sub-Gaussian-normalmixture}\)."
- **FWER_control**: one of \("\text{ISS}\", "\text{Holm}\", "\text{MG all}\", "\text{MG any}\", "\text{split}\", "\text{split oracle}\"), specifying how the familywise error rate is controlled. The first corresponds to Algorithm 1 by Müller et al. (2023), the second is Holm’s procedure, the two starting with "MG" correspond to the procedures by Meijer and Goeman (2015) for one-way logical relationships, and the final two containing "split” to the sample splitting techniques in Appendix B of Müller et al. (2023).
- **minimal**: a logical value determining whether the output should be reduced to the minimal number of points leading to the same selected set.
- **split_proportion**: when \(FWER_\text{control}\%\in\%\("\text{split}\", "\text{split oracle}\")\), the number of data points in the first split of the data is \(\text{ceiling}(\text{split_proportion} \times \text{nrow}(X)) \).
- **eta**: when \(FWER_\text{control} == "\text{split oracle}\"\), this parameter needs to be used to provide the true regression function, which should take a vector of covariates as inputs and output a single numeric value.
- **theta**: a single numeric value in \((0, 1)\) specifying the quantile of interest when \(p_\text{value}_\text{method} == "\text{quantile}\). Defaults to 1/2, i.e.--the median.

Value

A numeric matrix giving the points in \(X \) determined to lie in the \(\tau \)-superlevel set of the regression function with probability at least \(1 - \alpha \) or, if \(\text{minimal} == \text{TRUE} \), a subset of points thereof that have the same upper hull.

References

`Examples`

d <- 2
n <- 1000
m <- 100
sigma2 <- (1 / 4)^2
tau <- 0.5
alpha <- 0.05

X <- matrix(runif(n * d), nrow = n)
eta_X <- apply(X, MARGIN = 1, max)
y <- eta_X + rnorm(n, sd = sqrt(sigma2))
X_rej <- ISS(X = X, y = y, tau = tau, alpha = alpha, m = m, sigma2 = sigma2)

if (d == 2) {
 plot(0, type = "n", xlim = c(0, 1), ylim = c(0, 1), xlab = NA, ylab = NA)
 for (i in 1:nrow(X_rej)) {
 rect(
 xleft = X_rej[i, 1], xright = 1, ybottom = X_rej[i, 2], ytop = 1,
 border = NA, col = "indianred"
)
 }
 points(X, pch = 16, cex = 0.5, col = "gray")
 points(X[1:m,], pch = 16, cex = 0.5, col = "black")
 lines(x = c(0, tau), y = c(tau, tau), lty = 2)
 lines(x = c(tau, tau), y = c(tau, 0), lty = 2)
 legend(
 x = "bottomleft",
 legend = c("superlevel set boundary","untested covariate points","tested covariate points","selected set"),
 col = c("black", "gray", "black", "indianred"),
 lty = c(2, NA, NA, NA),
 lwd = c(1, NA, NA, NA),
 pch = c(NA, 16, 16, NA),
 fill = c(NA, NA, NA, "indianred"),
 border = c(NA, NA, NA, "indianred")
)
}

```
Index

dag_test_FS, 2
dag_test_Holm, 3
dag_test_ISS, 3
dag_test_MG, 4

get_boundary_points, 5
get_DAG, 6
get_p_classification, 7
get_p_Gaussian, 8
get_p_subGaussian, 9
get_p_subGaussian_NM, 10
get_p_value, 11

ISS, 12