Package ‘IntLIM’

October 12, 2022

Type Package

Title Integration of Omics Data Using Linear Modeling

Version 2.0.2

Description This workflow takes analyte levels from two different types of analytes (e.g. gene expression and metabolite abundance), meta-information on each analyte type, and sample outcome and metadata to identify analyte pairs that are significantly associated with a continuous or discrete outcome (e.g. drug response or tumor type). The following references describe the methods in this package: (1) Jalal K. Siddiqui, et al. (2018) <doi:10.1186/s12859-018-2085-6>, (2) Andrew Patt, et al. (2019) <doi:10.1007/978-1-4939-9027-6_23>.

License GPL-2

Depends R (>= 3.2.0)

Imports ComplexHeatmap, DT, ggplot2, graphics, grDevices, heatmaply, highcharter, htmltools, KernSmooth, margins, methods, MASS, RColorBrewer, reshape2, rmarkdown, shiny, shinydashboard, shinyFiles, shinyjs, stats, testthat, utils

Suggests knitr,

Encoding UTF-8

NeedsCompilation no

Collate 'AllClasses.R' 'internalfunctions.R' '01_ReadData.R' '02_FilterData.R' '03_RunIntLim.R' '04_ProcessResults.R' 'IntLimResults_extendedfunctions.R' 'PermuteIntLIM.R' 'crossvalfunctions.R' 'plottingfunctions.R' 'runShiny.R' 'statsfunctions.R' 'writingfunctions.R'

VignetteBuilder knitr

RoxygenNote 7.1.2

Author Jalal Siddiqui [aut],
Shunchao Wang [aut],
Rohith Vanam [aut],
Elizabeth Baskin [aut],
Tara Eicher [aut, cre],
Kyle Spencer [aut],
Ewy Mathe [aut]
Maintainer Tara Eicher <tara.eicher@nih.gov>
Repository CRAN
Date/Publication 2022-08-22 15:10:04 UTC

R topics documented:

BuildDataAndLines .. 3
CreateCrossValFolds .. 4
DistPvalues .. 4
DistRSquared .. 5
FilterData ... 5
FilterDataFolds ... 6
getQuantileForInteractionCoefficient 7
getStatsAllLM ... 8
getstatsOneLM ... 9
HistogramPairs .. 9
InteractionCoefficientGraph 10
IntLimData-class ... 10
IntLimResults-class .. 11
MarginalEffectsGraph ... 12
MarginalEffectsGraphDataframe 12
multi.which .. 13
OutputData ... 14
OutputResults ... 14
PermutationCountSummary 15
PermutationPairSummary 15
PermuteIntLIM .. 16
PlotDistributions .. 17
PlotFoldOverlapUpSet .. 18
PlotPair .. 18
PlotPairFlat ... 19
PlotPCA .. 20
ProcessResults .. 21
ProcessResultsAllFolds 22
ProcessResultsContinuous 23
pvalCoefVolcano ... 23
PValueBoxPlots .. 24
ReadData .. 25
RemovePlusInCovars .. 26
RunCrossValidation .. 26
RunIntLim .. 28
RunIntLimAllFolds ... 29
runIntLIMApp .. 30
RunLM .. 30
ShowStats ... 31

Index 32
BuildDataAndLines

A helper function for the PlotPair functions (i.e. the highcharter one and the flat, base-R one).

Description

A helper function for the PlotPair functions (i.e. the highcharter one and the flat, base-R one).

Usage

BuildDataAndLines(
 inputData,
 inputResults,
 outcome,
 independentVariable,
 independentAnalyteOfInterest,
 outcomeAnalyteOfInterest,
 palette = "Set1",
 stype
)

Arguments

inputData IntLimObject output of ReadData() or FilterData()
inputResults Data frame with model results (output of ProcessResults())
outcome '1' or '2' must be set as outcome/independent variable
independentVariable '1' or '2' must be set as outcome/independent variable
independentAnalyteOfInterest independent analyte in pair
outcomeAnalyteOfInterest outcome analyte in pair
palette choose an RColorBrewer palette ("Set1", "Set2", "Set3", "Pastel1", "Pastel2", "Paired", etc.) or submit a vector of colors
stype Phenotype or outcome variable
CreateCrossValFolds

Create multiple cross-validation folds from the data. Format is a list of IntLimData training and testing pairs. The "training" slot contains all data except that in the given fold, and the "testing" contains all data in the fold.

Description

Creates multiple cross-validation folds from the data. Format is a list of IntLimData training and testing pairs. The "training" slot contains all data except that in the given fold, and the "testing" contains all data in the fold.

Usage

CreateCrossValFolds(inputData, folds)

Arguments

inputData: IntLimData object (output of ReadData()) with analytite levels and associated meta-data
folds: number of folds to create

Value

A set of IntLimData training and testing sets, of the following format: list(list("train" = IntLimData, "test" = IntLimData), ... list("train" = IntLimData, "test" = IntLimData))
List of IntLimModel objects with model results

DistPvalues

Visualize the distribution of unadjusted p-values from linear models

Description

Visualize the distribution of unadjusted p-values from linear models

Usage

DistPvalues(IntLimResults, breaks = 100, adjusted = TRUE)

Arguments

IntLimResults: output of RunIntLim()
breaks: the number of breaks to use in histogram (see hist() documentation for more details)
adjusted: Whether or not to plot adjusted p-values. If TRUE (default), adjusted p-values are plotted. If FALSE, unadjusted p-values are plotted.
DistRSquared

Value

No return value, called for side effects

Description

Visualize the distribution of unadjusted p-values from linear models

Usage

`DistRSquared(IntLimResults, breaks = 100)`

Arguments

- `IntLimResults`: output of `RunIntLim()`
- `breaks`: the number of breaks to use in histogram (see `hist()` documentation for more details)

Value

No return value, called for side effects

FilterData

Filter input data by abundance values and number of missing values.

Description

Filter data by abundance (with user-input percentile cutoff) of missing values (with user-input percent cutoff). Missing values are commonly found in metabolomics data.

Usage

```r
FilterData(
  inputData,
  analyteType1perc = 0,
  analyteType2perc = 0,
  analyteMiss = 0,
  suppressWarnings = FALSE,
  cov.cutoff = 0
)
```
FilterDataFolds

Arguments

inputData
IntLimData object (output of ReadData()) with analyte levels and associated meta-data

analyteType1perc
percentile cutoff (0-1) for filtering analyte type 1 (e.g. remove analytes with mean values < 'analyteType1perc' percentile) (default: 0)

analyteType2perc
percentile cutoff (0-1) for filtering analyte type 2 (default: no filtering of analytes) (default:0)

analyteMiss
missing value percent cutoff (0-1) for filtering both analyte types (analytes with > 80% missing values will be removed) (default:0)

supressWarnings
whether or not to print warnings. If TRUE, warnings will not be printed.

cov.cutoff
percentile cutoff (0-1) for the covariances of the analytes (default: 0.30)

Value

filtData IntLimData object with input data after filtering

Description

Filter data by abundance (with user-input percentile cutoff) of missing values (with user-input percent cutoff). Missing values are commonly found in metabolomics data.

Usage

FilterDataFolds(
 inputDataFolds,
 analyteType1perc = 0,
 analyteType2perc = 0,
 analyteMiss = 0,
 cov.cutoff = 0,
 suppressWarnings = FALSE
)

Arguments

inputDataFolds
List of IntLimData objects (output of ReadData()) with analyte levels and associated meta-data

analyteType1perc
percentile cutoff (0-1) for filtering analyte type 1 (e.g. remove analytes with mean values < 'analyteType1perc' percentile) (default: 0)

analyteType2perc
percentile cutoff (0-1) for filtering analyte type 2 (default: no filtering of analytes) (default: 0)

analyteMiss
missing value percent cutoff (0-1) for filtering analytes (analytes with > 80% missing values will be removed) (default: 0)

cov.cutoff
percentile cutoff (0-1) for the covariances of the analytes (default: 0.30)
suppressWarnings
whether to suppress warnings

Value

filtData IntLimData object with input data after filtering

getQuantileForInteractionCoefficient
Function that gets numeric cutoffs from percentile

Description

Function that gets numeric cutoffs from percentile

Usage

getQuantileForInteractionCoefficient(tofilter, interactionCoeffPercentile)

Arguments

tofilter
dataframe for percentile filtering

interactionCoeffPercentile
percentile cutoff for interaction coefficient (default bottom 10 percent (high negative coefficients) and top 10 percent (high positive coefficients))

Value

vector with numeric cutoffs
getStatsAllLM
Function that runs Linear Models for all analytes

Description

Function that runs Linear Models for all analytes

Usage

```r
getStatsAllLM(
  outcome,
  independentVariable,
  type1,
  type2,
  type,
  covar,
  covarMatrix,
  continuous,
  save.covar.pvals,
  remove.tri = FALSE,
  suppressWarnings = FALSE
)
```

Arguments

- **outcome**
 '1' or '2' must be set as outcome/independent variable

- **independentVariable**
 '1' or '2' must be set as outcome/independent variable

- **type1**
 Analyte type 1 dataset

- **type2**
 Analyte type 2 dataset

- **type**
 vector of sample type (by default, it will be used in the interaction term). Only 2 categories are currently supported.

- **covar**
 vector of additional vectors to consider

- **covarMatrix**
 covariate matrix

- **continuous**
 indicate whether data is discrete (FALSE) or continuous (TRUE)

- **save.covar.pvals**
 boolean to indicate whether or not to save the p-values of all covariates, which can be analyzed later but will also lengthen computation time.

- **remove.tri**
 boolean to indicate whether or not to remove the 1-1 or 2-2 pair with the highest p-value across two duplicate models (e.g. m1~m2 and m2~m1)

- **suppressWarnings**
 whether or not to suppress warnings

Value

list of matrices (interaction.pvalues, interaction.adj.pvalues, interaction.coefficients)
getstatsOneLM

Function that runs linear models for analyte vs. all analytes of the other type

Description

Function that runs linear models for analyte vs. all analytes of the other type

Usage

getstatsOneLM(form, clindata, arraydata, analytename, suppressWarnings = FALSE)

Arguments

- **form**: LM formulat (typically m~g+t+g:t)
- **clindata**: data frame with 1st column: expression of one analyte; 2nd column sample type (e.g. cancer/non-cancer)
- **arraydata**: matrix of analyte values
- **analytename**: name of independent analyte in the model
- **suppressWarnings**: whether or not to suppress warnings

HistogramPairs

Histogram of analyte pairs depending upon independent or outcome analyte

Description

Histogram of analyte pairs depending upon independent or outcome analyte

Usage

HistogramPairs(inputResults, type = "outcome", breaks = 50)

Arguments

- **inputResults**: Data frame with model results (output of ProcessResults())
- **type**: 'independent' or 'outcome', 'outcome' set as default
- **breaks**: Number of breaks selected for histogram

Value

No return value, called for side effects
InteractionCoefficientGraph

Graphs a scatterplot of pairs vs. the interaction coefficient for the pair

Description

Graphs a scatterplot of pairs vs. the interaction coefficient for the pair

Usage

```r
InteractionCoefficientGraph(
  inputResults,
  interactionCoeffPercentile = 0.1,
  percentageToPlot = 0.01,
  independent.var.type = 1,
  outcome = 2
)
```

Arguments

- `inputResults` Data frame with model results (output of ProcessResults())
- `interactionCoeffPercentile` percentile cutoff for interaction coefficient (default bottom 10 percent (high negative coefficients) and top 10 percent (high positive coefficients))
- `percentageToPlot` percentage of points to plot (the points will be randomly selected) – plotting all points will likely overwhelm plotting function.
- `independent.var.type` type of analyte used as the independent variable ("1" or "2")
- `outcome` type of analyte used as the outcome/dependent variable ("1" or "2")

Value

a scatterplot

IntLimData-class

IntLimData class

Description

IntLimData class
IntLimResults-class

Slots

analyteType1 A matrix of abundance, expression, or other levels for a specific type of analyte (e.g. protein abundance, metabolite abundance, or gene expression)

analyteType2 A second matrix of abundance, expression, or other levels for a specific type of analyte (e.g. protein abundance, metabolite abundance, or gene expression)

analyteType1MetaData A data frame of metadata for analyte type 1.

analyteType2MetaData A data frame of metadata for analyte type 2.

sampleMetaData A data frame of covariate values from the patient data.

IntLimResults-class IntLimResults class

Description

IntLimResults class

Slots

interaction.pvalues matrix of interaction p-values

interaction.adj.pvalues matrix of adjusted interaction p-values

interaction.coefficients matrix of interaction coefficients

covariate.coefficients data frame of coefficients for each covariate

covariate.pvalues data frame of p-values for each covariate

model.rsquared matrix of r-squared values

corr matrix of correlations in group 1 and 2

filt.results data frame of filtered results

warnings a message of whether analytes have 0 standard deviation

stype column name that represents sample type (by default, it will be used in the interaction term). Only 2 categories are currently supported.

outcome outcome is either ‘1’ or ‘2’

independent.var.type independent variable type (either ‘1’ or ‘2’)

covar describing additional variables and the class they form

continuous “1” if outcome is continuous, “0” if not
MarginalEffectsGraph

Creates a dataframe of the marginal effect of phenotype

Description

Creates a dataframe of the marginal effect of phenotype

Usage

MarginalEffectsGraph(dataframe, title, ylab, xlab)

Arguments

dataframe from MarginalEffectsGraphDataframe
title for graph
ylab outcome analyte in pair
xlab independent analyte in pair

Value

values used for graphing

MarginalEffectsGraphDataframe

Creates a dataframe of the marginal effect of phenotype

Description

Creates a dataframe of the marginal effect of phenotype

Usage

MarginalEffectsGraphDataframe(
 inputResults,
 inputData,
 independentAnalyteOfInterest,
 outcomeAnalyteOfInterest,
 continuous,
 outcome,
 independentVariable
)
multi.which

Arguments

- `inputResults`: IntLimResults object with model results (output of RunIntLim())
- `inputData`: Named list (output of FilterData()) with analyte levels and associated meta-data
- `independentAnalyteOfInterest`: independent analyte in pair
- `outcomeAnalyteOfInterest`: outcome analyte in pair
- `continuous`: whether or not the outcome is continuous (TRUE or FALSE)
- `outcome`: ‘1’ or ‘2’ must be set as outcome/independent variable
- `independentVariable`: ‘1’ or ‘2’ must be set as outcome/independent variable

Value

dataframe for further analysis

multi.which

A which for multidimensional arrays. Mark van der Loo 16.09.2011

Description

A which for multidimensional arrays. Mark van der Loo 16.09.2011

Usage

`multi.which(A)`

Arguments

- `A`: Boolean function defined over a matrix

Value

vector with numeric cutoffs
OutputData

Output data into individual CSV files. All data will be zipped into one file with all data.

Description

Output data into individual CSV files. All data will be zipped into one file with all data.

Usage

```
OutputData(inputData, filename = "")
```

Arguments

- `inputData`: data output from ReadData() or FilterData() function
- `filename`: name of file to be output (default: 'tempdir/output.zip')

Value

the filename of the CSV file with results named with cohort

OutputResults

Output results into a zipped CSV file. Results include gene and metabolite pairs, along with model interaction p-values, and correlations in each group being evaluated.

Description

Output results into a zipped CSV file. Results include gene and metabolite pairs, along with model interaction p-values, and correlations in each group being evaluated.

Usage

```
OutputResults(inputResults, filename = "")
```

Arguments

- `inputResults`: IntLimResults object with model results (output of ProcessResults())
- `filename`: name of file to be output (default: 'tempdir/results.csv')

Value

the filename of the CSV file with results named with cohort
PermutationCountSummary

Return the number of significant analytes and the number of permutations in which each analyte is significant. If plot = TRUE, show a box plot of number of significant analytes over permutations, overlaid with the number of significant analytes in the original data.

Description

Return the number of significant analytes and the number of permutations in which each analyte is significant. If plot = TRUE, show a box plot of number of significant analytes over permutations, overlaid with the number of significant analytes in the original data.

Usage

PermutationCountSummary(inputResults, permResults, plot)

Arguments

inputResults Data frame with model results (output of ProcessResults())
permResults An object of type PermutationResults (output of PermuteIntLIM())
plot Whether or not to show the boxplot. Default is TRUE.

Value

A data frame that includes, for each permutation, the number of significant pairs and the number of unique analytes of each analyte type within those pairs

PermutationPairSummary

Return the number of significant analytes / pairs per permutation and the number of permutations in which each analyte is significant. If plot = TRUE, show a box plot of number of significant analytes over permutations, overlaid with the number of significant analytes in the original data.

Description

Return the number of significant analytes / pairs per permutation and the number of permutations in which each analyte is significant. If plot = TRUE, show a box plot of number of significant analytes over permutations, overlaid with the number of significant analytes in the original data.

Usage

PermutationPairSummary(inputResults, permResults, plot)
Arguments

inputResults Data frame with model results (output of ProcessResults())
permResults An object of type PermutationResults (output of PermuteIntLIM())
plot Whether or not to show the boxplot. Default is TRUE.

Value

A data frame that includes each significant pair from the unpermuted data and the number of times that pair was significant in the permuted data.

PermuteIntLIM

Run permutations of the IntLIM code to search for random cross-omic associations in dataset

Description

This function allows users to test different permutations of the metadata with their analytes to ensure that any pairs being deemed significant by IntIM are not being suggested due to random chance, as is sometimes a problem in correlative associations.

Usage

PermuteIntLIM(
 data,
 stype = "",
 outcome = 1,
 independent.var.type = 1,
 covar = c(),
 save.covar.pvals = FALSE,
 continuous = FALSE,
 pvalcutoff = 0.05,
 interactionCoeffPercentile = 0,
 rsquaredCutoff = 0,
 num.permutations = 1,
 seed = 1
)

Arguments

data IntLimData object (output of ReadData()) with analyte levels and associated sample meta-data
stype column name that represents sample type (by default, it will be used in the interaction term). Only 2 categories are currently supported.
outcome ’1’ or ’2’ must be set as outcome/independent variable (default is ’1’)
independent.var.type
 ’1’ or ‘2’ must be set as independent variable (default is ’1’)
covar Additional variables from the phenotypic data that be integrated into linear model
save.covar.pvals boolean to indicate whether or not to save the p-values of all covariates, which can be analyzed later but will also lengthen computation time. The default is FALSE.
continuous boolean to indicate whether the data is continuous or discrete
pvalcutoff FDR adjusted p-value cutoff for number of significant multi-omic pairs (default = 0.20)
interactionCoeffPercentile Interaction coefficient cutoff for the IntLIM linear model (default = 0.10)
rsquaredCutoff Cutoff for the R-squared values for the models as a quality control (default = 0.50)
num.permutations Number of permutations to be ran (default = 1)
seed set.seed parameter allowing for custom random number generation seeds

Value

List object with 1st slot populated with dataframe containing the R^2 values of the models, and number of significant pairs before and after p-value adjustment. The 2nd slot in the list contains a string vector of the IDs of the significant pairs.

Description

Get some stats after reading in data

Usage

PlotDistributions(inputData, viewer = TRUE, palette = "Set1")

Arguments

inputData IntLimObject output of ReadData()
viewer whether the plot should be displayed in the RStudio viewer (TRUE) or in Shiny/Knittr (FALSE)
palette choose an RColorBrewer palette ("Set1", "Set2", "Set3", "Pastel1", "Pastel2", "Paired", etc.) or submit a vector of colors

Value

a highcharter object
PlotFoldOverlapUpSet
Makes an UpSet plot showing the filtered pairs of analytes found in each fold. This plot should only be made for cross-validation data.

Description

Makes an UpSet plot showing the filtered pairs of analytes found in each fold. This plot should only be made for cross-validation data.

Usage

```r
PlotFoldOverlapUpSet(inputResults)
```

Arguments

- `inputResults`: List of outputs of `ProcessResultsAllFolds()`, each of which is a list of `IntLIMResults`.

Value

an UpSet plot

PlotPair
scatter plot of pairs (based on user selection)

Description

scatter plot of pairs (based on user selection)

Usage

```r
PlotPair(
  inputData,
  inputResults,
  outcome,
  independentVariable,
  independentAnalyteOfInterest,
  outcomeAnalyteOfInterest,
  palette = "Set1",
  viewer = TRUE
)
```
Arguments

- **inputData**: IntLimObject output of `ReadData()` or `FilterData()`
- **inputResults**: Data frame with model results (output of `ProcessResults()`)
- **outcome**: '1' or '2' must be set as outcome/independent variable
- **independentVariable**: '1' or '2' must be set as outcome/independent variable
- **independentAnalyteOfInterest**: independent analyte in pair
- **outcomeAnalyteOfInterest**: outcome analyte in pair
- **palette**: choose an RColorBrewer palette ("Set1", "Set2", "Set3", "Pastel1", "Pastel2", "Paired", etc.) or submit a vector of colors
- **viewer**: whether the plot should be displayed in the RStudio viewer (TRUE) or in Shiny/Knittr (FALSE)

Value

No return value, called for side effects

PlotPairFlat
scatter plot of pairs (based on user selection). This version does not use highcharter and instead plots a base R plot.

Description

scatter plot of pairs (based on user selection). This version does not use highcharter and instead plots a base R plot.

Usage

```r
PlotPairFlat(
  inputData,  
  inputResults,  
  outcome,  
  independentVariable,  
  independentAnalyteOfInterest,  
  outcomeAnalyteOfInterest,  
  palette = "Set1"  
)
```
Arguments

inputData IntLimObject output of ReadData() or FilterData()
inputResults Data frame with model results (output of ProcessResults())
outcome '1' or '2' must be set as outcome/independent variable
independentVariable '1' or '2' must be set as outcome/independent variable
independentAnalyteOfInterest independent analyte in pair
outcomeAnalyteOfInterest outcome analyte in pair
palette choose an RColorBrewer palette ("Set1", "Set2", "Set3", "Pastel1", "Pastel2", "Paired", etc.) or submit a vector of colors

Value
No return value, called for side effects

PlotPCA

PCA plots of data for QC

Description
PCA plots of data for QC

Usage
PlotPCA(inputData, viewer = TRUE, stype = "", palette = "Set1")

Arguments

inputData IntLimObject output of ReadData()
viewer whether the plot should be displayed in the RStudio viewer (TRUE) or in Shiny/Knittr (FALSE)
stype category to color-code by (can be more than two categories)
palette choose an RColorBrewer palette ("Set1", "Set2", "Set3", "Pastel1", "Pastel2", "Paired", etc.) or submit a vector of colors

Value
a highcharter object
ProcessResults

Retrieve significant pairs, based on adjusted p-values. For each pair that is statistically significant, calculate the correlation within group1 (e.g. cancer) and the correlation within group2 (e.g. non-cancer). Users can then remove pairs with a difference in correlations between groups 1 and 2 less than a user-defined threshold.

Description

Retrieve significant pairs, based on adjusted p-values. For each pair that is statistically significant, calculate the correlation within group1 (e.g. cancer) and the correlation within group2 (e.g. non-cancer). Users can then remove pairs with a difference in correlations between groups 1 and 2 less than a user-defined threshold.

Usage

```r
ProcessResults(
  inputResults,  # IntLimResults object with model results (output of RunIntLim())
  inputData,  # MultiDataSet object (output of ReadData()) with analyte levels and associated meta-data
  pvalcutoff = 0.05,  # cutoff of FDR-adjusted p-value for filtering (default 0.05)
  interactionCoeffPercentile = 0,  # percentile cutoff for interaction coefficient (default bottom 10 percent (high negative coefficients) and top 10 percent (high positive coefficients))
  rsquaredCutoff = 0  # cutoff for lowest r-squared value
)
```

Arguments

- `inputResults`: IntLimResults object with model results (output of RunIntLim())
- `inputData`: MultiDataSet object (output of ReadData()) with analyte levels and associated meta-data
- `pvalcutoff`: cutoff of FDR-adjusted p-value for filtering (default 0.05)
- `interactionCoeffPercentile`: percentile cutoff for interaction coefficient (default bottom 10 percent (high negative coefficients) and top 10 percent (high positive coefficients))
- `rsquaredCutoff`: cutoff for lowest r-squared value

Value

IntResults object with model results (now includes correlations)
ProcessResultsAllFolds

Retrieve significant pairs, based on adjusted p-values, interaction coefficient percentile, and r-squared values. This is a wrapper for ProcessResults.

Description

Retrieve significant pairs, based on adjusted p-values, interaction coefficient percentile, and r-squared values. This is a wrapper for ProcessResults.

Usage

ProcessResultsAllFolds(
 inputResults,
 inputData,
 pvalcutoff = 0.05,
 interactionCoeffPercentile = 0.5,
 rsquaredCutoff = 0,
 treecuts = 0
)

Arguments

inputResults List of IntLimResults object with model results (output of RunIntLimAllFolds())
inputData List of MultiDataSet objects (output of CreateCrossValFolds()) with analyte levels and associated meta-data
pvalcutoff cutoff of FDR-adjusted p-value for filtering (default 0.05)
interactionCoeffPercentile percentile cutoff for interaction coefficient (default bottom 10 percent (high negative coefficients) and top 10 percent (high positive coefficients))
rsquaredCutoff cutoff for lowest r-squared value
treecuts user-selected number of clusters (of pairs) to cut the tree into

Value

List of IntResults object with model results (now includes correlations)
ProcessResultsContinuous

Retrieve significant pairs (aka filter out nonsignificant pairs) based on value of analyte:type interaction coefficient from linear model

Description

Retrieve significant pairs (aka filter out nonsignificant pairs) based on value of analyte:type interaction coefficient from linear model

Usage

ProcessResultsContinuous(
 inputResults,
 interactionCoeffPercentile = 0.1,
 pvalCutoff = 0.05,
 rsquaredCutoff = 0
)

Arguments

inputResults IntLimResults object with model results: output of RunIntLim
interactionCoeffPercentile percentile cutoff for interaction coefficient default bottom 10 percent (high negative coefficients) and top 10 percent (high positive coefficients)
pvalCutoff cutoff of FDR-adjusted p-value for filtering (default 0.05)
rsquaredCutoff cutoff of R-squared value for filtering (default 0, no filtering)

Value

A data frame with the following columns for each pair of analytes: "Analyte1", "Analyte2", "interaction_coeff", "Pval", "FDRadjPval", and "rsquared". Optionally, coefficients for each covariate may also be included.

pvalCoefVolcano 'volcano' plot (difference in correlations vs p-values) of all pairs

Description

'volcano' plot (difference in correlations vs p-values) of all pairs
Usage

pvalCoefVolcano(
 inputResults,
 inputData,
 nrpoints = 10000,
 pvalcutoff = 0.05,
 coefPercentileCutoff = 0.9
)

Arguments

inputResults Data frame with model results (output of ProcessResults())
inputData Named list (output of FilterData()) with analyte levels and associated meta-data
nrpoints number of points to be plotted in lowest density areas (see 'smoothScatter' documentation for more detail)
pvalcutoff cutoff of FDR-adjusted p-value for filtering (default 0.05)
coefPercentileCutoff cutoff of interaction coefficient percentile.

Value

a smoothScatter plot

PValueBoxPlots

PValueBoxPlots(IntLimResults)

Arguments

IntLimResults output of RunIntLim()

Value

No return value, called for side effects

PValueBoxPlots

Visualize the distribution of unadjusted p-values for all covariates from linear models using a bar chart.

Description

Visualize the distribution of unadjusted p-values for all covariates from linear models using a bar chart.

Usage

PValueBoxPlots(IntLimResults)
ReadData

Description
Read in CSV file

Usage
ReadData(
 inputFile,
 analyteType1id = "id",
 analyteType2id = "id",
 logAnalyteType1 = FALSE,
 logAnalyteType2 = FALSE,
 class.feat = list(),
 suppressWarnings = FALSE
)

Arguments

inputFile input file in CSV format (see Description)
analyteType1id name of column from Analyte Type 1 meta data to be used as id (required if an Analyte Type 1 meta data file is present, must match Analyte Type 1 data)
analyteType2id name of column from Analyte Type 2 meta data to be used as id (required if an Analyte Type 2 meta data file is present, must match Analyte Type 2 data)
logAnalyteType1 whether or not to log values for Analyte Type 1 (T/F)
logAnalyteType2 whether or not to log values for Analyte Type 2 (T/F)
class.feat class ("factor" or "numeric") for each covariate. The following format is required: list(covar1="numeric", covar2="factor")
suppressWarnings whether or not to suppress warnings

Value
IntLimData object with input data
RemovePlusInCovars

Description
RemovePlusInCovars

Usage
RemovePlusInCovars(covar = c(), sampleDataColnames)

Arguments
covar vector of additional vectors to consider
sampleDataColnames vector of column names, which is a superset of the covar vector.

Value
list containing two elements: new covariates and new column names.

RunCrossValidation

Description
Runs the cross-validation end-to-end using the following steps: 1. Create multiple cross-validation folds from the data. 2. Filter each fold using the filtering criteria applied to the entire dataset. 3. Run IntLIM for all folds. 4. Process the results for all folds.

Usage
RunCrossValidation(inputData, folds, analyteType1perc = 0, analyteType2perc = 0, analytemiss = 0, cov.cutoff = 0, stype = "", outcome = c(1), covar = c(), continuous = FALSE,
RunCrossValidation

```r
save.covar.pvals = FALSE,
independent.var.type = c(1),
remove.duplicates = FALSE,
pvalcutoff = 0.05,
interactionCoeffPercentile = 0,
rsquaredCutoff = 0,
treecuts = 0,
suppressWarnings = FALSE
```

Arguments

- **inputData**: IntLimData object (output of ReadData()) with analyte levels and associated meta-data
- **folds**: number of folds to create
- **analyteType1perc**: percentile cutoff (0-1) for filtering analyte type 1 (e.g. remove analytes with mean values < 'analyteType1perc' percentile) (default: 0)
- **analyteType2perc**: percentile cutoff (0-1) for filtering analyte type 2 (default: no filtering of analytes) (default:0)
- **analyteMiss**: missing value percent cutoff (0-1) for filtering analytes (analytes with > 80% missing values will be removed) (default:0)
- **cov.cutoff**: percentile cutoff (0-1) for the covariances of the analytes (default: 0.30)
- **stype**: column name that represents sample type (by default, it will be used in the interaction term). Only 2 categories are currently supported.
- **outcome**: list of outcomes to run. '1' or '2' must be set as outcome/independent variable (default is '1')
- **covar**: Additional variables from the phenotypic data that be integrated into linear model
- **continuous**: boolean to indicate whether the data is continuous or discrete
- **save.covar.pvals**: boolean to indicate whether or not to save the p-values of all covariates, which can be analyzed later but will also lengthen computation time. The default is FALSE.
- **independent.var.type**: list of independent variable types to run. '1' or '2' must be set as independent variable (default is '1')
- **remove.duplicates**: boolean to indicate whether or not to remove the pair with the highest p-value across two duplicate models (e.g. m1-m2 and m2-m1)
- **pvalcutoff**: cutoff of FDR-adjusted p-value for filtering (default 0.05)
- **interactionCoeffPercentile**: percentile cutoff for interaction coefficient
- **rsquaredCutoff**: cutoff for lowest r-squared value
- **treecuts**: user-selected number of clusters (of pairs) to cut the tree into
- **suppressWarnings**: whether to suppress warnings
RunIntLim

Value

List of IntResults object with model results (now includes correlations)

Description

Run linear models and retrieve relevant statistics

Usage

RunIntLim(
 inputData,
 stype = "",
 outcome = 1,
 covar = c(),
 continuous = FALSE,
 save.covar.pvals = FALSE,
 independent.var.type = 1,
 remove.duplicates = FALSE,
 suppressWarnings = FALSE
)

Arguments

- **inputData**: Named list (output of FilterData()) with analyte abundances, and associated meta-data
- **stype**: column name that represents sample type (by default, it will be used in the interaction term). Only 2 categories are currently supported.
- **outcome**: '1' or '2' must be set as outcome/independent variable (default is '1')
- **covar**: Additional variables from the phenotypic data that be integrated into linear model
- **continuous**: boolean to indicate whether the data is continuous or discrete
- **save.covar.pvals**: boolean to indicate whether or not to save the p-values of all covariates, which can be analyzed later but will also lengthen computation time. The default is FALSE.
- **independent.var.type**: '1' or '2' must be set as independent variable (default is '1')
- **remove.duplicates**: boolean to indicate whether or not to remove the pair with the highest p-value across two duplicate models (e.g. m1~m2 and m2~m1)
- **suppressWarnings**: whether or not to print warnings. If TRUE, do not print.
RunIntLimAllFolds

Value

IntLimResults object with model results

RunIntLimAllFolds Run linear models for all data folds. This is a wrapper to RunIntLim.

Description

Run linear models for all data folds. This is a wrapper to RunIntLim.

Usage

RunIntLimAllFolds(
 inputData,
 stype = "",
 outcome = 1,
 covar = c(),
 continuous = FALSE,
 save.covar.pvals = FALSE,
 independent.var.type = 1,
 remove.duplicates = FALSE,
 suppressWarnings = FALSE
)

Arguments

inputData: IntLimData object (output of ReadData()) with analyte levels and associated meta-data
stype: column name that represents sample type (by default, it will be used in the interaction term). Only 2 categories are currently supported.
outcome: '1' or '2' must be set as outcome/independent variable (default is '1')
covar: Additional variables from the phenotypic data that be integrated into linear model
continuous: boolean to indicate whether the data is continuous or discrete
save.covar.pvals: boolean to indicate whether or not to save the p-values of all covariates, which can be analyzed later but will also lengthen computation time. The default is FALSE.
independent.var.type: '1' or '2' must be set as independent variable (default is '1')
remove.duplicates: boolean to indicate whether or not to remove the pair with the highest p-value across two duplicate models (e.g. m1~m2 and m2~m1)
suppressWarnings: whether to suppress warnings
RunLM

Function that runs linear models and returns interaction p-values.

Usage

RunLM(
 incommon,
 outcome = 1,
 independentVariable = 2,
 type = "",
 covar = c(),
 continuous = FALSE,
 save.covar.pvals = FALSE,
 keep.highest.pval = FALSE,
 suppressWarnings = FALSE
)

Value

List of IntLimModel objects with model results

runIntLIMApp

run shiny app

Description

run shiny app

Usage

runIntLIMApp(port = "127.0.0.1")

Arguments

port set port

Value

No return value, called for side effects
ShowStats

Arguments

- **incommon**
 - Named list (output of FilterData()) with analyte levels, and associated meta-data
- **outcome**
 - '1' or '2' must be set as outcome/independent variable (default is '1')
- **independentVariable**
 - '1' or '2' must be set as outcome/independent variable
- **type**
 - vector of sample type (by default, it will be used in the interaction term). Only 2 categories are currently supported.
- **covar**
 - vector of additional vectors to consider
- **continuous**
 - boolean to indicate whether the data is continuous or discrete
- **save.covar.pvals**
 - boolean to indicate whether or not to save the p-values of all covariates, which can be analyzed later but will also lengthen computation time. (rather than interaction terms).
- **keep.highest.pval**
 - boolean to indicate whether or not to remove the pair with the highest p-value across two duplicate models (e.g. m1~m2 and m2~m1)
- **suppressWarnings**
 - whether or not to suppress warnings.

Description

Get some stats after reading in data

Usage

ShowStats(IntLimObject)

Arguments

- **IntLimObject**
 - output of ReadData()

Value

- data.frame with some # of samples, features, etc.