Package ‘InteRD’

July 15, 2022

Type Package
Title The Integrated and Robust Deconvolution
Version 0.1.0
Description We developed the Integrated and Robust Deconvolution algorithm to infer cell-type proportions from target bulk RNA-seq data. This package is able to effectively integrate deconvolution results from multiple scRNA-seq datasets and calibrates estimates from reference-based deconvolution by taking into account extra biological information as priors. Moreover, the proposed algorithm is robust to inaccurate external information imposed in the deconvolution system.
License Artistic-2.0
Encoding UTF-8
RoxygenNote 7.2.0
URL https://github.com/chencxxy28/InteRD
BugReports https://github.com/chencxxy28/InteRD/issues
Suggests knitr, rmarkdown, testthat (>= 3.0.0)
VignetteBuilder knitr
Imports Rcpp (>= 0.11.0), L1pack, limSolve, cowplot, ggplot2, pheatmap, stats,DescTools, mgcv, reshape2, Biobase
Depends R (>= 3.5.0)
Config/testthat/edition 3
NeedsCompilation no
Author Chixiang Chen [cre, aut],
 Yuk Yee Leung [aut],
 Matei Lonita [aut],
 Li-San Wang [aut],
 Mingyao Li [aut]
Maintainer Chixiang Chen <chencxxy@hotmail.com>
Repository CRAN
Date/Publication 2022-07-15 16:00:05 UTC
R topics documented:

- evaluate .. 2
- generateBulk .. 3
- InteRD.predict.prop 4
- InteRD1 .. 4
- InteRD2 .. 5
- pop.ct.prop.scRNA 6
- Ref_free .. 7

Index

| evaluate | Evaluation for estimated cell type proportions |

Description

Several evaluation metrics are provided, such as mean absolute deviance (‘MAD’), Kendall-tau correlation coefficient (‘Ken’), Pearson correlation coefficient (‘Cor’), given true cell type proportions.

Usage

evaluate(est.prop, true.prop)

Arguments

- est.prop The estimated cell type proportions.
- true.prop The True cell type proportions

Value

Cell-type level evaluations based on MAD, Ken, and Pearson (‘cell.type.eva’), and overall evaluations based on averaged MAD, Ken, and Pearson (‘all.eva’).

Examples

```r
# read data
library(InteRD)
readRDSFromWeb<-function(ref) {readRDS(gzcon(url(ref)))}

pseudo.seger<-readRDSFromWeb(paste0(urlremote,"pseudo.seger.rds"))
true_p<-readRDSFromWeb(paste0(urlremote,"true_p.rds"))
SCDC_ENSEMBLE_MAD<-readRDSFromWeb(paste0(urlremote,"SCDC_ENSEMBLE_MAD_seger.rds"))
evaluate(SCDC_ENSEMBLE_MAD,true_p)$all.eva
```
generateBulk

Pseudo bulk data generation function

Description

This function generates a pseudo bulk samples by random sampled number of cells per subject.

Usage

```r
generateBulk(eset, ct.varname, sample, disease = NULL, ct.sub, prop_mat = NULL, nbulk = 50, samplewithRep = FALSE, low_s = 0.3, upp_s = 0.7)
```

Arguments

- `eset`: The ‘ExpressionSet’ object for single cells.
- `ct.varname`: Variable name for 'cell types'.
- `sample`: Variable name for subject/samples.
- `disease`: Indicate the health condition of subjects.
- `ct.sub`: A subset of cell types that are selected to construct pseudo bulk samples. If NULL, then all cell types are used.
- `prop_mat`: Manually input the cell-type proportion for pseudo bulk samples.
- `nbulk`: The number of pseudo bulk samples to be constructed.
- `samplewithRep`: Logical, randomly sample single cells with replacement. Default is F.
- `low_s`: Lower support a for uniform distribution U[a,b].
- `upp_s`: Upper support b for uniform distribution U[a,b].

Value

Pseudo bulk samples in the format of ‘ExpressionSet’, and the true cell-type proportions.

Examples

```r
##read data
library(InteRD)
readRDSFromWeb <- function(ref) {readRDS(gzcon(url(ref)))}
seger <- readRDSFromWeb(paste0(urlremote,"segerstolpe.rds"))

##generate a pseudo bulk data with two samples
set.seed(1234567)
pseudo.seger <- generateBulk(seger[["sc.eset.qc"]], ct.varname = "cluster",
sample = "sample", ct.sub = c("alpha","beta","delta","gamma"),
nbulk = 2, low_s = 0.3, upp_s = 0.7)
```
The InteRD estimate from reference ensemble

Description

This function provides a reference-based deconvolution by resembling all estimated cell-type proportions based on each reference set.

Usage

InteRD1(bulk.data,list_marker,cell_type_unique,comb_used,lambda_option,tol=1e-06)
InteRD2

Arguments

- **bulk.data** The ‘ExpressionSet’ object for a target bulk data.
- **list_marker** A list of pre-specified marker genes corresponding to each cell type.
- **cell_type_unique** A list of cell types. It should match the order in list.marker.
- **comb_used** A list of pre-estimated cell type proportions based on different references.
- **lambda_option** A sequence of values for the tuning parameter.
- **tol** A tolerance value for convergence. The default is 1e-06

Value

A list containing estimated cell type proportions corresponding to each tuning value, named 'est'; and a sequence of goodness-of-fit values corresponding to each tuning value, named 'metrics'. The smaller the better; and a list of weights corresponding to each tuning value, named 'weights_list'.

Examples

```r
# read data
library(InteRD)
readRDSFromWeb<-function(ref) {readRDS(gzcon(url(ref)))}
pseudo.seger<-readRDSFromWeb(paste0(urlremote,"pseudo.seger.rds"))
comb<-readRDSFromWeb(paste0(urlremote,"comb_seger.rds"))
lst_marker<-readRDSFromWeb(paste0(urlremote,"list_markerbaron20.rds"))
lambda_option<-0

cell_type_unique<-c("alpha","beta","delta","gamma")
InteRD1.output<-InteRD1(bulk.data =pseudo.seger,list_marker,
cell_type_unique,comb_used,lambda_option,tol=1e-02)
InteRD1<-InteRD.predict.prop(InteRD.output=InteRD1.output)
```

InteRD2

The InteRD2 estimate

Description

This function provides a robust deconvolution framework to integrate information from scRNA-seq references, marker genes, and prior biological knowledge.

Usage

```r
InteRD2(bulk.data,list_marker,cell_type_unique,comb_sampled,ave_est,ave_sd,
lambda_option,tol=0.0005)
```
Arguments

bulk.data The ‘ExpressionSet’ object for a target bulk data.

list_marker A list of pre-specified marker genes corresponding to each cell type.

cell_type_unique A list of cell types. It should match the order in list.marker.

comb_sampled A pre-specified cell type proportions for the target bulk data, which could be obtained from reference-based deconvolution approach.

ave_est A pre-specified population-level cell type proportions, which could be obtained from single-cell RNA-seq and external expression data from different studies, species, or data types

ave_sd A pre-specified standard deviation for cell-type proportion estimation. The default is 1 for each cell type.

lambda_option A sequence of values for the tuning parameter.

tol A tolerance value for convergence. The default is 0.0005.

Value

A list containing estimated cell type proportions corresponding to each tuning value, named ‘est’; and a sequence of goodness-of-fit values corresponding to each tuning value, named ‘metrics’. The smaller the better.

Examples

```r
#read data
library(InteRD)
readRDSFromWeb<-function(ref) {readRDS(gzcon(url(ref)))
pseudo.seger<-readRDSFromWeb(paste0(urlremote,"pseudo.seger.rds"))
InteRD1<-readRDSFromWeb(paste0(urlremote,"InteRD1.rds"))
ave_est<-readRDSFromWeb(paste0(urlremote,"ave_est.rds"))
ave_sd<-readRDSFromWeb(paste0(urlremote,"ave_sd.rds"))
list_marker<-readRDSFromWeb(paste0(urlremote,"list_markerbaron20.rds"))
lambda_option<-0
cell_type_unique<-c("alpha","beta","delta","gamma")
lambda_option<-10e+05
InteRD2.output<-InteRD2(bulk.data=pseudo.seger,list_marker,cell_type_unique,
comb_sampled=InteRD1,ave_est,ave_sd,lambda_option=lambda_option,tol=0.01)
InteRD2<-InteRD.predict.prop(InteRD.output=InteRD2.output)
```

pop.ct.prop.scRNA Calculate the population-level cell type proportions from a single-cell data.

Description

Calculate population-level cell type proportions from single-cell data.
Usage

pop.ct.prop.scRNA(scRNA,cluster="cluster",sample="sample",cell_type_unique)

Arguments

scRNA The ‘ExpressionSet’ object for single-cell data.
cluster The character string specifying the variable name for cell types. The default is "cluster".
sample The character string specifying the variable name for subject/samples. The default is "sample".
cell_type_unique A vector of cell types. It should match the order in list.marker.

Value

The population-level cell type proportions (‘pop.ct.prop’) and corresponding standard deviations (‘pop.ct.sd’).

Examples

##read data
library(InteRD)
readRDSFromWeb<-function(ref) {readRDS(gzcon(url(ref)))}
seger<-readRDSFromWeb(paste0(urlremote,"segerstolpe.rds"))
cell_type_unique<-c("alpha","beta","delta","gamma")
ave_est<-pop.ct.prop.scRNA(scRNA=seger[["sc.eset.qc"]],
cell_type_unique=cell_type_unique)$pop.ct.prop
ave_est

Ref_free A reference-free deconvolution estimate

Description

This function provides a reference-free deconvolution estimate, given a list of marker genes

Usage

Ref_free(bulk.data,list_marker,cell_type_unique, tol=0.001)

Arguments

bulk.data The ‘ExpressionSet’ object for a target bulk data.
list_marker A list of pre-specified marker genes corresponding to each cell type.
cell_type_unique

tol A list of cell types. It should match the order in ‘list.marker’.

A tolerance value for convergence. The default is 0.001.
Value

The estimated cell type proportions, named 'est'; and a goodness-of-fit value, named 'metrics'. The smaller the better.

Examples

```r
# read data
library(InteRD)
readRDSFromWeb <- function(ref) {readRDS(gzcon(url(ref)))}
pseudo.seger <- readRDSFromWeb(paste0(urlremote,"pseudo.seger.rds"))
list_marker <- readRDSFromWeb(paste0(urlremote,"list_markerbaron20.rds"))
cell_type_unique <- c("alpha","beta","delta","gamma")
ref_free.output <- Ref_free(bulk.data=pseudo.seger, list_marker=list_marker,
cell_type_unique=cell_type_unique, tol=0.01) # make tol=0.001
reffree <- InteRD.predict.prop(InteRD.output=ref_free.output)
```
Index

evaluate, 2

generateBulk, 3

InteRD.predict.prop, 4
InterD1, 4
InterD2, 5

pop.ct.prop.scRNA, 6

Ref_free, 7