Package ‘InteRD’

October 12, 2022

Type Package

Title The Integrated and Robust Deconvolution

Version 0.1.1

Description We developed the Integrated and Robust Deconvolution algorithm to infer cell-type proportions from target bulk RNA-seq data. This package is able to effectively integrate deconvolution results from multiple scRNA-seq datasets and calibrates estimates from reference-based deconvolution by taking into account extra biological information as priors. Moreover, the proposed algorithm is robust to inaccurate external information imposed in the deconvolution system.

License Artistic-2.0

Encoding UTF-8

RoxygenNote 7.2.1

URL https://github.com/chencxxy28/InteRD

BugReports https://github.com/chencxxy28/InteRD/issues

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

biocViews

Imports Rcpp (>= 0.11.0), limSolve, cowplot, ggplot2, pheatmap, stats, DescTools, mgcv, reshape2

Depends R (>= 3.5.0), Biobase

Config/testthat/edition 3

NeedsCompilation no

Author Chixiang Chen [cre, aut],
 Yuk Yee Leung [aut],
 Matei Lonita [aut],
 Li-San Wang [aut],
 Mingyao Li [aut]

Maintainer Chixiang Chen <chencxxy@hotmail.com>

Repository CRAN

Date/Publication 2022-08-12 07:20:11 UTC
Description

Several evaluation metrics are provided, such as mean absolute deviation (‘MAD’), Kendall-tau correlation coefficient (‘Ken’), Pearson correlation coefficient (‘Cor’), given true cell type proportions.

Usage

```r
evaluate(est.prop, true.prop)
```

Arguments

- `est.prop`: The estimated cell type proportions.
- `true.prop`: The True cell type proportions

Value

Cell-type level evaluations based on MAD, Ken, and Pearson (‘cell.type.eva’), and overall evaluations based on averaged MAD, Ken, and Pearson (‘all.eva’).

Examples

```r
##read data
library(InteRD)
readRDSFromWeb <- function(ref) {readRDS(gzcon(url(ref)))}
pseudo.seger <- readRDSFromWeb(paste0(urlremote, "pseudo.seger.rds"))
true_p <- readRDSFromWeb(paste0(urlremote, "true_p.rds"))
SCDC_ENSEMBLE_MAD <- readRDSFromWeb(paste0(urlremote, "SCDC_ENSEMBLE_MAD_seger.rds"))
evaluate(SCDC_ENSEMBLE_MAD, true_p)$all.eva
```
generateBulk

Pseudo bulk data generation function

Description

This function generates a pseudo bulk samples by random sampled number of cells per subject.

Usage

```r
generateBulk(eset, ct.varname, sample, disease = NULL, ct.sub, prop_mat = NULL, 
nbulk = 50, samplewithRep = FALSE, low_s = 0.3, upp_s = 0.7)
```

Arguments

- `eset`: The ‘ExpressionSet’ object for single cells.
- `ct.varname`: Variable name for ‘cell types’.
- `sample`: Variable name for subject/samples.
- `disease`: Indicate the health condition of subjects.
- `ct.sub`: A subset of cell types that are selected to construct pseudo bulk samples. If NULL, then all cell types are used.
- `prop_mat`: Manually input the cell-type proportion for pseudo bulk samples.
- `nbulk`: The number of pseudo bulk samples to be constructed.
- `samplewithRep`: Logical, randomly sample single cells with replacement. Default is F.
- `low_s`: Lower support a for uniform distribution U[a,b].
- `upp_s`: Upper support b for uniform distribution U[a,b].

Value

Pseudo bulk samples in the format of ‘ExpressionSet’, and the true cell-type proportions.

Examples

```r
# read data
library(InteRD)
readRDSFromWeb <- function(ref) {readRDS(gzcon(url(ref)))}
seger <- readRDSFromWeb(paste0(urlremote,"segerstolpe.rds"))

# generate a pseudo bulk data with two samples
set.seed(1234567)
pseudo.seger <- generateBulk(seger[["sc.eset.qc"]], ct.varname = "cluster", 
                           sample = "sample", ct.sub = c("alpha","beta","delta","gamma"),
                           nbulk = 2, low_s = 0.3, upp_s = 0.7)
```
InteRD.predict.prop
Extract the estimated proportions from InteRD

Description

This function extract estimated cell type proportions via InteRD1 and InteRD2.

Usage

```r
InteRD.predict.prop(InteRD.output)
```

Arguments

- `InteRD.output`
 An object from InteRD1 or InteRD2.

Value

Estimated cell type proportions from InteRD.

Examples

```r
##read data
library(InteRD)
readRDSFromWeb<-function(ref) {readRDS(gzcon(url(ref)))}
InteRD1.output<-readRDSFromWeb(paste0(urlremote,"InteRD1.output.rds"))
lambda_option<-0
cell_type_unique<-c("alpha","beta","delta","gamma")
InteRD1<-InteRD.predict.prop(InteRD.output=InteRD1.output)
```

InteRD1
The InteRD1 estimate from reference ensemble

Description

This function provides a reference-based deconvolution by resembling all estimated cell-type proportions based on each reference set.

Usage

```r
InteRD1(bulk.data,list_marker,cell_type_unique,comb_used,
lambda_option,tol=1e-06)
```
InteRD2

Description

This function provides a robust deconvolution framework to integrate information from scRNA-seq references, marker genes, and prior biological knowledge.

Usage

InteRD2(bulk.data, list_marker, cell_type_unique, comb_sampled, ave_est, ave_sd, lambda_option, tol=0.0005)
Arguments

bulk.data The ‘ExpressionSet’ object for a target bulk data.
list_marker A list of pre-specified marker genes corresponding to each cell type.
cell_type_unique A list of cell types. It should match the order in list.marker.
comb_sampled A pre-specified cell type proportions for the target bulk data, which could be obtained from reference-based deconvolution approach.
ave_est A pre-specified population-level cell type proportions, which could be obtained from single-cell RNA-seq and external expression data from different studies, species, or data types.
ave_sd A pre-specified standard deviation for cell-type proportion estimation. The default is 1 for each cell type.
lambda_option A sequence of values for the tuning parameter.
tol A tolerance value for convergence. The default is 0.0005.

Value

A list containing estimated cell type proportions corresponding to each tuning value, named ‘est’; and a sequence of goodness-of-fit values corresponding to each tuning value, named ‘metrics’. The smaller the better.

Examples

```r
#read data
library(InteRD)
readRDSFromWeb<-function(ref) {readRDS(gzcon(url(ref)))}
pseudo.seger<-readRDSFromWeb(paste0(urlremote,"pseudo.seger.rds"))
InteRD1<-readRDSFromWeb(paste0(urlremote,"InteRD1.rds"))
ave_est<-readRDSFromWeb(paste0(urlremote,"ave_est.rds"))
ave_sd<-readRDSFromWeb(paste0(urlremote,"ave_sd.rds"))
list_marker<-readRDSFromWeb(paste0(urlremote,"list_markerbaron20.rds"))
lambda_option<-0
cell_type_unique<-c("alpha","beta","delta","gamma")
lambda_option<-10e+05
InteRD2.output<-InteRD2(bulk.data=pseudo.seger,list_marker,cell_type_unique,
comb_sampled=InteRD1,ave_est,ave_sd,lambda_option=lambda_option,tol=0.01)
InteRD2<-InteRD.predict.prop(InteRD.output=InteRD2.output)
```

pop.ct.prop.scRNA Calculate the population-level cell type proportions from a single-cell data.

Description

Calculate population-level cell type proportions from single-cell data.
Ref_free

Usage

pop.ct.prop.scRNA(scRNA, cluster="cluster", sample="sample", cell_type_unique)

Arguments

- **scRNA**: The ‘ExpressionSet’ object for single-cell data.
- **cluster**: The character string specifying the variable name for cell types. The default is "cluster".
- **sample**: The character string specifying the variable name for subject/samples. The default is "sample".
- **cell_type_unique**: A vector of cell types. It should match the order in list.marker.

Value

The population-level cell type proportions ('pop.ct.prop') and corresponding standard deviations ('pop.ct.sd').

Examples

```r
# read data
library(InteRD)
readRDSFromWeb<-function(ref) {readRDS(gzcon(url(ref)))}
seger<-readRDSFromWeb(paste0(urlremote,"segerstolpe.rds"))
cell_type_unique<-c("alpha","beta","delta","gamma")
ave_est<-pop.ct.prop.scRNA(scRNA=seger[["sc.eset.qc"]],
cell_type_unique=cell_type_unique)$pop.ct.prop
ave_est
```

Ref_free

A reference-free deconvolution estimate

Description

This function provides a reference-free deconvolution estimate, given a list of marker genes

Usage

Ref_free(bulk.data, list_marker, cell_type_unique, tol=0.001)

Arguments

- **bulk.data**: The ‘ExpressionSet‘ object for a target bulk data.
- **list_marker**: A list of pre-specified marker genes corresponding to each cell type.
- **cell_type_unique**: A list of cell types. It should match the order in ‘list.marker’.
- **tol**: A tolerance value for convergence. The default is 0.001.
Value

The estimated cell type proportions, named 'est'; and a goodness-of-fit value, named 'metrics'. The smaller the better.

Examples

```r
##read data
library(InteRD)
readRDSFromWeb<-function(ref) {readRDS(gzcon(url(ref)))}
pseudo.seger<-readRDSFromWeb(paste0(urlremote,"pseudo.seger.rds"))
list_marker<-readRDSFromWeb(paste0(urlremote,"list_markerbaron20.rds"))
cell_type_unique<-c("alpha","beta","delta","gamma")
ref_free.output<-Ref_free(bulk.data=pseudo.seger,list_marker=list_marker,
cell_type_unique=cell_type_unique,tol=0.01) #make tol=0.001
reffree<-InteRD.predict.prop(InteRD.output=ref_free.output)
```
Index

evaluate, 2

generateBulk, 3

InteRD.predict.prop, 4
InteRD1, 4
InteRD2, 5

pop.ct.prop.scRNA, 6

Ref_free, 7