Package ‘InteractionPoweR’

April 18, 2023

Title Power Analyses for Interaction Effects in Cross-Sectional Regressions

Version 0.2.1

Description Power analysis for regression models which test the interaction of two independent variables on a single dependent variable. Includes options for continuous, binary, or ordinal variables, as well as correlated interacting variables. Also includes options to specify variable reliability. Power analyses can be done either analytically or via simulation. Includes tools for simulating single data sets and visualizing power analysis results. The primary functions are power_interaction_r2() and power_interaction(). Please cite as: Baranger DAA, Finsaas MC, Goldstein BL, Vize CE, Lynam DR, Olino TM (2022). “Tutorial: Power analyses for interaction effects in cross-sectional regressions.” <doi:10.31234/osf.io/5ptd7>.

Maintainer David Baranger <dbaranger@gmail.com>

BugReports https://github.com/dbaranger/InteractionPoweR/issues

License GPL (>= 3)

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

 Depends R (>= 3.5.0)

Imports dplyr, MASS, parallel, doParallel, foreach, ggplot2, polynom, chngpt, rlang, tidyr, stats, ggbeeswarm, Matrix

NeedsCompilation no

Author David Baranger [aut, cre] (<https://orcid.org/0000-0002-6659-357X>, davidbaranger.com), Brandon Goldstein [ctb], Megan Finsaas [ctb], Thomas Olino [ctb], Colin Vize [ctb], Don Lynam [ctb]
Description

Computes how much variable correlations need to be adjusted so that they have the desired correlation structure after transformation. Intended for internal use only.

Usage

```r
compute_adjustment(
  r.x1.y,
  r.x2.y,
  r.x1x2.y,
  r.x1.x2,
  N.adjustment = 1e+06,
  tol = 0.005,
  iter = 10,
  k.x1,
  k.x2,
  k.y
)
```
generate_interaction

Arguments

- `r.x1.y` Internal use only
- `r.x2.y` Internal use only
- `r.x1x2.y` Internal use only
- `r.x1.x2` Internal use only
- `N.adjustment` Internal use only
- `tol` Internal use only
- `iter` Internal use only
- `k.x1` Internal use only
- `k.x2` Internal use only
- `k.y` Internal use only

Value

Correlation adjustments.

Examples

```r
compute_adjustment(r.x1.y = .2,r.x2.y = .2,r.x1x2.y = .1,r.x1.x2 = .2,
k.x1 = 0,k.x2=0,k.y=2)
```

Description

Simulate a single data set with an interaction (y ~ x1 + x2 + x1*x2). All values other than ’N’ are population-level effects - the values within any single simulated data set will vary around the defined values.

Usage

```r
generate_interaction(
  N,
  r.x1.y,
  r.x2.y,
  r.x1x2.y,
  r.x1.x2,
  rel.x1 = 1,
  rel.x2 = 1,
  rel.y = 1,
  k.x1 = 0,
)```
generate_interaction

k.x2 = 0,
k.y = 0,
adjust.correlations = TRUE,
tol = 0.005,
iter = 10,
N.adjustment = 1e+06,
r.x1.y.adjust = NULL,
r.x2.y.adjust = NULL,
r.x1.x2.adjust = NULL,
r.x1x2.y.adjust = NULL,
internal.adjust = FALSE,
skew.x1 = NA,
skew.x2 = NA,
skew.y = NA
)

Arguments

N Sample size. Must be a positive integer. Has no default value.

r.x1.y Pearson’s correlation between x1 and y. Must be between -1 and 1. Has no default value.

r.x2.y Pearson’s correlation between x2 and y. Must be between -1 and 1. Assumed to be the ‘moderator’ in some functions. Has no default value.

r.x1x2.y Pearson’s correlation between the interaction term x1x2 (x1 * x2) and y. Must be between -1 and 1. Has no default value.

r.x1.x2 Pearson’s correlation between x1 and x2. Must be between -1 and 1. Has no default value.

rel.x1 Reliability of x1 (e.g. test-retest reliability, ICC, Cronbach’s alpha). Default is 1 (perfect reliability). Must be greater than 0 and less than or equal to 1.

rel.x2 Reliability of x2 (e.g. test-retest reliability, ICC, Cronbach’s alpha). Default is 1 (perfect reliability). Must be greater than 0 and less than or equal to 1.

rel.y Reliability of xy (e.g. test-retest reliability, ICC, Cronbach’s alpha). Default is 1 (perfect reliability). Must be greater than 0 and less than or equal to 1.

k.x1 Number of discrete values for x1. Can be used to make a variable binary or ordinal.

k.x2 Number of discrete values for x2. Can be used to make a variable binary or ordinal.

k.y Number of discrete values for y. Can be used to make a variable binary or ordinal.

adjust.correlations If variables are ordinal or binary, should correlations be adjusted so that output data has the specified correlation structure? Default is TRUE.

tol Correlation adjustment tolerance. When adjust.correlations = TRUE, correlations are adjusted so that the population correlation is within r = ‘tol’ of the target. Default = 0.005.
name_key

**iter**
Max number of iterations to run the correlation adjustment for. Typically only a couple are needed. Default = 10.

**N.adjustment**
Sample size to use when adjusting correlations. Default = 1000000.

**r.x1.y.adjust**
Internal use only.

**r.x2.y.adjust**
Internal use only.

**r.x1.x2.adjust**
Internal use only.

**r.x1x2.y.adjust**
Internal use only.

**internal.adjust**
Internal use only.

**skew.x1**
No longer supported.

**skew.x2**
No longer supported.

**skew.y**
No longer supported.

**Value**
A data frame containing variables 'x1', 'x2', 'y', and 'x1x2'. 'x1x2' is x1*x2. The correlations between these variables are drawn from the defined population-level values. Output variables are all z-scored (mean=0, sd=1).

**Examples**
```
dataset <- generate_interaction(N = 10, r.x1.y = 0, r.x2.y = .1, r.x1x2.y = -.2, r.x1.x2 = .3)
```

<table>
<thead>
<tr>
<th>name_key</th>
<th>Name key for plotting</th>
</tr>
</thead>
</table>

**Description**
Expanded variable names so that plots look nicer.

**Usage**
```
data(name_key)
```

**Format**
A data frame with 25 rows and 2 variables
**norm2ordinal**

**Description**
Transforms a vector with a normal distribution to a binomial distribution with two values.

**Usage**

```r
norm2ordinal(x, k)
```

**Arguments**

- `x` Input vector
- `k` Number of discrete values (e.g., 2=binary, 5=likert scale)

**Value**
A ordinal or binary variable

**Examples**

```r
norm2ordinal(x = rnorm(n = 100, mean = 0, sd = 1), k=2)
```

---

**plot_interaction**

**Plot interaction**

**Description**
Plots a single simulated interaction data set

**Usage**

```r
plot_interaction(data, q = 3)
```

**Arguments**

- `data` Output of `generate_interaction()`.  
- `q` Simple slope quantiles. Default is 2. X2 is the default moderator, unless X1 is already binary. Must be a positive integer > 1.

**Value**
A ggplot2 object
Examples

```r
dataset <- generate_interaction(N = 250, r.x1.y = 0, r.x2.y = .1, r.x1x2.y = -.2, r.x1.x2 = .3)
plot_interaction(dataset, q=3)
```

---

**Description**

Plot the output of `power_interaction()`.

**Usage**

```r
plot_power_curve(
 power_data,
 x = NULL,
 group = NULL,
 facets = NULL,
 power_target = 0.8
)
```

**Arguments**

- `power_data` Data frame of results from `power_interaction()`. Can accept the raw results if up to 3 parameters were varied during simulation. Any more and data should be filtered first.
- `x` Optional, the x-axis of the plot. Default is the first variable after `pwr`.
- `group` Optional, grouping variable for the line color. Default is the second variable after `pwr`, if present.
- `facets` Optional, grouping variable for plot facets. Default is the third variable after `pwr` if present.
- `power_target` The target power. Default is 80%.

**Value**

A ggplot2 object

**Examples**

```r
power_analysis <- power_interaction(n.iter = 10, N = seq(100, 300, by=100),
 r.x1.y = 0, r.x2.y = .1, r.x1x2.y = -.2, r.x1.x2 = .3, detailed_results = TRUE)
plot_power_curve(power_analysis)
```
plot_simple_slope  Simple slope plot

Description
Plots the simple slope min and max estimates from power_interaction().

Usage
plot_simple_slope(power_data, x = NULL, facets = NULL)

Arguments
power_data  Data frame of results from power_interaction(). Can accept the raw results if up to 2 parameters were varied during simulation. Any more and data should be filtered first.
x  Optional, the x-axis of the plot. Default is the first variable after 'pwr'.
facets  Optional, grouping variable for plot facets. Default is the second variable after 'pwr' if present.

Value
A ggplot2 object

Examples
power_analysis <- power_interaction(n.iter = 10, N = seq(100, 300, by=100),
r.x1.y = 0, r.x2.y = .1, r.x1x2.y = -.2, r.x1.x2 = .3, detailed_results = TRUE)
plot_simple_slope(power_analysis)

power_estimate  Power estimate

Description
Uses regression to estimate the value needed to attain the target power, given a set of simulation results.

Usage
power_estimate(power_data, x, power_target)

Arguments
power_data  Output of power_interaction().
x  The name of the target variable as a character string.
power_target  The desired power level. Must be between 0 and 1 (e.g., 0.8 for 80% power).
**Value**

A data frame containing the value of x that achieves the target power for each combination of settings. Will return NA if target power is outside the simulation data.

**Examples**

```r
simulation_results = power_interaction_r2(N=seq(100,300,by=10),
 r.x1.y=0.2, r.x2.y=.2,r.x1x2.y=0.2,r.x1.x2=.2)
power_estimate(power_data = simulation_results, x = "N", power_target = .8)
```

---

**power_interaction**

*Power analysis for interactions*

**Description**

Power analysis for interaction models, by simulation. A set of n.iter simulations is run for each unique combination of model settings.

**Usage**

```r
power_interaction(
 n.iter,
 N,
 r.x1.y,
 r.x2.y,
 r.x1x2.y,
 r.x1.x2,
 rel.x1 = 1,
 rel.x2 = 1,
 rel.y = 1,
 k.x1 = 0,
 k.x2 = 0,
 k.y = 0,
 adjust.correlations = TRUE,
 alpha = 0.05,
 q = 2,
 cl = NULL,
 ss.IQR = 1.5,
 N.adjustment = 1e+06,
 detailed_results = FALSE,
 full_simulation = FALSE,
 tol = 0.005,
 iter = 10,
 skew.x1 = NA,
 skew.x2 = NA,
 skew.y = NA
)
```
Arguments

$n.iter$  Number of iterations. The number of simulations to run for each unique setting combination. Must be a positive integer.

$N$  Sample size. Must be a positive integer. Has no default value. Can be a single value or a vector of values.

$r.x1.y$  Pearson’s correlation between $x1$ and $y$. Must be between -1 and 1. Has no default value. Can be a single value or a vector of values.

$r.x2.y$  Pearson’s correlation between $x2$ and $y$. Must be between -1 and 1. Assumed to be the ‘moderator’ in some functions. Has no default value. Can be a single value or a vector of values.

$r.x1x2.y$  Pearson’s correlation between the interaction term $x1x2$ ($x1 \times x2$) and $y$. Must be between -1 and 1. Has no default value. Can be a single value or a vector of values.

$r.x1.x2$  Pearson’s correlation between $x1$ and $x2$. Must be between -1 and 1. Has no default value. Can be a single value or a vector of values.

$rel.x1$  Reliability of $x1$ (e.g. test-retest reliability, ICC, Cronbach’s alpha). Default is 1 (perfect reliability). Must be greater than 0 and less than or equal to 1.

$rel.x2$  Reliability of $x2$ (e.g. test-retest reliability, ICC, Cronbach’s alpha). Default is 1 (perfect reliability). Must be greater than 0 and less than or equal to 1.

$rel.y$  Reliability of $xy$ (e.g. test-retest reliability, ICC, Cronbach’s alpha). Default is 1 (perfect reliability). Must be greater than 0 and less than or equal to 1.

$k.x1$  Number of discrete values for $x1$. Can be used to make a variable binary or ordinal.

$k.x2$  Number of discrete values for $x2$. Can be used to make a variable binary or ordinal.

$k.y$  Number of discrete values for $y$. Can be used to make a variable binary or ordinal.

adjust.correlations  If variables are ordinal or binary, should correlations be adjusted so that output data has the specified correlation structure? Default is TRUE.

$alpha$  The alpha. At what p-value is the interaction deemed significant? Default is 0.05.

$q$  Simple slopes. How many quantiles should $x2$ be split into for simple slope testing? Default is 2. Simple slope testing returns the effect-size (slope) of $y$-$x1$ for the two most extreme quantiles of $x2$. If $q=3$ then the two slopes are $y$-$x1$ for the bottom 33% of $x2$, and the top 33% of $x2$.

$cl$  Number of clusters to use for running simulations in parallel (recommended). Default is 1 (i.e. not in parallel).

$ss.IQR$  Simple slope IQR. Multiplier when estimating the distribution of simple slopes within each simulation setting. Default is 1.5.

$N.adjustment$  Sample size for simulations where correlation matrix is corrected to allow for binary/ordinal variables. Default is 1000000
power_interaction_r2

detailed_results
    Default is FALSE. Should detailed results be reported?

full_simulation
    Default is FALSE. If TRUE, will return a list that includes the full per-simulation results.

tol
    Correlation adjustment tolerance. When adjust.correlations = TRUE, correlations are adjusted so that the population correlation is within r='tol' of the target. Default = 0.005.

iter
    Max number of iterations to run the correlation adjustment for. Typically only a couple are needed. Default = 10.

skew.x1
    No longer supported.

skew.x2
    No longer supported.

skew.y
    No longer supported.

Value
    A data frame containing the power (% significant results) for each unique setting combination. If full_simulation = TRUE will return a list, with one data frame that includes power, and a second that includes raw simulation results.

Examples

    power_interaction(n.iter=10, N=10, r.x1.y=0.2, r.x2.y=0.2, r.x1x2.y=0.5, r.x1.x2=.2)

Description
    Power analysis for interaction models, computed via change in R2. Valid for interactions with continuous, normally distributed, variables.

Usage

    power_interaction_r2(
        N,
        r.x1.y,
        r.x2.y,
        r.x1x2.y,
        r.x1.x2,
        rel.x1 = 1,
        rel.x2 = 1,
        rel.y = 1,
        alpha = 0.05,
        detailed_results = FALSE
    )
Arguments

- **N**: Sample size. Must be a positive integer. Has no default value. Can be a single value or a vector of values.
- **r.x1.y**: Pearson’s correlation between x1 and y. Must be between -1 and 1. Has no default value. Can be a single value or a vector of values.
- **r.x2.y**: Pearson’s correlation between x2 and y. Must be between -1 and 1. Assumed to be the ‘moderator’ in some functions. Has no default value. Can be a single value or a vector of values.
- **r.x1x2.y**: Pearson’s correlation between the interaction term x1x2 (x1 * x2) and y. Must be between -1 and 1. Has no default value. Can be a single value or a vector of values.
- **r.x1.x2**: Pearson’s correlation between x1 and x2. Must be between -1 and 1. Has no default value. Can be a single value or a vector of values.
- **rel.x1**: Reliability of x1 (e.g. test-retest reliability, ICC, Cronbach’s alpha). Default is 1 (perfect reliability). Must be greater than 0 and less than or equal to 1.
- **rel.x2**: Reliability of x2 (e.g. test-retest reliability, ICC, Cronbach’s alpha). Default is 1 (perfect reliability). Must be greater than 0 and less than or equal to 1.
- **rel.y**: Reliability of xy (e.g. test-retest reliability, ICC, Cronbach’s alpha). Default is 1 (perfect reliability). Must be greater than 0 and less than or equal to 1.
- **alpha**: The alpha. At what p-value is the interaction deemed significant? Default is 0.05.
- **detailed_results**: Default is FALSE. Should detailed results be reported?

Value

A data frame containing the power for each unique setting combination.

Examples

```r
data_unnamed_13
power_interaction_r2(N=seq(100,300,by=10),r.x1.y=0.2, r.x2.y=.2, r.x1x2.y=0.2, r.x1.x2=.2)
```
test_interaction

Usage

test_interaction(
  data,
  alpha = 0.05,
  detailed_results = FALSE,
  q = 2,
  simple = FALSE
)

Arguments

data Simulated data set. Output of 'generate_interaction()'.
alpha The alpha. At what p-value is the interaction deemed significant? Default is 0.05.
detailed_results Should results beyond the linear model (change in R2, simple slopes, correlations, and confidence intervals) be returned? Default is FALSE.
q Simple slopes. How many quantiles should x2 be split into for simple slope testing? Default is 2. Simple slope testing returns the effect-size (slope) of y~x1 for the two most extreme quantiles of x2. If q=3 then the two slopes are y~x1 for the bottom 33% of x2, and the top 33% of x2.
simple For internal use. Default is FALSE.

Value

Either a named list or a data frame containing the results of the regression y~x1+x2+x1*x2, the pearson’s correlation between y, x1,x2, and x1x2, and the slopes of the simple slopes.

Examples

dataset <- generate_interaction(N = 250, r.x1.y = 0, r.x2.y = .1, r.x1x2.y = -.2, r.x1.x2 = .3)
test_interaction(data = dataset, alpha=0.05, q=2)
Index

compute_adjustment, 2

generate_interaction, 3

name_key, 5

norm2ordinal, 6

plot_interaction, 6

plot_power_curve, 7

plot_simple_slope, 8

power_estimate, 8

power_interaction, 9

power_interaction_r2, 11

test_interaction, 12