Package ‘IsingFit’

September 7, 2016

Type Package
Title Fitting Ising Models Using the ELasso Method
Version 0.3.1
Date 2016-9-6
Depends R (>= 3.0.0)
Imports qgraph, Matrix, glmnet
Suggests IsingSampler
Author Claudia van Borkulo, Sacha Epskamp, with contributions from Alexander Robitzsch
Maintainer Claudia van Borkulo <cvborkulo@gmail.com>
Description This network estimation procedure eLasso, which is based on the Ising model, combines l1-regularized logistic regression with model selection based on the Extended Bayesian Information Criterion (EBIC). EBIC is a fit measure that identifies relevant relationships between variables. The resulting network consists of variables as nodes and relevant relationships as edges. Can deal with binary data.
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2016-09-07 13:01:58

R topics documented:

IsingFit-package ... 2
Ising-methods .. 3
IsingFit .. 3

Index 6
Description
This network estimation procedure eLasso, which is based on the Ising model, combines l1-regularized logistic regression with model selection based on the Extended Bayesian Information Criterion (EBIC). EBIC is a fit measure that identifies relevant relationships between variables. The resulting network consists of variables as nodes and relevant relationships as edges. Can deal with binary data.

Details

Package: IsingFit
Type: Package
Version: 0.3.1
Date: 2016-9-6
License: What license is it under?

Author(s)
Claudia D. van Borkulo, Sacha Epskamp, with contributions from Alexander Robitzsch
Maintainer: Claudia D. van Borkulo <cvborkulo@gmail.com>

References
Ising-methods

Methods for IsingFit objects

Description

Print method prints the IsingFit output, plot method plots the estimated network (with the qgraph package), and summary method returns density of the network, the value of gamma used, the rule used, and the time the analysis took.

Usage

```r
## S3 method for class 'IsingFit'
print(x, ...)  
## S3 method for class 'IsingFit'
summary(object, ...)  
## S3 method for class 'IsingFit'
plot(x, ...)
```

Arguments

- `x`: output of `IsingFit`
- `object`: output of `IsingFit`
- `...`: Arguments sent to qgraph. Only used in plot method.

Author(s)

Claudia van Borkulo

IsingFit

Network estimation using the eLasso method

Description

This network estimation procedure eLasso, which is based on the Ising model, combines l1-regularized logistic regression with model selection based on the Extended Bayesian Information Criterion (EBIC). EBIC is a fit measure that identifies relevant relationships between variables. The resulting network consists of variables as nodes and relevant relationships as edges. Can deal with binary data.

Usage

```r
IsingFit(x, family='binomial', AND = TRUE, gamma = 0.25,
plot = TRUE, progressbar = TRUE, lowerbound.lambda = NA, ...)
```
Arguments

x
Input matrix. The dimension of the matrix is nobs x nvars; each row is a vector of observations of the variables. Must be cross-sectional data.

family
The default is 'binomial', treating the data as binary. Currently, this procedure is only supported for binary data.

AND
Logical. Can be TRUE of FALSE to indicate whether the AND-rule or the OR-rule should be used to define the edges in the network. Defaults to TRUE.

gamma
A value of hyperparameter gamma in the extended BIC. Can be anything between 0 and 1. Defaults to .25.

plot
Logical. Should the resulting network be plotted?

progressbar
Logical. Should the pbar be plotted in order to see the progress of the estimation procedure?

lowerbound.lambda
The minimum value of tuning parameter lambda (regularization parameter). Can be used to compare networks that are based on different sample sizes. The lowerbound.lambda is based on the number of observations in the smallest group n: \sqrt{\log(p)/n}. p is the number of variables, that should be the same in both groups. When both networks are estimated with the same lowerbound for lambda (based on the smallest group), the two networks can be directly compared.

Value

IsingFit returns (invisibly) a 'IsingFit' object that contains the following items:

weiadj
The weighted adjacency matrix.

thresholds
Thresholds of the variables.

q
The object that is returned by qgraph (class 'qgraph')..

gamma
The value of hyperparameter gamma.

AND
A logical indicating whether the AND-rule is used or not. If not, the OR-rule is used.

time
The time it took to estimate the network.

asymm.weights
The (asymmetrical) weighted adjacency matrix before applying the AND/OR rule.

lambda.values
The values of the tuning parameter per node that ensured the best fitting set of neighbors.

Note

See also my website: http://cvborkulo.com

Author(s)

Claudia D. van Borkulo, Sacha Epskamp, with contributions from Alexander Robitzsch

Maintainer: Claudia D. van Borkulo <cvborkulo@gmail.com>
References

Examples

library("IsingSampler")

Simulate dataset
Input:
N <- 6 # Number of nodes
nSample <- 1000 # Number of samples

Ising parameters:
Graph <- matrix(sample(0:1,N^2,TRUE,prob = c(0.8, 0.2)),N,N) * runif(N^2,0.5,2)
Graph <- pmax(Graph,t(Graph))
diag(Graph) <- 0
Thresh <- -rowSums(Graph) / 2

Simulate:
Data <- IsingSampler(nSample, Graph, Thresh)

Fit using IsingFit
Res <- IsingFit(Data, family='binomial', plot=FALSE)

Plot results:
library("qgraph")
layout(t(1:2))
qgraph(Res$weiadj,fade = FALSE)
title("Estimated network")
qgraph(Graph,fade = FALSE)
title("Original network")
Index

Ising-methods, 3
IsingFit, 3, 3
IsingFit-package, 2

plot.IsingFit (Ising-methods), 3
print.IsingFit (Ising-methods), 3

summary.IsingFit (Ising-methods), 3