Package ‘IxPopDyMod’

October 23, 2023

Title Framework for Tick Population and Infection Modeling
Version 0.3.0
Maintainer Myles Stokowski <mylesstokowski@gmail.com>
Description Code to specify, run, and then visualize and analyze the results of
Ixodidae (hard-bodied ticks) population and infection dynamics models. Such
models exist in the literature, but the source code to run them is not
always available. 'IxPopDyMod' provides an easy way for these models to be
written and shared.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
URL https://github.com/dallenmidd/IxPopDyMod
Depends R (>= 3.2.4)
Suggests covr, knitr, rmarkdown, testthat (>= 3.0.0)
Imports magrittr, stats, checkmate
Language en-US
Config/testthat/edition 3
NeedsCompilation no
Author Myles Stokowski [aut, cre],
David Allen [aut] (<https://orcid.org/0000-0002-0712-9603>)
Repository CRAN
Date/Publication 2023-10-23 20:20:02 UTC

R topics documented:

annual_growth_rate ... 2
config ... 3
config_ex_1 .. 4
config_ex_2 .. 5
annual_growth_rate

Description
Calculate annual growth rate

Usage
annual_growth_rate(out)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>out</td>
<td>Model output data frame</td>
</tr>
</tbody>
</table>

Value
Numeric vector of length one representing the annual factor by which the total tick population changes. To use this function, it is best to run the model for at least three years.
config

Examples

```r
## Not run:
out <- run(ogden2005)
annual_growth_rate(out)

## End(Not run)
```

Description

Make a config object from the input parameters, and ensure that the inputs meet the requirements for the model. The returned object is a complete description of a model run scenario.

Usage

```r
config(
  cycle,
  initial_population,
  preds = NULL,
  steps = 365L,
  max_duration = 365L,
  verbose = TRUE
)
```

Arguments

- `cycle` A tick's life_cycle test
- `initial_population` Named numeric vector indicating starting population for each life stage. Life stages not specified are assumed to be 0.
- `preds` Optional input predictors data
- `steps` Numeric vector of length one indicating the duration to run the model over in days.
- `max_duration` Numeric vector of length one. Determines the maximum number of days that a duration-based transition can last, after which ticks are removed from the model/die. Default of 365 is likely sensible for most cases.
- `verbose` Boolean; whether to warn about coercion to inputs

Value

A config object
Examples

We build a simple example config
my_config <- config(
 cycle = life_cycle(
 transition("a", "b", function() 0.1, "probability"),
 transition("b", "a", function() 10, "probability")
),
 initial_population = c(a = 1)
)

If we make a change to an existing `config`, it is a good idea to check
whether it is still valid by calling `config()` on it again. For example,
here we set the initial_population of a life stage that is not included in
the life cycle.
my_config$initial_population <- c(a = 1, c = 1)

Not run:
Now, we re-run the validations, which will throw an error
do.call(config, my_config)

End(Not run)

config_ex_1

Simple model configuration example

Description

This model configuration uses only non-delay transitions, and no transitions depend on predictors (e.g. weather or host community). Parameter values are selected so that the population is stable over time.

Usage

`config_ex_1`

Format

A `config`
config_ex_2

Simple model configuration example using delays

Description

This model configuration uses delay transitions for all transitions except the adult to eggs transition. As in config_ex_1, no transitions depend on predictors, and the population is stable over time.

Usage

```text
config_ex_2
```

Format

A `config`

constant_fun

Constant function

Description

Constant function

Usage

```text
constant_fun(a)
```

Arguments

- `a` Parameter `a` in parameters table.

Value

Numeric vector of length 1 equal to input parameter `a`

Examples

```text
constant_fun(1)
```
density_fun

Density dependent mortality

Description

Density dependent mortality

Usage

```
density_fun(x, y, a, b, c, pref)
```

Arguments

- `x`
 Predictor 1 in transitions table. Numeric vector indicating host density for each of the host species. Length should be equal to the number of host species.

- `y`
 Predictor 2 in transitions table. Number of feeding ticks in life stages specified by predictor 2.

- `a`
 Parameter `a` in parameters table.

- `b`
 Parameter `b` in parameters table.

- `c`
 Parameter `c` in parameters table.

- `pref`
 Parameters named `pref` in parameters table. Numeric vector of length equal to the number of host species. Values are the preference for ticks in a given transition for each host species.

Value

Numeric vector of length 1, indicating mortality rate

Examples

```
density_fun(c(10, 20), 100, .1, .3, .2, c(.5, .8))
```

expo_fun

Exponential function

Description

Exponential function

Usage

```
expo_fun(x, a, b)
```
feed_fun

Arguments

- **x**: Predictor 1 in transitions table. Numeric vector indicating host density for each of the host species. Length should be equal to the number of host species.
- **a**: Parameter a in parameters table.
- **b**: Parameter b in parameters table.

Value

Numeric vector of length 1

Examples

```
expo_fun(.5, .1, .3)
```

feed_fun

Probability of actively questing and then finding a host

Description

Probability of actively questing and then finding a host

Usage

```
feed_fun(x, y, a, pref, q, tmin, tmax)
```

Arguments

- **x**: Predictor 1 in transitions table. Numeric vector indicating host density for each of the host species. Length should be equal to the number of host species.
- **y**: Predictor 2 in transitions table. Numeric vector of length 1 indicating temperature.
- **a**: Parameter a in parameters table.
- **pref**: Parameters named `pref` in parameters table. Numeric vector of length equal to the number of host species. Values are the preference for ticks in a given transition for each host species.
- **q**: Parameter q in parameters table. Used in Briere function.
- **tmin**: Parameter `tmin` in parameters table. Indicates minimum temperature at which ticks actively quest.
- **tmax**: Parameter `tmax` in parameters table. Indicates maximum temperature at which ticks actively quest.

Details

Product of binomial and Briere functions (prob of finding a host) * (prob of active questing)
find_n_feed

Value

Numeric vector of length 1

Examples

```r
find_n_feed(10, 30, .001, .1, .5, 20, 40)
```

Description

Probability of finding a host and successfully feeding on it

Usage

```r
find_n_feed(x, a, pref, feed_success)
```

Arguments

- **x**: Predictor 1 in transitions table. Numeric vector indicating host density for each of the host species. Length should be equal to the number of host species.
- **a**: Parameter a is the probability that a tick finds any one host.
- **pref**: Parameters named `pref` in parameters table. Numeric vector of length equal to the number of host species. Values are the preference for ticks in a given transition for each host species.
- **feed_success**: Parameters named `feed_success` in parameters table. Numeric vector of length equal to the number of host species. Values are the feeding success rate for ticks in a given transition while feeding on each host species.

Value

Numeric vector of length 1 indicating probability that ticks find any host and then successfully feed on that host.

Examples

```r
find_n_feed(10, .1, 1, .5)
find_n_feed(runif(2) * 10, .1, runif(2), runif(2))
```
format.predictor_spec Format a predictor_spec

Description
Format a predictor_spec

Usage

```r
## S3 method for class 'predictor_spec'
format(x, ...)
```

Arguments

- `x`: a predictor_spec
- `...`: not used

Value

string representation of input

get_pred_from_table Get a predictor from input data

Description
Get a predictor from input data

Usage

get_pred_from_table(time, pred, table)

Arguments

- `time`: Numeric vector of days to get data. Ignored if input is constant over time (as indicated by NA value in 'j_day' column)
- `pred`: string specifying the name of the predictor, e.g. "host_den"
- `table`: input predictors table

Value

a numeric vector of predictor values
growth_rate

Calculate multiplicative growth rate of population

Description

Calculate multiplicative growth rate of population

Usage

`growth_rate(out)`

Arguments

- `out`
 Model output data frame

Value

Numeric vector of length one representing daily growth rate.

Examples

```r
out <- run(config_ex_1)
growth_rate(out)
```

host_example_config

Configuration for showing how we can modify host community data

Description

Configuration for showing how we can modify host community data

Usage

`host_example_config`

Format

A `config`
infect_example_config

Configuration for showing infection dynamics

Description

Configuration for showing infection dynamics

Usage

infect_example_config

Format

A config

infect_fun

Probability that a feeding tick becomes engorged infected or uninfected

Description

Probability that a feeding tick becomes engorged infected or uninfected

Usage

infect_fun(x, from_infected, to_infected, host_rc, pref)

Arguments

x Predictor 1 in transitions table. Numeric vector indicating host density for each of the host species. Length should be equal to the number of host species.

from_infected Parameter from_infected in parameters table. Value should be 1 if transition is from an infected tick stage, 0 otherwise.

to_infected Parameter to_infected in parameters table. Value should be 1 if transition is to an infected tick stage, 0 otherwise.

host_rc Parameters named host_rc in parameters table. Numeric vector of length equal to the number of host species. Values are the host reservoir competence for each host species.

pref Parameters named pref in parameters table. Numeric vector of length equal to the number of host species. Values are the preference for ticks in a given transition for each host species.

Details

Since density dependent mortality is subtracted later, in this function we assume that all feeding ticks feed successfully and become engorged.
Value

Numeric vector of length 1

Examples

infect_fun(10, 0, 0, .3, 1)
infect_fun(10, 0, 1, .3, 1)
infect_fun(10, 1, 1, .3, 1)

life_cycle

Create a life_cycle from a collection of transitions

Description

Create a life_cycle from a collection of transitions

Usage

```r
life_cycle(...) 
```

Arguments

```r
... 
```

A set of transitions

Value

A life_cycle

new_transition_function

Constructor for transition functions

Description

Constructor for transition functions

Usage

```r
new_transition_function(fun) 
```

Arguments

```r
fun 
```

A function

Transition functions must return a numeric vector. See `constant_fun`, `expo_fun` and `infect_fun` for examples for how to write custom functions.
Description

This model configuration recreates the Ixodes scapularis (blacklegged tick) population dynamics model from Ogden et al. 2005. This is a relatively complete model of tick population dynamics, including the effects of both temperature and the host community on tick life-stage transitions. We include this configuration to show that our package can be used to recreate existing models.

Usage

ogden2005

Format

A `config`

Details

In this config, the population starts with 10000 questing adults. The predictor data includes average temperature for each day, and density of hosts over the model run. Here the host community is stable with 20 deer and 200 mice.

See Also

Examples

data(ogden2005)
Not run:
output <- run(ogden2005)
graph_population_each_group(output)
End(Not run)
ogden_feed_fun

Probability of actively questing times constant host finding probability

Description

Probability of actively questing times constant host finding probability

Usage

ogden_feed_fun(x, a, q, tmin, tmax)

Arguments

x Predictor 1 in transitions table. Numeric vector of length 1 indicating temperature.
a Parameter a in parameters table.
q Parameter q in parameters table. Used in Briere function.
tmin Parameter tmin in parameters table. Indicates minimum temperature at which ticks actively quest.
tmax Parameter tmax in parameters table. Indicates maximum temperature at which ticks actively quest.

Details

(const prob of finding a host) * (prob of active questing)

Value

Numeric vector of length 1

See Also

Examples

ogden_feed_fun(30, .03, .01, 10, 35)
parameters

Create a set of parameters

Description
Create a set of parameters

Usage
parameters(...)

Arguments

... A set of named numeric vectors, each corresponding to a parameter. If a parameter is of length > 1, each element must be named.

Value
a parameters object

Examples

create a set of scalar parameters
parameters(a = 1, b = 2)

parameters of length > 1 may be useful for host-related parameters that # differ between host species, for example tick feeding success
parameters(a = 1, feeding_success = c(deer = 0.49, squirrel = 0.17))

predictors

Create a table of predictors

Description
A data frame of input data to be used in as predictor values in transition functions.

Usage
predictors(df, verbose = FALSE)
Arguments

- **df**: input data frame, with columns:
 - **pred**: String specifying the name of the predictor, e.g. "temp" or "host_den"
 - **pred_subcategory**: This column allows specifying predictors for which there are multiple values for a given j_day. Predictor values are sorted by this column in the config set up. This ensures that when accessing a predictor with multiple values for the same j_day, we get a vector of predictor values ordered by this column. A typical use for this column is to specify the host density of each host species.
 - **j_day**: Integer specifying the Julian day, or NA for predictors with constant value over time
 - **value**: Numeric value of predictor
 - **verbose**: Boolean; whether to warn about reordering the df

Value

- a predictors object

Usage

`predictor_spec(pred, first_day_only = TRUE)`

Arguments

- **pred**: String indicating where to get predictor data. Can be one of:
 - A string in the "pred" column in the predictors table. In this case, the predictor value passed to the containing transition's fun is the corresponding value of that predictor in the table.
 - A string that matches at least one life stage name via regex. In this case, the value passed to the containing transition's fun is the sum of the population sizes of all matched life stages.

- **first_day_only**: Boolean indicating whether to repeat the predictor data value from the first day of a transition when evaluating it (TRUE case), or to use the range of predictor data over the duration of a transition (FALSE case). FALSE is only valid for transitions with "duration" as the transition_type, because "probability" type transitions only last one day. A value of FALSE also requires the name parameter to be a value in the predictors table "pred" column, not a tick life stage.
Value

a predictor_spec list-based object

Description

Print a predictor_spec

Usage

S3 method for class 'predictor_spec'
print(x, ...)

Arguments

x a predictor_spec
...

not used

Description

Print a transition

Usage

S3 method for class 'transition'
print(x, ...)

Arguments

x A transition
...

not used
run

Run the model

Description

Run the model

Usage

```r
run(cfg, progress = TRUE)
```

Arguments

- `cfg`: An `IxPopDyMod::config` object
- `progress`: Boolean indicating whether to log progress every 100 steps

Value

Data frame of population of ticks of each life stage each day

Examples

```r
run(config_ex_1)
```

snow_cover_fun

Mortality as a function of whether there is a snow on the ground

Description

Mortality as a function of whether there is a snow on the ground

Usage

```r
snow_cover_fun(x, no_snow_mort, snow_mort)
```

Arguments

- `x`: amount of snow on ground
- `no_snow_mort`: mortality with no snow on the ground
- `snow_mort`: mortality with snow on the ground
Configuration for showing how we can modify climate data

Description

Configuration for showing how we can modify climate data

Usage

temp_example_config

Format

A `config`

Create a transition object

Description

A transition object represents a single transition between two tick life stages, or the mortality rate from a life stage.

Usage

`transition(
 from,
 to,
 fun,
 transition_type,
 mortality_type = NULL,
 predictors = NULL,
 parameters = list()
)`

Arguments

- `from` The name of the life stage a tick is transitioning from.
- `to` The name of the life stage a tick is transitioning to, or NULL if the transition is representing mortality.
- `fun` The transition function to evaluate. The inputs of the function are predictors and parameters. The output is the daily probability of completing the transition, for “probability” transitions, or the daily rate the transition takes place, for “duration” transitions.
transition_type
One of: "probability": the evaluated transition is interpreted as the daily fraction of ticks that complete the transition. Ticks remain in the original life stage if they do not complete a transition or undergo mortality. "duration": the transition is complete on the first day that the cumulative sum of the evaluated transition is greater than or equal to 1. No ticks remain in the original life stage at the end of a transition - they either complete the transition or die.

mortality_type
One of: NULL: the default, indicating that the transition is not mortality. "per_day": indicates that the evaluated transition is the fraction of ticks that dies each day. "throughout_transition": only valid for "duration" type transitions, where it indicates that the evaluated transition is the fraction of ticks that die throughout the entire transition.

predictors
Optional, a named list of predictor_spec objects that specify how any predictor data should be used in evaluating fun. The names are matched with the formal args to fun to determine which input in fun each predictor will be passed to.

parameters
Optional, a parameters object, or a named list of numeric vectors.

Value
a transition object

Description
This is a model configuration based on a literature search on the factors affect the winter tick life cycle. Many of the transitions and parameters in this configuration are drawn from Drew and Samuel (1986). We include this configuration to show that our package is flexible for modeling multiple tick species with different life histories.

Usage
winter_tick

Format
An object of class config of length 5.

See Also
Drew and Samuel (1986) doi:10.1139/z86105
Drew and Samuel (1985) doi:10.7589/0090355821.3.274
Examples

```r
data(winter_tick)
## Not run:
output <- run(winter_tick)
graph_population_each_group(winter_tick)

## End(Not run)
```
Index

* datasets
 config_ex_1, 4
 config_ex_2, 5
 host_example_config, 10
 infect_example_config, 11
 ogden2005, 13
 temp_example_config, 19
 winter_tick, 20

 annual_growth_rate, 2
 config, 3, 4, 5, 10, 11, 13, 19
 config_ex_1, 4
 config_ex_2, 5
 constant_fun, 5, 12

 density_fun, 6
 expo_fun, 6, 12

 feed_fun, 7
 find_n_feed, 8
 format.predictor_spec, 9

 get_pred_from_table, 9
 growth_rate, 10
 host_example_config, 10
 infect_example_config, 11
 infect_fun, 11, 12

 life_cycle, 3, 12
 new_transition_function, 12

 ogden2005, 13
 ogden_feed_fun, 14

 parameters, 15, 20
 predictor_spec, 16, 20
 predictors, 3, 15, 16

 print.predictor_spec, 17
 print.transition, 17

 run, 18
 snow_cover_fun, 18
 temp_example_config, 19
 transition, 12, 16, 19
 winter_tick, 20