Package ‘JADE’

September 18, 2023

Type Package

Title Blind Source Separation Methods Based on Joint Diagonalization and Some BSS Performance Criteria

Version 2.0-4

Date 2023-09-17

Author Klaus Nordhausen [aut, cre] (<https://orcid.org/0000-0002-3758-8501>), Jean-Francois Cardoso [aut], Jari Miettinen [aut] (<https://orcid.org/0000-0002-3270-7014>), Hannu Oja [aut] (<https://orcid.org/0000-0002-4945-5976>), Esa Ollila [aut], Sara Taskinen [aut] (<https://orcid.org/0000-0001-9470-7258>)

Maintainer Klaus Nordhausen <klauspohjanenR@gmail.com>

Imports clue, graphics

Suggests ICS, ICSNP

Description Cardoso’s JADE algorithm as well as his functions for joint diagonalization are ported to R. Also several other blind source separation (BSS) methods, like AMUSE and SOBI, and some criteria for performance evaluation of BSS algorithms, are given. The package is described in Miettinen, Nordhausen and Taskinen (2017) <doi:10.18637/jss.v076.i02>.

License GPL (>= 2)

LazyData true

NeedsCompilation yes

Repository CRAN

Date/Publication 2023-09-17 23:02:33 UTC

R topics documented:

JADE-package ... 2
amari.error ... 4
AMUSE ... 5
bss.components .. 7
Description

Cardoso's JADE algorithm as well as his functions for joint diagonalization are ported to R. Also several other blind source separation (BSS) methods, like AMUSE and SOBI, and some criteria for performance evaluation of BSS algorithms, are given. The package is described in Miettinen, Nordhausen and Taskinen (2017) <doi:10.18637/jss.v076.i02>.

Details

Package: JADE
Type: Package
Title: Blind Source Separation Methods Based on Joint Diagonalization and Some BSS Performance Criteria
Version: 2.0-4
Date: 2023-09-17
Authors@R: c(person(given = "Klaus", family = "Nordhausen", role = c("aut", "cre"), email = "klausnordhausenR@gmail.com"), person(given = "Jean-Francois", family = "Cardoso", role = "aut"), person(given = "Jari", family = "Miettinen", role = "aut"), person(given = "Esa", family = "Ollila", role = "aut"), person(given = "Sara", family = "Taskinen", role = "aut"))
Author: Klaus Nordhausen [aut, cre] <https://orcid.org/0000-0001-9470-7258>, Jean-Francois Cardoso [aut], Jari Miettinen [aut], Esa Ollila [aut], Sara Taskinen [aut]
Maintainer: Klaus Nordhausen <klausnordhausenR@gmail.com>
Imports: clue, graphics
Suggests: ICS, ICSNP
Description: Cardoso's JADE algorithm as well as his functions for joint diagonalization are ported to R. Also several other blind source separation (BSS) methods, like AMUSE and SOBI, and some criteria for performance evaluation of BSS algorithms, are given. The package is described in Miettinen, Nordhausen and Taskinen (2017) <doi:10.18637/jss.v076.i02>.
License: GPL (>= 2)
AMUSE Method for Blind Source Separation
CPPdata Cocktail Party Problem Data
ComonGAP Comon's Gap
FG Joint Diagonalization of Real Positive-definite Matrices
FOBI Function to perform FOBI for ICA
JADE JADE Algorithm for ICA
JADE-package Blind Source Separation Methods Based on Joint Diagonalization and Some BSS Performance Criteria
MD Minimum Distance index MD
NSS.JD NSS.JD Method for Nonstationary Blind Source Separation
NSS.SD NSS.SD Method for Nonstationary Blind Source Separation
NSS.TD.JD NSS.TD.JD Method for Nonstationary Blind Source Separation
SIR Signal to Interference Ratio
SOBI SOBI Method for Blind Source Separation
amari.error Amari Error
bss.components Function to Extract Estimated Sources from an Object of Class bss
cjd Joint Diagonalization of Complex Matrices
coef.bss Coefficients of a bss Object
djd Function for Joint Diagonalization of k Square Matrices in a Deflation Based Manner
k_JADE Fast Equivariant k-JADE Algorithm for ICA
multscatter Function to Compute Several Scatter Matrices for the Same Data
plot.bss Plotting an Object of Class bss
print.bss Printing an Object of Class bss
rjd Joint Diagonalization of Real Matrices

Author(s)

Klaus Nordhausen [aut, cre] (<https://orcid.org/0000-0002-3758-8501>), Jean-Francois Cardoso [aut], Jari Miettinen [aut] (<https://orcid.org/0000-0002-3270-7014>), Hannu Oja [aut] (<https://orcid.org/0000-0002-4945-5976>), Esa Ollila [aut], Sara Taskinen [aut] (<https://orcid.org/0000-0001-9470-7258>)

Maintainer: Klaus Nordhausen <klaussnordhausenR@gmail.com>
References

amari.error Amari Error

Description

Computes the Amari Error to evaluate the performance of an ICA algorithm.

Usage

amari.error(W.hat, A, standardize = F)

Arguments

W.hat The estimated square unmixing matrix W.
A The true square mixing matrix A.
standardize Logical value if A and W.hat need to be standardized. Default is FALSE.

Details

The Amari Error can be used in simulation studies to evaluate the performance of an ICA algorithm. The Amari error is permutation invariant but not scale invariant. Therefore if different algorithms should be compared the matrices should be scaled in the same way. If standardize is TRUE, this will be done by the function by standardizing 'W.hat' and the inverse of 'A' in such a way, that every row has length 1, the largest absolute value of the row has a positive sign and the rows are ordered decreasingly according to their largest values.

Note that this function assumes the ICA model is $X = SA'$, as is assumed by JADE and ics. However fastICA and PearsonICA assume $X = SA$. Therefore matrices from those functions have to be transposed first.

The Amari Error is scaled in such a way, that it takes a value between 0 and 1. And 0 corresponds to an optimal separation.

Value

The value of the Amari Error.

Author(s)

Klaus Nordhausen
References

See Also

ComonGAP, SIR

Examples

S <- cbind(rt(1000, 4), rnorm(1000), runif(1000))
A <- matrix(rnorm(9), ncol = 3)
X <- S %*% t(A)

W.hat <- JADE(X, 3)$W
amari.error(W.hat, A)
amari.error(W.hat, A, TRUE)

AMUSE Method for Blind Source Separation

Description

AMUSE method for the second order blind source separation problem. The function estimates the unmixing matrix in a second order stationary source separation model by jointly diagonalizing the covariance matrix and an autocovariance matrix at lag k.

Usage

AMUSE(x, ...)

Default S3 method:
AMUSE(x, k = 1, ...)
S3 method for class 'ts'
AMUSE(x, ...)

Arguments

x a numeric matrix or a multivariate time series object of class ts. Missing values are not allowed.

k integer lag for the autocovariance matrix, must be larger than 0. Default is 1.

... further arguments to be passed to or from methods.
Details

The lag k has a huge effect on the performance and it should be chosen so that the eigenvalues of autocovariance matrix are distinct. The function assumes always as many sources as there are time series.

Value

A list with class 'bss' containing the following components:

- **W**: estimated unmixing matrix.
- **EV**: eigenvectors of autocovariance matrix.
- **k**: lag of the autocovariance matrix used.
- **S**: estimated sources as time series objecte standardized to have mean 0 and unit variances.

Author(s)

Klaus Nordhausen

References

See Also

ts

Examples

```r
# creating some toy data
A <- matrix(rnorm(9),3,3)
s1 <- arima.sim(list(ar=c(0.3,0.6)),1000)
s2 <- arima.sim(list(ma=c(-0.3,0.3)),1000)
s3 <- arima.sim(list(ar=c(-0.8,0.1)),1000)
S <- cbind(s1,s2,s3)
X <- S %*% t(A)
res1<-AMUSE(X)
res1
coef(res1)
plot(res1)  # compare to plot.ts(S)
```
bss.components

MD(coef(res1), A)

input of a time series
X2 <- ts(X, start = c(1961, 1), frequency = 12)
plot(X2)
res2 <- AMUSE(X2, k = 2)
plot(res2)

bss.components Function to Extract Estimated Sources from an Object of Class bss

Description

Extracts the sources estimated by an bss method.

Usage

bss.components(object)

Arguments

object object of class bss

Author(s)

Klaus Nordhausen

Examples

A <- matrix(rnorm(9), 3, 3)
s1 <- arima.sim(list(ar = c(0.3, 0.6)), 1000)
s2 <- arima.sim(list(ma = c(-0.3, 0.3)), 1000)
s3 <- arima.sim(list(ar = c(-0.8, 0.1)), 1000)
S <- cbind(s1, s2, s3)
X <- S %*% t(A)
res1 <- AMUSE(X)
head(bss.components(res1))
colMeans(bss.components(res1))
cov(bss.components(res1))
Joint Diagonalization of Complex Matrices

Description
This is an R version of Cardoso’s joint_diag matlab function for joint diagonalization of k complex-valued square matrices.

Usage
\[
cjd(X, \text{eps} = 1e-06, \text{maxiter} = 100)
\]

Arguments
- **X**: A matrix of k stacked pxp complex matrices with dimension c(kp,p) or an array with dimension c(p,p,k).
- **eps**: Convergence tolerance.
- **maxiter**: Maximum number of iterations.

Value
- **V**: An orthogonal matrix.
- **D**: A stacked matrix with the diagonal matrices or an array with the diagonal matrices. The form of the output depends on the form of the input.

Author(s)
Jean-Francois Cardoso. Ported to R by Klaus Nordhausen.

References

See Also
- rjd, rjd.fortran

Examples
\[
D1 <- \text{diag}(\text{complex}(\text{real}=\text{runif}(3,0,2), \text{imaginary}=\text{runif}(3)))
D2 <- \text{diag}(\text{complex}(\text{real}=\text{runif}(3,0,2), \text{imaginary}=\text{runif}(3)))
D3 <- \text{diag}(\text{complex}(\text{real}=\text{runif}(3,0,2), \text{imaginary}=\text{runif}(3)))
D4 <- \text{diag}(\text{complex}(\text{real}=\text{runif}(3,0,2), \text{imaginary}=\text{runif}(3)))
\]
\[
Z <- \text{matrix}(\text{runif}(9), \text{ncol} = 3)
V <- \text{eigen}(Z \%*% t(Z))$\text{vectors}
\]
\begin{verbatim}
M1 <- t(V)%*%D1%*%V
M2 <- t(V)%*%D2%*%V
M3 <- t(V)%*%D3%*%V
M4 <- t(V)%*%D4%*%V
MS <- rbind(M1,M2,M3,M4)
Ms <- array(0,dim=c(3,3,4))
Ms[,,1]<-M1
Ms[,,3]<-M3
Ms[,,2]<-M2
Ms[,,4]<-M4
res.array <- cjd(Ms)
res.mat <- cjd(MS)
Re(res.array$V)
V
round(V%*%Re(res.array$V),2)
round(V%*%Re(res.mat$V),2)
\end{verbatim}

Description

Extracts the estimated unmixing matrix from an object of class bss.

Usage

```r
## S3 method for class 'bss'
coef(object, ...)
```

Arguments

- `object`: object of class bss.
- `...`: further arguments to be passed to or from methods.

Author(s)

Klaus Nordhausen

Examples

```r
A<- matrix(rnorm(9),3,3)
s1 <- arima.sim(list(ar=c(0.3,0.6)),1000)
s2 <- arima.sim(list(ma=c(-0.3,0.3)),1000)
s3 <- arima.sim(list(ar=c(-0.8,0.1)),1000)
S <- cbind(s1,s2,s3)
X <- S %*% t(A)
res1<--AMUSE(X)
coef(res1)
coef(res1) %*% A # should be a matrix with one dominant element in each row and column
```
Description

Comon’s GAP criterion to evaluate the performance of an ICA algorithm.

Usage

ComonGAP(A, A.hat)

Arguments

A The true square mixing matrix.
A.hat The estimated square mixing matrix.

Details

Comon’s GAP criterion is permutation and scale invariant. It can take every positive value and 0 corresponds to an optimal separation. If A is however nearly singular the values of the criterion can be huge.

Note that this function assumes the ICA model is $X = SA'$, as is assumed by JADE and ics. However fastICA and PearsonICA assume $X = SA$. Therefore matrices from those functions have to be transposed first.

Value

The value of the Comon’s GAP.

Author(s)

Klaus Nordhausen

References

See Also

amari.error, SIR
Examples

```r
S <- cbind(rt(1000, 4), rnorm(1000), runif(1000))
A <- matrix(rnorm(9), ncol = 3)
X <- S %*% t(A)
A.hat <- JADE(X, 3)$A
ComonGAP(A, A.hat)
```

Description

This data set is a toy example for the so called cocktail party problem. In this case three sounds are mixed together with one noise source using four microphones.

Usage

```r
data("CPPdata")
```

Format

A data frame with 50000 observations on the following 4 variables.

- Mic1: the mixture recorded by the first microphone.
- Mic2: the mixture recorded by the second microphone.
- Mic3: the mixture recorded by the third microphone.
- Mic4: the mixture recorded by the fourth microphone.

Details

The three original source files were kindly provided by Ella Bingham and are also available online at the following locations: https://research.ics.aalto.fi/ica/cocktail/source5.wav, https://research.ics.aalto.fi/ica/cocktail/source7.wav and https://research.ics.aalto.fi/ica/cocktail/source9.wav.

Note that the original sound files are included in the package’s subfolder datafiles. In the example section we illustrate how the CPPdata was created. An example analysis of the data is given in Miettinen et al. (2017).

Source

Ella Bingham

References

Examples

Not run:
the data was created as follows:
library("tuneR")
S1 <- readWave(system.file("datafiles/source5.wav", package = "JADE"))
S2 <- readWave(system.file("datafiles/source7.wav", package = "JADE"))
S3 <- readWave(system.file("datafiles/source9.wav", package = "JADE"))
set.seed(321)
NOISE <- noise("white", duration = 50000)
S <- cbind(S1@left, S2@left, S3@left, NOISE@left)
St <- ts(S, start = 0, frequency = 8000)
p <- 4
A <- matrix(runif(p^2, 0, 1), p, p)
A
X <- tcrossprod(St, A)
Xt <- as.ts(X)
colnames(X) <- c("Mic1", "Mic2", "Mic3", "Mic4")
CPPdata <- as.data.frame(X)
End(Not run)

djd

Function for Joint Diagonalization of k Square Matrices in a Deflation Based Manner

Description

This function jointly diagonalizes k real-valued square matrices by searching an orthogonal matrix in a deflation based manner.

Usage

\[
djd(X, G = "max", r = 2, eps = 1e-06, maxiter = 500)
\]

Arguments

- **X**
 - an array containing the k p times p real valued matrices of dimension c(p, p, k).
- **G**
 - criterion function used for the the algorithm. Options are max, pow and log. See details.
- **r**
 - power value used if G="pow" or G="max". 0 is not meaningful for this value. See details.
- **eps**
 - convergence tolerance.
- **maxiter**
 - maximum number of iterations.
Details

Denote the square matrices as A_i, $i = 1, \ldots, k$. This algorithm searches then an orthogonal matrix W so that $D_i = W'A_iW$ is diagonal for all i. If the A_i commute then there is an exact solution. If not, the function will perform an approximate joint diagonalization by maximizing $\sum G(w_j'A_iw_j)$ where w_j are the orthogonal vectors in W. The function G can be chosen to be of the form $G(x) = |x|^r$ or $G(x) = \log(x)$. If $G=\text{"max"}$ is chosen, the function G is of the form $G(x) = |x|^r$, and the diagonalization criterion will be maximized globally at each stage by choosing an appropriate initial value from a set of random vectors. If $G=\text{"pow"}$ or $G=\text{"log"}$ are chosen, the initial values are the eigenvectors of A_i which plays hence a special role.

Value

The matrix W

Author(s)

Klaus Nordhausen, Jari Miettinen

References

Examples

```r
Z <- matrix(runif(9), ncol = 3)
U <- eigen(Z %*% t(Z))$vectors
D1 <- diag(runif(3))
D2 <- diag(runif(3))
D3 <- diag(runif(3))
D4 <- diag(runif(3))
X.matrix <- array(0, dim=c(3, 3, 4))
X.matrix[,1] <- t(U) %*% D1 %*% U
X.matrix[,2] <- t(U) %*% D2 %*% U
X.matrix[,3] <- t(U) %*% D3 %*% U
X.matrix[,4] <- t(U) %*% D4 %*% U
W1 <- djd(X.matrix)
round(U %*% W1, 4) # should be a signed permutation
# matrix if W1 is correct.
W2 <- djd(X.matrix, r=1)
```
Joint Diagonalization of Real Positive-definite Matrices

Description

This is a slightly modified version of Flury's FG algorithm for the joint diagonalization of \(k \) positive-definite matrices. The underlying function is written in C.

Usage

\[
\text{FG}(X, \text{weight} = \text{NULL}, \text{init} = \text{NULL}, \text{maxiter} = 100, \text{eps} = 1e^{-6}, \text{na.action} = \text{na.fail})
\]

Arguments

- \(X \): A matrix of \(k \) stacked \(pxp \) matrices with dimension \(c(kp,p) \) or an array with dimension \(c(p,p,k) \).
- \(\text{weight} \): A vector of length \(k \) to give weight to the different matrices, if \(\text{NULL} \), all matrices have equal weight.
- \(\text{init} \): Initial value for the orthogonal matrix to be estimated, if \(\text{NULL} \), the identity matrix is used.
- \(\text{maxiter} \): Maximum number of iterations.
- \(\text{eps} \): Convergence tolerance.
- \(\text{na.action} \): A function which indicates what should happen when the data contain \'NA\'s. Default is to fail.

Value

A list with the components

- \(V \): An orthogonal matrix.
- \(D \): A stacked matrix with the diagonal matrices or an array with the diagonal matrices. The form of the output depends on the form of the input.
- \(\text{iter} \): The Fortran function returns also the number of iterations.

Author(s)

Jari Miettinen
References

See Also

`rjd`, `rjd.fortran`

FOBI

Function to perform FOBI for ICA

Description

The FOBI method for independent component analysis (ICA). We assume that all components have different kurtosis values.

Usage

`FOBI(X, na.action = na.fail)`

Arguments

`X` a numeric matrix.

`na.action` A function which indicates what should happen when the data contain 'NA's. Default is to fail.

Value

A list with class 'bss' containing the following components:

`W` estimated unmixing matrix.

`EV` eigenvectors of autocovariance matrix.

`Xmu` the original mean of the data.

`S` estimated sources as time series objected standardized to have mean 0 and unit variances.

Note

More general is the function `ics` in the ICS package.

Author(s)

Klaus Nordhausen
References

See Also

ics

Examples

3 source and 3 signals
S <- cbind(rt(1000, 4), rnorm(1000), runif(1000))
A <- matrix(rnorm(9), ncol = 3)
X <- S %*% t(A)
res <- FOBI(X)
MD(coef(res), A)

JADE

JADE Algorithm for ICA

Description

This is an R version of Cardoso’s JADE ICA algorithm (for real data) ported from matlab. The ported version is 1.5. Some minor changes compared to the matlab function are explained in the details section. The matlab code can be found for example on the ICA central homepage.

The function uses frjd for the joint diagonalization.

Usage

JADE(X, n.comp = NULL, eps = 1e-06, maxiter = 100, na.action = na.fail)

Arguments

X Numeric data matrix or dataframe.
n.comp Number of components to extract.
eps Convergence tolerance.
maxiter Maximum number of iterations.
na.action A function which indicates what should happen when the data contain 'NA's. Default is to fail.
Details

Some minor modifications were done when porting the function to R, and they are:

1. The model assumed here is $X = SA' + \mu$. Therefore S and X have one row per observation. Note that this still differs from the model definition in R of FastICA and PearsonICA but agrees with ics.

2. The whitening covariance matrix is divided by $n-1$ and not n ($n =$ number of observations).

3. The initial value for the joint diagonalisation is always I.

4. The original ϵ would be $\frac{1}{\sqrt{n}}$.

It is also worth mentioning that the estimated independent components S are scaled to unit variance and are ordered in such a way, that their fourth moments are in the decreasing order. The signs of the unmixing matrix W are fixed so that the sum of the elements on each row is positive.

The code is based on the original matlab code ("Matlab jadeR.m").

Value

A list with class ‘bss’ containing the following components:

- A: The estimated mixing matrix.
- W: The estimated unmixing matrix.
- S: Dataframe with the estimated independent components.
- Xmu: The location of the original data.

Author(s)

Jean-Francois Cardoso. Ported to R by Klaus Nordhausen

References

Examples

```R
# 3 source and 3 signals
S <- cbind(rt(1000, 4), rnorm(1000), runif(1000))
A <- matrix(rnorm(9), ncol = 3)
X <- S %*% t(A)
res <- JADE(X, 3)
res$A
res$W
```
res$S[1:10,]
(sweep(X,2,res$Xmu) %+% t(res$W))[1:10,]
round(res$W %+% A,4)

2 sources and 3 signals
S2 <- cbind(rt(1000, 4), rnorm(1000))
A2 <- matrix(rnorm(6), ncol = 2)
X2 <- S2 %+% t(A2)
res2 <- JADE(X2, 2)
res2%A
res2$W
res2$S[1:10,]
(sweep(X2, 2, res2$Xmu) %+% t(res2$W))[1:10,]
SIR(S2, res2$S)

k_JADE

Fast Equivariant k-JADE Algorithm for ICA

Description

This algorithm generalizes the JADE algorithm, as it provides JADE when k is set to the number of dimensions. Otherwise k can be considered as a way to reduce the number of cumulant matrices to be jointly diagonalized. Hence small values of k speed up the method considerably in high-dimensional cases. In general, k can be considered as maximum number of underlying identical sources.

The function uses FOBI as an initial estimate and frjd for the joint diagonalization.

Usage

k_JADE(X, k = 1, eps = 1e-06, maxiter = 100, na.action = na.fail)

Arguments

- **X**: Numeric data matrix or dataframe.
- **k**: integer value between 1 and the number of columns of X. Default is 1.
- **eps**: Convergence tolerance.
- **maxiter**: Maximum number of iterations.
- **na.action**: A function which indicates what should happen when the data contain `NA's. Default is to fail.

Details

The order of the estimated components is fixed so that their fourth moments are in the decreasing order.
Value
A list with class ’bss’ containing the following components:

- \(A \) The estimated mixing matrix.
- \(W \) The estimated unmixing matrix.
- \(S \) Matrix with the estimated independent components.
- \(X_{mu} \) The location of the original data.

Note
The function uses \texttt{FOBI} as initial estimate and \texttt{frjd} for the joint diagonalization.

Author(s)
Jari Miettinen

References

See Also
\texttt{JADE, FOBI, frjd}

Examples

3 source and 3 signals
S <- cbind(rt(1000, 4), rnorm(1000), runif(1000))
A <- matrix(rnorm(9), ncol = 3)
X <- S %*% t(A)
res_k1 <- k_JADE(X, 1)
res_k1$A
res_k1$W
res_k1$S[1:10,]
MD(coef(res_k1), A)
Description

Computes the Minimum Distance index MD to evaluate the performance of an ICA algorithm.

Usage

\[\text{MD}(\hat{W}, A) \]

Arguments

\begin{itemize}
 \item \(\hat{W} \) : The estimated square unmixing matrix \(W \).
 \item \(A \) : The true square mixing matrix \(A \).
\end{itemize}

Details

\[
\text{MD}(\hat{W}, A) = \frac{1}{\sqrt{p-1}} \inf_{P_D} \| P D \hat{W} A - I \|,
\]

where \(P \) is a permutation matrix and \(D \) a diagonal matrix with nonzero diagonal entries.

The step that minimizes the index of the set over all permutation matrix can be expressed as a linear sum assignment problem (LSAP) for which we use as solver the Hungarian method implemented as \texttt{solve.LASP} in the \texttt{clue} package.

Note that this function assumes the ICA model is \(X = SA' \), as is assumed by \texttt{JADE} and \texttt{ics}. However \texttt{fastICA} and \texttt{PearsonICA} assume \(X = SA \). Therefore matrices from those functions have to be transposed first.

The MD index is scaled in such a way, that it takes a value between 0 and 1. And 0 corresponds to an optimal separation.

Value

The value of the MD index.

Author(s)

Klaus Nordhausen

References

See Also

ComonGAP, SIR, amari.error, solve_LSAP

Examples

S <- cbind(rt(1000, 4), rnorm(1000), runif(1000))
A <- matrix(rnorm(9), ncol = 3)
X <- S %*% t(A)

W.hat <- JADE(X, 3)$W
MD(W.hat, A)

multscatter Function to Compute Several Scatter Matrices for the Same Data

Description

The function can be used to compute several scatter matrices for the same data.

Usage

multscatter(scatterlist, X, toshape = TRUE)

Arguments

scatterlist a vector with the names of the scatter matrices to be computed. Note that each of these functions should only return a matrix of size p times p.
X the n times p data matrix for which the scatter should be computed.
toshape logical, whether scatter matrices should be converted to shape matrices. If TRUE, all matrices will have determinant 1.

Details

It is important that the functions do not need any additional imput and that they return only the p times p scatter matrix. Hence it might be sometimes necessary to write wrappers for some of the functions. See examples.

Value

An array of dimension c(p,p,k) where k is the number of scatter matrices.
Author(s)
Klaus Nordhausen

Examples

```r
# example requires the packages ICS and ICSNP
library(ICSNP)
X <- cbind(rexp(1000), rt(1000,6), runif(1000))

my.tM1 <- function(X,df=1) tM(X,)$V
my.tM2 <- function(X,df=2) tM(X,)$V

multiscatter(c("cov","cov4","HP1.shape","my.tM1", "my.tM2"), X)
multiscatter(c("cov","cov4","HP1.shape","my.tM1", "my.tM2"), X, toshape=FALSE)
```

NSS.JD

NSS.JD Method for Nonstationary Blind Source Separation

Description

The NSS.JD method for nonstationary blind source separation. The method first whitens the complete data and then divides it into K time intervals. Then frjd is used to jointly diagonalize the covariance matrices computed for the individual time intervals to find the sources.

Usage

```r
NSS.JD(X, ...)
```

Default S3 method:
```r
NSS.JD(X, K=12, Tau=0, n.cuts=NULL, eps = 1e-06, maxiter = 100, ...)
```

S3 method for class 'ts'
```r
NSS.JD(X, ...)
```

Arguments

- **X**: a numeric matrix or a multivariate time series object of class `ts`. Missing values are not allowed.
- **K**: number of intervals to be used.
- **Tau**: By default 0 which means covariance are computed of each time interval, if Tau is an integer > 0 then rather autocovariance matrices at lag Tau are used for the joint diagonalization.
- **n.cuts**: if NULL, then the time series is divided into K equally long intervals. To specify intervals n.cuts should be given in the form `c(1,n.cut.1,...,n.cut.k, nrow(X))` to specify where to split the time series.
- **eps**: maximum number of iterations for frjd.
- **maxiter**: convergence tolerance for frjd.
- **...**: further arguments to be passed to or from methods.
Details

The model assumes that the mean of the p-variate time series is constant but the variances change over time.

Value

A list with class 'bss' containing the following components:

- \(w \): estimated unmixing matrix.
- \(k \): the lag used for the autocovariance matrix.
- \(n.\,\text{cut} \): specifying the intervals where data is split
- \(K \): the number of intervals used
- \(S \): estimated sources as time series objected standardized to have mean 0 and that the variance of the sources are 1.

Author(s)

Klaus Nordhausen

References

See Also

ts, NSS.SD, NSS.TD.JD

Examples

```r
n <- 1000
s1 <- rnorm(n)
s2 <- 2*sin(pi/200*1:n)* rnorm(n)
s3 <- c(rnorm(n/2), rnorm(100,0,2), rnorm(n/2-100,0,1.5))
S <- cbind(s1,s2,s3)
plot.ts(S)
A<-matrix(rnorm(9),3,3)
X<- S%*%t(A)
NSS2 <- NSS.JD(X)
```
NSS2
MD(coef(NSS2),A)
plot(NSS2)
cor(NSS2$S,S)

NSS2b <- NSS.JD(X, Tau=1)
MD(coef(NSS2b),A)

NSS2c <- NSS.JD(X, n.cuts=c(1,300,500,600,1000))
MD(coef(NSS2c),A)

NSS.SD Method for Nonstationary Blind Source Separation

Description

The NSS.SD method for nonstationary blind source separation. The function estimates the unmixing matrix in a nonstationary source separation model by simultaneously diagonalizing two covariance matrices computed for different time intervals.

Usage

NSS.SD(X, ...)

Default S3 method:
NSS.SD(X, n.cut=NULL, ...)
S3 method for class ' VAR'
NSS.SD(X, n.cut=VAR, ...)
S3 method for class 'ts'
NSS.SD(X, ...)

Arguments

X a numeric matrix or a multivariate time series object of class ts. Missing values are not allowed.
n.cut either an integer between 1 and nrow(X) or an vector of length 3 of the form c(1,n.cut,nrow(X)) to specify where to split the time series. If NULL, then c(1,floor(nrow(X)/2),nrow(X)) is used.

Details

The model assumes that the mean of the p-variate time series is constant but the variances change over time.
NSS.SD

Value

A list with class `bss` containing the following components:

- **W**
 - estimated unmixing matrix.
- **EV**
 - eigenvalues from the eigenvalue-eigenvector decomposition.
- **n.cut**
 - specifying the intervals where data is split
- **S**
 - estimated sources as time series objected standardized to have mean 0 and that the sources in the first interval are 1.

Author(s)

Klaus Nordhausen

References

See Also

ts, NSS.JD, NSS.TD.JD

Examples

```r
n <- 1000
s1 <- rnorm(n)
s2 <- 2*sin(pi/200*1:n)* rnorm(n)
s3 <- c(rnorm(n/2), rnorm(100,0,2), rnorm(n/2-100,0,1.5))
S <- cbind(s1,s2,s3)
plot.ts(S)
A<-matrix(rnorm(9),3,3)
X<- S%*%t(A)
NSS1 <- NSS.SD(X)
NSS1
MD(coef(NSS1),A)
plot(NSS1)
cor(NSS1$S,S)

NSS1b <- NSS.SD(X, n.cut=400)
MD(coef(NSS1b),A)
```
NSS1c <- NSS.SD(X, n.cut=c(1,600,1000))
MD(coef(NSS1c),A)

NSS.TD.JD <- NSS.TD.JD(X, n.cut=c(1,600,1000))

 NSS.TD.JD Method for Nonstationary Blind Source Separation

Description
The NSS.TD.JD method for nonstationary blind source separation. The method first whitens the complete data and then divides it into K time intervals. It is then assumed that within each interval the time series is approximately second order stationary and within each interval L autocovariance are computed. The underlying sources are then found by jointly diagonalizing the K*L autocovariance matrices using frjd.

Usage
NSS.TD.JD(X, ...)

Default S3 method:
NSS.TD.JD(X, K=12, Tau=0:11, n.cuts=NULL, eps = 1e-06, maxiter = 100, ...)
S3 method for class 'ts'
NSS.TD.JD(X, ...)

Arguments
X a numeric matrix or a multivariate time series object of class ts. Missing values are not allowed.
K number of intervals to be used.
Tau Lags for the autocovariance matrices to be computed within each interval.
n.cuts if NULL, then the time series is divided into K equally long intervals. To specify intervals n.cuts should be given in the form c(1,n.cut.1,...,n.cut.k, nrow(X)) to specify where to split the time series.
eps maximum number of iterations for frjd.
maxiter convergence tolerance for frjd.
... further arguments to be passed to or from methods.

Details
The model assumes that the mean of the p-variate time series is constant but the variances change over time.
Value

A list with class ‘bss’ containing the following components:

- \(\hat{W} \) estimated unmixing matrix.
- \(k \) the lags used for the autocovariance matrix used in each interval.
- \(n.\text{cut} \) specifying the intervals where data is split
- \(K \) the number of intervals used
- \(S \) estimated sources as time series objects standardized to have mean 0 and that the sources

Author(s)

Klaus Nordhausen

References

See Also

ts, NSS.JD, NSS.JD, SOBI

Examples

```r
n <- 1000
s1 <- rnorm(n)
s2 <- 2*sin(pi/200*1:n)*rnorm(n)
s3 <- c(rnorm(n/2), rnorm(100,0,2), rnorm(n/2-100,0,1.5))
S <- cbind(s1,s2,s3)
plot.ts(S)
A<-matrix(rnorm(9),3,3)
X<- S%*%t(A)
NSS3 <- NSS.TD.JD(X)
NSS3
MD(coef(NSS3),A)
plot(NSS3)
cor(NSS3$S, S)
```
plot.bss

Plotting an Object of Class bss

Description

Plots the estimated sources resulting from an bss method. If the bss method is based on second order assumptions and returned the sources as a time series object it will plot the sources using `plot.ts`, otherwise it will plot a scatter plot matrix using `pairs` or `plot` if there are only two sources.

Usage

```r
## S3 method for class 'bss'
plot(x, ...)  
```

Arguments

- `x` object of class bss.
- `...` further arguments to be passed to or from methods.

Author(s)

Klaus Nordhausen

See Also

`plot.ts`, `pairs`, `plot`

Examples

```r
A <- matrix(rnorm(9),3,3)
s1 <- arima.sim(list(ar=c(0.3,0.6)),1000)
s2 <- arima.sim(list(ma=c(-0.3,0.3)),1000)
s3 <- arima.sim(list(ar=c(-0.8,0.1)),1000)
S <- cbind(s1,s2,s3)
X <- S %*% t(A)
res1 <- AMUSE(X)
plot(res1)
# not so useful:
plot(res1, plot.type = "single", col=1:3)
```

not meaningful for this data
print.bss

res2 <- JADE(X)
plot(res2)

print.bss

Printing an Object of Class bss

Description

Prints an object of class bss. It prints all elements of the list of class bss except the component S which is the source matrix.

Usage

S3 method for class 'bss'
print(x, ...)

Arguments

x
object of class bss.

...
further arguments to be passed to or from methods.

Author(s)

Klaus Nordhausen

rjd

Joint Diagonalization of Real Matrices

Description

This is an R version of Cardoso’s rjd matlab function for joint diagonalization of k real-valued square matrices. A version written in C is also available and preferrable.

Usage

rjd(X, eps = 1e-06, maxiter = 100, na.action = na.fail)
frjd(X, weight = NULL, maxiter = 100, eps = 1e-06, na.action = na.fail)
frjd.int(X, maxiter = 100, eps = 1e-06)
rjd.fortran(X, weight = NULL, maxiter = 100, eps = 1e-06, na.action = na.fail)
Arguments

- **X**: A matrix of k stacked pxp matrices with dimension c(kp,p) or an array with dimension c(p,p,k). In case of frjd_int it has to be an array.
- **weight**: A vector of length k to give weight to the different matrices, if NULL, all matrices have equal weight.
- **eps**: Convergence tolerance.
- **maxiter**: Maximum number of iterations.
- **na.action**: A function which indicates what should happen when the data contain `NA's. Default is to fail.

Details

Denote the square matrices as \(A_i, i = 1, \ldots, k\). The algorithm searches an orthogonal matrix \(V\) so that \(D_i = V'A_iV\) is diagonal for all \(i\). If the \(A_i\) commute then there is an exact solution. Otherwise, the function will perform an approximate joint diagonalization by trying to make the \(D_i\) as diagonal as possible.

Cardoso points out that notion of approximate joint diagonalization is ad hoc and very small values of \(eps\) make in that case not much sense since the diagonality criterion is ad hoc itself.

rjd, **frjd** and **rjd.fortran** terminate with an error in case maxiter is reach without convergence whereas **frjd_int** returns the current state at when maxiter is reached and does not warn about convergence problems.

Value

A list with the components

- **V**: An orthogonal matrix.
- **D**: A stacked matrix with the diagonal matrices or an array with the diagonal matrices. The form of the output depends on the form of the input.
- **iter**: The **frjd** function returns also the number of iterations.

Author(s)

Jean-Francois Cardoso. Ported to **R** by Klaus Nordhausen. C code by Jari Miettinen

References

Examples

```r
Z <- matrix(runif(9), ncol = 3)
U <- eigen(Z %*% t(Z))$vectors
D1 <- diag(runif(3))
D2 <- diag(runif(3))
D3 <- diag(runif(3))
D4 <- diag(runif(3))

X.matrix <- rbind(t(U) %*% D1 %*% U, t(U) %*% D2 %*% U, 
                 t(U) %*% D3 %*% U, t(U) %*% D4 %*% U)
res.matrix <- rjd(X.matrix)
res.matrix$V
round(U %*% res.matrix$V, 4) # should be a signed permutation 
    # matrix if V is correct.
round(res.matrix$D, 4)

# compare to C version
#res.matrix.C <- frjd(X.matrix)
#res.matrix.C$V
#round(U %*% res.matrix.C$V, 4)
#round(res.matrix.C$D, 4)

X.array <- aperm(array(t(X.matrix), dim = c(3,3,4)), c(2,1,3))
res.array <- rjd(X.array)
round(res.array$D, 4)

res.array.C <- frjd(X.array)
round(res.array.C$D, 4)

res.array.C2 <- frjd.int(X.array)
round(res.array.C2$D, 4)
```

SIR

Signal to Interference Ratio

Description

Computes the signal to interference ratio between true and estimated signals

Usage

```r
SIR(S, S.hat)
```

Arguments

- **S**
 Matrix or dataframe with the true numeric signals.
- **S.hat**
 Matrix or dataframe with the estimated numeric signals.
Details

The signal to interference ratio is measured in dB and values over 20 are thought to be good. It is scale and permutation invariant and can be seen as measuring the correlation between the matched true and estimated signals.

Value

The value of the signal to interference ratio.

Author(s)

Klaus Nordhausen

References

See Also

amari.error, ComonGAP

Examples

S <- cbind(rt(1000, 4), rnorm(1000), runif(1000))
A <- matrix(rnorm(9), ncol = 3)
X <- S %*% t(A)
S.hat <- JADE(X, 3)$S
SIR(S, S.hat)

SOBI

SOBI Method for Blind Source Separation

Description

The SOBI method for the second order blind source separation problem. The function estimates the unmixing matrix in a second order stationary source separation model by jointly diagonalizing the covariance matrix and several autocovariance matrices at different lags.

Usage

SOBI(X, ...)

Default S3 method:
SOBI(X, k=12, method="frjd", eps = 1e-06, maxiter = 100, ...)
S3 method for class 'ts'
SOBI(X, ...)
Arguments

- **X**: a numeric matrix or a multivariate time series object of class `ts`. Missing values are not allowed.
- **k**: if a single integer, then the lags 1:k are used, if an integer vector, then these are used as the lags.
- **method**: method to use for the joint diagonalization, options are `djd`, `rjd` and `frjd`.
- **eps**: convergence tolerance.
- **maxiter**: maximum number of iterations.
- **...**: further arguments to be passed to or from methods.

Details

The order of the estimated components is fixed so that the sums of squared autocovariances are in the decreasing order.

Value

A list with class 'bss' containing the following components:

- **W**: estimated unmixing matrix.
- **k**: lags used.
- **method**: method used for the joint diagonalization.
- **S**: estimated sources as time series objected standardized to have mean 0 and unit variances.

Author(s)

Klaus Nordhausen

References

See Also

`ts`
Examples

creating some toy data
A <- matrix(rnorm(9), 3, 3)
s1 <- arima.sim(list(ar=c(0.3, 0.6)), 1000)
s2 <- arima.sim(list(ma=c(-0.3, 0.3)), 1000)
s3 <- arima.sim(list(ar=c(-0.8, 0.1)), 1000)

S <- cbind(s1, s2, s3)
X <- S %*% t(A)

res1 <- SOBI(X)
res1
coef(res1)
plot(res1) # compare to plot.ts(S)
MD(coef(res1), A)

input of a time series
X2 <- ts(X, start=c(1961, 1), frequency=12)
plot(X2)
res2 <- SOBI(X2, k=c(5, 10, 1, 4, 2, 9, 10))
plot(res2)
Index

* array
 cjd, 8
djd, 12
FG, 14
rjd, 29
* datasets
 CPPdata, 11
* methods
 coef.bss, 9
 plot.bss, 28
 print.bss, 29
* multivariate
 amari.error, 4
 AMUSE, 5
 bss.components, 7
 ComonGAP, 10
 FOBI, 15
 JADE, 16
 k_JADE, 18
 MD, 20
 multiscatter, 21
 NSS.JD, 22
 NSS.SD, 24
 NSS.TD.JD, 26
 SIR, 31
 SOBI, 32
* package
 JADE-package, 2
* ts
 AMUSE, 5
 NSS.JD, 22
 NSS.SD, 24
 NSS.TD.JD, 26
 SOBI, 32

amari.error, 4, 10, 21, 32
AMUSE, 5
bss.components, 7

cjd, 8
coe.bss, 9
ComonGAP, 5, 10, 21, 32
CPPdata, 11
djd, 12, 33
FG, 14
FOBI, 15, 18, 19
frjd, 16, 18, 19, 22, 26, 33
rjd, 29
ics, 15, 16
JADE, 4, 10, 16, 18–20
JADE-package, 2
k_JADE, 18
MD, 20
multiscatter, 21
NSS.JD, 22, 25, 27
NSS.SD, 23, 24
NSS.TD.JD, 23, 25, 26
pairs, 28
plot, 28
plot.bss, 28
plot.ts, 28
print.bss, 29
rjd, 8, 15, 29, 33
rjd.fortran, 8, 15
SIR, 5, 10, 21, 31
SOBI, 27, 32
solve_LSAP, 21
ts, 5, 6, 22–27, 33