Package ‘JMH’

February 20, 2024

Type Package

Title Joint Model of Heterogeneous Repeated Measures and Survival Data

Version 1.0.3

Date 2024-02-19

Maintainer Shanpeng Li <lishanpeng0913@ucla.edu>

Description Maximum likelihood estimation for the semi-parametric joint modeling of competing risks and longitudinal data in the presence of heterogeneous within-subject variability, proposed by Li and colleagues (2023) <arXiv:2301.06584>.

The proposed method models the within-subject variability of the biomarker and associates it with the risk of the competing risks event. The time-to-event data is modeled using a (cause-specific) Cox proportional hazards regression model with time-fixed covariates. The longitudinal outcome is modeled using a mixed-effects location and scale model. The association is captured by shared random effects. The model is estimated using an Expectation Maximization algorithm.

License GPL (>= 3)

NeedsCompilation yes

Imports Rcpp (>= 1.0.7), parallel, dplyr, stats, caret, timeROC

LinkingTo Rcpp, RcppEigen

Depends R (>= 3.5.0), survival, nlme, utils, MASS, statmod

RoxygenNote 7.2.3

Suggests testthat (>= 3.0.0), spelling

Language en-US

LazyData true

Author Shanpeng Li [aut, cre],
 Jin Zhou [ctb],
 Hua Zhou [ctb],
 Gang Li [ctb]

Repository CRAN

Date/Publication 2024-02-20 06:40:02 UTC
R topics documented:

AUCJMMLSM 2

cdata 3

JMMLSM 4

MAEQJMMLSM 7

PEJMMLSM 8

plot.survfitJMMLSM 10

print.JMMLSM 11

print.survfitJMMLSM 11

summary.AUCJMMLSM 12

summary.MAEQJMMLSM 13

summary.PEJMMLSM 13

survfitJMMLSM 14

vcov 15

ydata 16

Index 17

AUCJMMLSM
Time-dependent AUC for joint models

Description

Time-dependent AUC for joint models

Usage

```r
AUCJMMLSM(
  object,
  seed = 100,
  landmark.time = NULL,
  horizon.time = NULL,
  obs.time = NULL,
  method = c("Laplace", "GH"),
  quadpoint = NULL,
  maxiter = 1000,
  n.cv = 3,
  survinitial = TRUE,
  ...
)
```

Arguments

- **object** object of class 'JMMLSM'.
- **seed** a numeric value of seed to be specified for cross validation.
- **landmark.time** a numeric value of time for which dynamic prediction starts..
horizon.time a numeric vector of future times for which predicted probabilities are to be computed.
obs.time a character string of specifying a longitudinal time variable.
method estimation method for predicted probabilities. If Laplace, then the empirical empirical estimates of random effects is used. If GH, then the pseudo-adaptive Gauss-Hermite quadrature is used.
quadpoint the number of pseudo-adaptive Gauss-Hermite quadrature points if method = "GH".
maxiter the maximum number of iterations of the EM algorithm that the function will perform. Default is 10000.
n.cv number of folds for cross validation. Default is 3.
survisnitial Fit a Cox model to obtain initial values of the parameter estimates. Default is TRUE.
... Further arguments passed to or from other methods.

Value
a list of matrices with conditional probabilities for subjects.

Author(s)
Shanpeng Li <lishanpeng0913@ucla.edu>

See Also
JMMLSM, survfitJMMLSM

Description
The cdata data frame has 200 rows and 6 columns.

Usage
data(cdata)

Format
This data frame contains the following columns:

ID patient identifier.
survtime event time.
cmprsk event indicator. 0 denotes censoring, 1 risk 1, and 2 risk 2.
var1 treatment indicator. 0 denotes the placebo group and 1 the treatment group.
var2 continuous variable.
var3 continuous variable.

JMMLSM
Joint Modeling for Continuous outcomes

Description

Joint modeling of longitudinal continuous data and competing risks

Usage

```r
JMMLSM(  
cdata,  
ydata,  
long.formula,  
surv.formula,  
variance.formula,  
random,  
maxiter = 1000,  
epsilon = 1e-04,  
quadpoint = NULL,  
print.para = FALSE,  
survinitial = TRUE,  
initial.para = NULL,  
method = "adaptive",  
opt = "nlminb",  
initial.optimizer = "BFGS"
)
```

Arguments

- `cdata` a survival data frame with competing risks or single failure. Each subject has one data entry.
- `ydata` a longitudinal data frame in long format.
- `long.formula` a formula object with the response variable and fixed effects covariates to be included in the longitudinal sub-model.
- `surv.formula` a formula object with the survival time, event indicator, and the covariates to be included in the survival sub-model.
- `variance.formula` an one-sided formula object with the fixed effects covariates to model the variance of longitudinal sub-model.
random a one-sided formula object describing the random effects part of the longitudinal sub-model. For example, fitting a random intercept model takes the form ~ 1|ID. Alternatively, fitting a random intercept and slope model takes the form ~ x1 + ... + xnlID.

maxiter the maximum number of iterations of the EM algorithm that the function will perform. Default is 10000.

epsilon Tolerance parameter. Default is 0.0001.

quadpoint the number of Gauss-Hermite quadrature points to be chosen for numerical integration. Default is 15 which produces stable estimates in most dataframes.

print.para Print detailed information of each iteration. Default is FALSE, i.e., not to print the iteration details.

survinitial Fit a Cox model to obtain initial values of the parameter estimates. Default is TRUE.

initial.para a list of initialized parameters for EM iteration. Default is NULL.

opt Optimization method to fit a linear mixed effects model, either nlminb (default) or optim.

initial.optimizer Method for numerical optimization to be used. Default is BFGS.

Value Object of class JMMLSM with elements

ydata the input longitudinal dataset for fitting a joint model. It has been re-ordered in accordance with descending observation times in cdata.

cdata the input survival dataset for fitting a joint model. It has been re-ordered in accordance with descending observation times.

PropEventType a frequency table of number of events.

beta the vector of fixed effects for the mean trajectory in the mixed effects location and scale model.

tau the vector of fixed effects for the within-subject variability in the mixed effects location and scale model.

gamma1 the vector of fixed effects for type 1 failure for the survival model.

gamma2 the vector of fixed effects for type 2 failure for the survival model. Valid only if CompetingRisk = TRUE.

alpha1 the vector of association parameter(s) for the mean trajectory for type 1 failure.

alpha2 the vector of association parameter(s) for the mean trajectory for type 2 failure. Valid only if CompetingRisk = TRUE.

vee1 the vector of association parameter(s) for the within-subject variability for type 1 failure.

vee2 the vector of association parameter(s) for the within-subject variability for type 2 failure. Valid only if CompetingRisk = TRUE.
the matrix that collects baseline hazards evaluated at each uncensored event time for type 1 failure. The first column denotes uncensored event times, the second column the number of events, and the third columns the hazards obtained by Breslow estimator.

H02

the matrix that collects baseline hazards evaluated at each uncensored event time for type 2 failure. The data structure is the same as **H01**. Valid only if **CompetingRisk = TRUE**.

Sig

the variance-covariance matrix of the random effects.

iter

the total number of iterations until convergence.

convergence

convergence identifier: 1 corresponds to successful convergence, whereas 0 to a problem (i.e., when 0, usually more iterations are required).

vcov

the variance-covariance matrix of all the fixed effects for both models.

sebeta

the standard error of beta.

setau

the standard error of tau.

segamma1

the standard error of gamma1.

segamma2

the standard error of gamma2. Valid only if **CompetingRisk = TRUE**.

sealpha1

the standard error of alpha1.

sealpha2

the standard error of alpha2. Valid only if **CompetingRisk = TRUE**.

sevee1

the standard error of vee1.

sevee2

the standard error of vee2. Valid only if **CompetingRisk = TRUE**.

seSig

the vector of standard errors of covariance of random effects.

loglike

the log-likelihood value.

EFuntheta

a list with the expected values of all the functions of random effects.

CompetingRisk

logical value; TRUE if a competing event are accounted for.

quadpoint

the number of Gauss Hermite quadrature points used for numerical integration.

LongitudinalSubmodelmean

the component of the `long.formula`.

LongitudinalSubmodelvariance

the component of the `variance.formula`.

SurvivalSubmodel

the component of the `surv.formula`.

random

the component of the `random`.

call

the matched call.

Examples

```r
require(JMH)
data(ydata)
data(cdata)
## fit a joint model
## Not run:
fit <- JMMLSM(cdata = cdata, ydata = ydata,
```
MAEQJMMLSM

long.formula = Y ~ Z1 + Z2 + Z3 + time,
surv.formula = Surv(survtime, cmprsk) ~ var1 + var2 + var3,
variance.formula = ~ Z1 + Z2 + Z3 + time,
quadpoint = 6, random = ~ 1|ID, print.para = FALSE)

make dynamic prediction of two subjects
cnewdata <- cdata[cdata$ID %in% c(122, 152),]
ynewdata <- ydata[ydata$ID %in% c(122, 152),]
survfit <- survfitJMMLSM(fit, seed = 100, ynewdata = ynewdata, cnewdata = cnewdata,
 u = seq(5.2, 7.2, by = 0.5), Last.time = "survtime",
 obs.time = "time", method = "GH")
oldpar <- par(mfrow = c(2, 2), mar = c(5, 4, 4, 4))
plot(survfit, include.y = TRUE)
par(oldpar)

End(Not run)

MAEQJMMLSM

A metric of prediction accuracy of joint model by comparing the predicted risk with the empirical risks stratified on different predicted risk group.

Description

A metric of prediction accuracy of joint model by comparing the predicted risk with the empirical risks stratified on different predicted risk group.

Usage

MAEQJMMLSM(
 seed = 100,
 object,
 landmark.time = NULL,
 horizon.time = NULL,
 obs.time = NULL,
 method = c("Laplace", "GH"),
 quadpoint = NULL,
 maxiter = 1000,
 survinitial = TRUE,
 n.cv = 3,
 quantile.width = 0.25,
 opt = "nlminb",
 initial.para = FALSE,
 ...)
)
Arguments

seed a numeric value of seed to be specified for cross validation.
object object of class 'JMMLSM'.
landmark.time a numeric value of time for which dynamic prediction starts..
horizon.time a numeric vector of future times for which predicted probabilities are to be computed.
obs.time a character string of specifying a longitudinal time variable.
method estimation method for predicted probabilities. If Laplace, then the empirical empirical estimates of random effects is used. If GH, then the standard Gauss-Hermite quadrature is used.
quadpoint the number of standard Gauss-Hermite quadrature points if method = "GH".
maxiter the maximum number of iterations of the EM algorithm that the function will perform. Default is 10000.
survinitial Fit a Cox model to obtain initial values of the parameter estimates. Default is TRUE.
n.cv number of folds for cross validation. Default is 3.
quantile.width a numeric value of width of quantile to be specified. Default is 0.25.
opt Optimization method to fit a linear mixed effects model, either nlminb (default) or optim.
initial.para Initial guess of parameters for cross validation. Default is FALSE.
... Further arguments passed to or from other methods.

Value

a list of matrices with conditional probabilities for subjects.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

JMMLSM, survfitJMMLSM

PEJMMLSM

A metric of prediction accuracy of joint model by comparing the predicted risk with the counting process.

Description

A metric of prediction accuracy of joint model by comparing the predicted risk with the counting process.
Usage

PEJMMLSM(
 seed = 100,
 object,
 landmark.time = NULL,
 horizon.time = NULL,
 obs.time = NULL,
 method = c("Laplace", "GH"),
 quadpoint = NULL,
 maxiter = 1000,
 n.cv = 3,
 survinitial = TRUE,
 ...
)

Arguments

- **seed**: a numeric value of seed to be specified for cross validation.
- **object**: object of class 'JMMLSM'.
- **landmark.time**: a numeric value of time for which dynamic prediction starts.
- **horizon.time**: a numeric vector of future times for which predicted probabilities are to be computed.
- **obs.time**: a character string of specifying a longitudinal time variable.
- **method**: estimation method for predicted probabilities. If Laplace, then the empirical empirical estimates of random effects is used. If GH, then the pseudo-adaptive Gauss-Hermite quadrature is used.
- **quadpoint**: the number of pseudo-adaptive Gauss-Hermite quadrature points if method = "GH".
- **maxiter**: the maximum number of iterations of the EM algorithm that the function will perform. Default is 10000.
- **n.cv**: number of folds for cross validation. Default is 3.
- **survinitial**: Fit a Cox model to obtain initial values of the parameter estimates. Default is TRUE.
- **...**: Further arguments passed to or from other methods.

Value

- a list of matrices with conditional probabilities for subjects.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

JMMLSM, survfitJMMLSM
Description

Plot conditional probabilities for new subjects. If CompetingRisk = FALSE, print the survival probabilities. Otherwise, print the cumulative incidence probabilities for each failure type.

Usage

```r
## S3 method for class 'survfitJMMLSM'
plot(
  x,
  include.y = FALSE,
  xlab = NULL,
  ylab = NULL,
  xlim = NULL,
  ylim.long = NULL,
  ylim.surv = NULL,
  ...
)
```

Arguments

- `x`: x of class `survfitJMMLSM`
- `include.y`: include longitudinal responses of this subject versus time. Default is FALSE.
- `xlab`: X axis label.
- `ylab`: Y axis label.
- `xlim`: X axis support.
- `ylim.long`: Y axis support for the longitudinal outcome.
- `ylim.surv`: Y axis support for the event / survival probability.
- `...`: further arguments passed to or from other methods.

Value

Plots of conditional probabilities over different pre-specified time points for subjects. If single failure type, then survival probabilities will be returned. Otherwise, cumulative incidence probabilities for each failure type will be returned.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

`survfitJMMLSM`
Description
Print contents of JMMLSM object.

Usage
```r
## S3 method for class 'JMMLSM'
print(x, digits = 4, ...)
```

Arguments
- `x`: Object of class 'JMMLSM'.
- `digits`: number of digits of decimal to be printed.
- `...`: Further arguments passed to or from other methods.

Value
a summary of data, joint model, log likelihood, and parameter estimates.

Author(s)
Shanpeng Li

See Also
- `JMMLSM`

Description
Print survfitJMMLSM

Usage
```r
## S3 method for class 'survfitJMMLSM'
print(x, ...)
```

Arguments
- `x`: `x` of class 'survfitJMMLSM'.
- `...`: Further arguments passed to or from other methods.
Value

a list of matrices with conditional probabilities for subjects.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

JMMLSM, survfitJMMLSM

Description

Print AUCJMMLSM

Usage

S3 method for class 'AUCJMMLSM'
summary(object, digits = 4, ...)

Arguments

object object of class 'AUCJMMLSM'.
digits number of digits of decimal to be printed.
... Further arguments passed to or from other methods.

Value

a list of matrices with conditional probabilities for subjects.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

JMMLSM, survfitJMMLSM
summary.MAEQJMMLSM

Description
Print MAEQJMMLSM

Usage
```r
## S3 method for class 'MAEQJMMLSM'
summary(object, digits = 3, ...)
```

Arguments
- `object`: object of class 'MAEQJMMLSM'.
- `digits`: number of decimal points to be rounded.
- `...`: Further arguments passed to or from other methods.

Value
a list of matrices with conditional probabilities for subjects.

Author(s)
Shanpeng Li <lishanpeng0913@ucla.edu>

See Also
- `JMMLSM`, `survfitJMMLSM`

summary.PEJMMLSM

Description
Print PEJMMLSM

Usage
```r
## S3 method for class 'PEJMMLSM'
summary(object, error = c("MAE", "Brier"), ...)
```
Arguments

- **object**: object of class 'PEJMLSM'.
- **error**: a character string that specifies the loss function.
- **...**: Further arguments passed to or from other methods.

Value

A list of matrices with conditional probabilities for subjects.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

JMMLSM, survfitJMMLSM

survfitJMMLSM

Prediction in Joint Models

Description

This function computes the conditional probability of surviving later times than the last observed time for which a longitudinal measurement was available.

Usage

```r
survfitJMMLSM(
  object, 
  seed = 100, 
  ynewdata = NULL, 
  cnewdata = NULL, 
  u = NULL, 
  Last.time = NULL, 
  obs.time = NULL, 
  method = c("Laplace", "GH"), 
  quadpoint = NULL, 
  ...
)
```

Arguments

- **object**: an object inheriting from class JMMLSM.
- **seed**: a random seed number to proceed non-parametric bootstrap. Default is 100.
- **ynewdata**: a data frame that contains the longitudinal and covariate information for the subjects for which prediction of survival probabilities is required.
vcov

cnewdata: a data frame that contains the survival and covariate information for the subjects for which prediction of survival probabilities is required.

u: a numeric vector of times for which prediction survival probabilities are to be computed.

Last.time: a numeric vector or character string. This specifies the known time at which each of the subjects in cnewdata was known to be alive. If NULL, then this is automatically taken as the survival time of each subject. If a numeric vector, then it is assumed to be greater than or equals to the last available longitudinal time point for each subject. If a character string, then it should be a variable in cnewdata.

obs.time: a character string of specifying a longitudinal time variable in ynewdata.

method: a character string specifying the type of probability approximation; if Laplace, then a first order estimator is computed. If GH, then the standard Gauss-Hermite quadrature is used instead.

quadpoint: number of quadrature points used for estimating conditional probabilities when method = "GH". Default is NULL. If method = "GH", then 15 is used.

...: further arguments passed to or from other methods.

Value

a list of matrices with conditional probabilities for subjects.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

JMMLSM

v cov

Variance-covariance matrix of the estimated parameters for joint models

Description

Extract variance-covariance matrix for joint models.

Usage

S3 method for class 'JMMLSM'
vcov(object, ...)

Arguments

object: an object inheriting from class JMMLSM.

...: further arguments passed to or from other methods.
Value

a matrix of variance covariance of all parameter estimates.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

JMMLSM

ydata Simulated longitudinal data

Description

The ydata data frame has 1353 rows and 6 columns.

Usage

data(ydata)

Format

This data frame contains the following columns:

ID patient identifier.
Y response variable.
time visit time.
Z1 treatment indicator. 0 denotes the placebo group and 1 the treatment group.
Z2 continuous variable..
Z3 continuous variable..
Index

* datasets
 cdata, 3
 ydata, 16

AUCJMMLSM, 2

cdata, 3

JMMLSM, 3, 4, 8, 9, 11–16

MAEQJMMLSM, 7

PEJMMMLSM, 8

plot.survfitJMMLSM, 10

print.JMMLSM, 11

print.survfitJMMLSM, 11

summary.AUCJMMLSM, 12

summary.MAEQJMMLSM, 13

summary.PEJMMLSM, 13

survfitJMMLSM, 3, 8–10, 12–14, 14

vcov, 15

ydata, 16