Package ‘JMdesign’

February 19, 2015

Type Package
Title Joint Modeling of Longitudinal and Survival Data - Power Calculation
Version 1.1
Date 2014-10-21
Author Emil A. Cornea, Liddy M. Chen, Bahjat F. Qaqish, Haitao Chu, and Joseph G. Ibrahim
Maintainer Shannon T. Holloway <sthollow@ncsu.edu>
Description Performs power calculations for joint modeling of longitudinal and survival data with k-th order trajectories when the variance-covariance matrix, Sigma_theta, is unknown.
License GPL-2
Depends methods
NeedsCompilation no
Repository CRAN
Date/Publication 2014-10-22 23:06:55

R topics documented:

<table>
<thead>
<tr>
<th>JMdesign-package</th>
<th>JMDesign-package</th>
</tr>
</thead>
<tbody>
<tr>
<td>powerLongSurv</td>
<td>powerLongSurv</td>
</tr>
<tr>
<td>powerLongSurv-class</td>
<td>powerLongSurv-class</td>
</tr>
<tr>
<td>show-methods</td>
<td>show-methods</td>
</tr>
</tbody>
</table>

Index 10

Description

R function for power determination in joint modeling of longitudinal and survival data with k-th order trajectories and unknown variance-covariance matrix Sigma_theta.
The package contains the R-function `powerLongSurv` to perform power calculations for joint modeling of longitudinal and survival data when trajectories are of k-th order and the variance-covariance matrix Sigma_theta is unknown.

Author(s)

Emil A. Cornea, Liddy M. Chen, Bahjat F. Qaqish, Haitao Chu, and Joseph G. Ibrahim

Maintainer: Shannon T. Holloway <sthollow@ncsu.edu>

References

See Also

`powerLongSurv`, `powerLongSurv-class`, `show-methods`

Examples

```r
## Example 1.
## **********
## Input elements of Sigma_theta in formula 4.6;
SigmaTheta <- matrix(c(1.2, 0.0, 0.0, 0.0, 0.0, 0.7, 0.0, 0.0, 0.0), nrow=3, ncol=3)

N <- 200; # Total sample size;
nevents <- 140; # Number of events;
tmedian <- 0.7; # median survival;
meantf <- 1.4; # mean follow-up time;
beta <- 0.2; # Effect of the trajectory;
alpha <- 0.05; # Type-I Error (2-sided);
sigmae_2 <- 0.09; # measurement error;

## schedule of measurement;
t <- c(0.4, 0.8, 1.2, 1.6, 2); # maximum 2 year follow-up;

## Input estimated proportion subjects with 2,3,4,5,6 measurements;
## This is \(x_i\) in formula 4.6;
## The data is obtained from the simulated data for the calculation in table 2;
p <- c(0.3, 0.4, 0.15, 0.1, 0.05);

## Input the order of trajectories
ordtraj <- 1 # linear trajectories
```
```r
## Call function
## Linear Trajectories
pLS1 <- powerLongSurv(N, nevents, tmedian, meantf, p, t, SigmaTheta, 
                      sigmae_2, ordtraj, beta, alpha=0.05)
pLS1
show(pLS1)
unclass(pLS1)

## Constant Trajectories
powerLongSurv(N, nevents, tmedian, meantf, p, t, SigmaTheta, sigmae_2, 
              ordtraj=0, beta, alpha=0.05)

## Quadratic Trajectories
powerLongSurv(N, nevents, tmedian, meantf, p, t, SigmaTheta, sigmae_2, 
              ordtraj=2, beta, alpha=0.05)

## Example 2.
## *********
## Input elements of Sigma_theta in forumula 4.6;
SigmaTheta <- matrix(c(1.2, 0.0, 0.0, 0.0, 0.0, 0.7, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8), nrow=3, ncol=3)
N <- 200; # Total sample size;
nevents <- 140; # Number of events;
tmedian <- 0.7; # median survival;
meantf <- 1.4; # mean follow-up time;
beta <- 0.2; # Effect of the trajectory;
alpha <- 0.05; # Type-I Error (2-sided);
sigmae_2 <- 0.09; # measurement error;

## schedule of measurement;
t <- c(0.4, 0.8, 1.2, 1.6);

## Input estimated proportion subjects with 2,3,4,5,6 measurements;
## This is \( \xi \) in formula 4.6;
## The data is obtained from the simulated data for the calculation in table 2;
p <- c(0.3, 0.4, 0.2, 0.1);

## Input the order of trajectories
ordtraj <- 2 # quadratic trajectories

## Call function
## Quadratic Trajectories
pLSq <- powerLongSurv(N, nevents, tmedian, meantf, p, t, SigmaTheta, 
                      sigmae_2, ordtraj, beta, alpha=0.05)
pLSq
show(pLSq)
unclass(pLSq)

## Constant Trajectories
powerLongSurv(N, nevents, tmedian, meantf, p, t, SigmaTheta, sigmae_2,
```

Power calculation in joint modeling of longitudinal and survival data
- k-th Order Trajectories and Unknown Sigma

Description
Compute the power in joint modeling of longitudinal and survival data when the variance-covariance matrix Sigma_Theta is unknown and the trajectories are order k.

The function computes power for a one-sided test, either

\[H_0 : \beta = 0 \quad \text{and} \quad H_{1A} : \beta > 0 \]

or

\[H_0 : \beta = 0 \quad \text{and} \quad H_{1B} : \beta < 0 \]

with Type I error \(\alpha \). The choice of the alternative is determined by the sign of \(\beta \). Negative values for \(\beta \) indicate that the alternative hypothesis is \(H_{1B} \), while \(\beta \geq 0 \) indicates that it is \(H_{1A} \).

It creates a `powerLongSurv` object.

Usage

```
powerLongSurv(N, nevents, tmedian, meantf, p, t, SigmaTheta, sigmae_2, ordtraj, beta = 0, alpha = 0.05, tol = 1.5e-8)
```

Arguments

- `N`
 numeric specifying the total sample size; minimum 20.
- `nevents`
 numeric specifying the number of events; at least 20 and at most N.
- `tmedian`
 numeric specifying the median survival time; positive
- `meantf`
 numeric specifying the mean follow-up time; positive and no greater than max(t).
- `p`
 numeric vector of estimated subject proportions with 2,3,... measurements, respectively, zero proportions allowed.
- `t`
 numeric vector of measurement times, distinct positive components; same length as `p`.
- `SigmaTheta`
 numeric matrix specifying the covariance matrix Sigma_Theta
- `sigmae_2`
 numeric specifying the measurement error; positive.
- `ordtraj`
 integer specifying the order of trajectories, must be less the order of Sigma_Theta
- `beta`
 numeric specifying the effect of the trajectory; default value 0.
- `alpha`
 numeric, strictly between 0.0 and 1.0, specifying the Type-I Error (2-sided), default value 0.05.
- `tol`
 numeric, For floating point objects x and y, if \(|x-y| \leq \text{tol}\), \(x==y\). Passed to R function `all.equal`.
Details

The function `powerLongSurv` is used to calculate the power in joint modeling of longitudinal and survival data.

Value

An object of S4 class `powerLongSurv`, which has the following 12 components:

- `title`: character string
- `subtitle`: character string
- `t`: numeric vector
- `p`: numeric vector
- `N`: integer
- `nevents`: integer
- `censr`: numeric
- `tmedian`: numeric
- `meantf`: numeric
- `SigmaTheta`: numeric matrix
- `ordtraj`: integer
- `BSigma`: numeric matrix
- `beta`: numeric
- `alpha`: numeric
- `power`: numeric

Author(s)

Emil A. Cornea, Liddy M. Chen, Bahjat F. Qaqish, Haitao Chu, and Joseph G. Ibrahim

Maintainer: Shannon T. Holloway <sthollow@ncsu.edu>

References

See Also

`powerLongSurv-class, show-methods`
Examples

```r
## Example 1.
## ************
## Input elements of Sigma_theta in formula 4.6;
SigmaTheta <- matrix(c(1.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8), nrow=3, ncol=3)

N <- 200; # Total sample size;
nevents <- 140; # Number of events;
tmedian <- 0.7; # median survival;
meantf <- 1.4; # mean follow-up time;
beta <- 0.2; # Effect of the trajectory;
alpha <- 0.05; # Type-I Error (2-sided);
sigmae_2 <- 0.09; # measurement error;

## schedule of measurement;
t <- c(0.4, 0.8, 1.2, 1.6, 2); # maximum 2 year follow-up;

## Input estimated proportion subjects with 2,3,4,5,6 measurements;
## This is \( \xi \) in formula 4.6;
## The data is obtained from the simulated data for the calculation in table 2;
p <- c(0.3, 0.4, 0.15, 0.1, 0.05);

## Input the order of trajectories
ordtraj <- 1 # linear trajectories

## Call function
## Linear Trajectories
plSL <- powerLongSurv(N, nevents, tmedian, meantf, p, t, SigmaTheta,
                      sigmae_2, ordtraj, beta, alpha=0.05)
plSL
show(plSL)
unclass(plSL)

## Constant Trajectories
powerLongSurv(N, nevents, tmedian, meantf, p, t, SigmaTheta, sigmae_2,
              ordtraj=2, beta, alpha=0.05)

## Quadratic Trajectories
powerLongSurv(N, nevents, tmedian, meantf, p, t, SigmaTheta, sigmae_2,
              ordtraj=2, beta, alpha=0.05)

## Example 2.
## ************
## Input elements of Sigma_theta in formula 4.6;
SigmaTheta <- matrix(c(1.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8), nrow=3, ncol=3)

N <- 200; # Total sample size;
nevents <- 140; # Number of events;
tmedian <- 0.7; # median survival;
meantf <- 1.4; # mean follow-up time;
```
beta <- 0.2; # Effect of the trajectory;
alpha <- 0.05; # Type-I Error (2-sided);
sigmae_2 <- 0.09; # measurement error;

schedule of measurement;
t <- c(0.4, 0.8, 1.2, 1.6);

Input estimated proportion subjects with 2, 3, 4, 5, 6 measurements;
This is \(\xi \) in formula 4.6;
The data is obtained from the simulated data for the calculation in table 2;
p <- c(0.3, 0.4, 0.2, 0.1);

Input the order of trajectories
ordtraj <- 2 # quadratic trajectories

Call function
Quadratic Trajectories
plsq <- powerLongSurv(N, nevents, tmedian, meantf, p, t, SigmaTheta, sigmae_2, ordtraj, beta, alpha = 0.05)
plsq
show(plsq)
unclass(plsq)

Constant Trajectories
powerLongSurv(N, nevents, tmedian, meantf, p, t, SigmaTheta, sigmae_2, ordtraj=0, beta, alpha=0.05)

Linear Trajectories
powerLongSurv(N, nevents, tmedian, meantf, p, t, SigmaTheta, sigmae_2, ordtraj=1, beta, alpha=0.05)

powerLongSurv-class Class "powerLongSurv"

Description

Class of objects like the output of function "powerLongSurv()".

Objects from the Class

Objects can be created by calls of the form new("powerLongSurv", ...).

Slots

title: Object of class "character"
subtitle: Object of class "character"
t: Object of class "vector"
p: Object of class "vector"
N: Object of class "integer"
nevents: Object of class "integer"
censr: Object of class "numeric"
tmedian: Object of class "numeric"
meantf: Object of class "numeric"
SigmaTheta: Object of class "matrix"
ordtraj: Object of class "integer"
BSigma: Object of class "matrix"
beta: Object of class "numeric"
alpha: Object of class "numeric"
power: Object of class "numeric"

Methods

show signature(object = "powerLongSurv")

Author(s)

Emil A. Cornea, Liddy M. Chen, Bahjat F. Qaqish, Haitao Chu, and Joseph G. Ibrahim
Maintainer: Shannon T. Holloway <sthollow@ncsu.edu>

See Also

powerLongSurv, show-methods

Examples

showClass("powerLongSurv")
Index

*Topic classes
 powerLongSurv-class, 8

*Topic functions
 powerLongSurv, 5

*Topic methods
 show-methods, 9

*Topic package
 JMdesign-package, 1

JMdesign (JMdesign-package), 1
JMdesign-package, 1
JMdesign-powerLongSurv (powerLongSurv), 5
JMdesign-powerLongSurv-class
 (powerLongSurv-class), 8
powerLongSurv, 3, 5, 9
powerLongSurv-class, 8
show, powerLongSurv-method
 (show-methods), 9
show-methods, 9