Package ‘JacobiEigen’

April 17, 2021

Type Package
Title Classical Jacobi Eigenvalue Algorithm
Version 0.3-4
Date 2021-04-17
Author Bill Venables
Imports Rcpp
Maintainer Bill Venables <Bill.Venables@gmail.com>
Description Implements the classical Jacobi algorithm for the
eigenvalues and eigenvectors of a real symmetric matrix, both in
pure ‘R’ and in ‘C++’ using ‘Rcpp’. Mainly as a programming example
for teaching purposes.
License GPL (>= 2)
LinkingTo Rcpp
Suggests stats, knitr, dplyr, tidyr, ggplot2, rbenchmark, rmarkdown
VignetteBuilder knitr
NeedsCompilation yes
RoxygenNote 6.1.1
Repository CRAN
Date/Publication 2021-04-17 04:50:09 UTC

R topics documented:

Jacobi ... 2
JacobiR ... 3
JacobiS ... 4

Index 5
Description

The Classical Jacobi Algorithm

Usage

`Jacobi(x, symmetric = TRUE, only.values = FALSE, eps = 0)`

Arguments

- `x`: A real symmetric matrix
- `symmetric`: a logical value. Is the matrix symmetric? (Only symmetric matrices are allowed.)
- `only.values`: A logical value: do you want only the eigenvalues?
- `eps`: an error tolerance. 0.0 implies `Machine$double.eps` and `sqrt(Machine$double.eps)` if `only.values = TRUE`

Details

Eigenvalues and optionally, eigenvectors, of a real symmetric matrix using the classical Jacobi algorithm, (Jacobi, 1854)

Value

a list of two components as for `base::eigen`

Examples

```r
V <- crossprod(matrix(runif(40, -1, 1), 8))
Jacobi(V)
identical(Jacobi(V), JacobiR(V))
all.equal(Jacobi(V)$values, base::eigen(V)$values)
```
Description

The Jacobi Algorithm

Usage

JacobiR(x, symmetric = TRUE, only.values = FALSE, eps = if
(!only.values) .Machine$double.eps else sqrt(.Machine$double.eps))

Arguments

x: a real symmetric matrix
symmetric: a logical value. Is the matrix symmetric? (Only symmetric matrices are al-
only.values: A logical value: Do you want only the eigenvalues?
eps: a small positive error tolerance

Details

Eigenvalues and optionally, eigenvector of a real symmetric matrix using the classical Jacobi algo-
(Jacobi, 1854)

Value

a list of two components as for base::eigen

Examples

V <- crossprod(matrix(rnorm(25), 5))
JacobiR(V)
identical(Jacobi(V), JacobiR(V))
all.equal(Jacobi(V)$values, base::eigen(V)$values)
The Jacobi Algorithm using Rcpp with a stagewise rotation protocol

Description

The Classical Jacobi Algorithm with a stagewise protocol

Usage

`JacobiS(x, symmetric = TRUE, only.values = FALSE, eps = 0)`

Arguments

- `x`: A real symmetric matrix
- `symmetric`: a logical value. Is the matrix symmetric? (Only symmetric matrices are allowed.)
- `only.values`: A logical value: do you want only the eigenvalues?
- `eps`: an error tolerance. 0.0 implies `.Machine$double.eps` and `sqrt(.Machine$double.eps)` if `only.values = TRUE`

Details

Eigenvalues and optionally, eigenvectors, of a real symmetric matrix using the classical Jacobi algorithm, (Jacobi, 1846) using a stagewise rotation protocol

Value

A list of two components as for `base::eigen`

Examples

```r
V <- crossprod(matrix(runif(40, -1, 1), 8))
JacobiS(V)
all.equal(JacobiS(V)$values, Jacobi(V)$values)
zapsmall(crossprod(JacobiS(V)$vectors, Jacobi(V)$vectors))
```
Index

Jacobi, 2
JacobiR, 3
JacobiS, 4