Package ‘JoF’

October 12, 2022

Type Package
Title Modelling and Simulating Judgments of Frequency
Version 0.1.0
Maintainer Markus Burkhardt <markus.burkhardt@psychologie.tu-chemnitz.de>
Description In a typical experiment for the intuitive judgment of frequencies (JoF) different stimuli with different frequencies are presented. The participants consider these stimuli with a constant duration and give a judgment of frequency. These judgments can be simulated by formal models: PASS 1 and PASS 2 based on Sedlmeier (2002, ISBN:978-0198508632), MINERV A 2 based on Hintzman (1984) [doi:10.3758/BF03202365] and TODAM 2 based on Murdock, Smith & Bai (2001) [doi:10.1006/jmps.2000.1339]. The package provides an assessment of the frequency by determining the core aspects of these four models (attention, decay, and presented frequency) that can be compared to empirical results.

Depends R (>= 3.1.0)
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.0.2
Suggests testthat, knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Author Markus Burkhardt [aut, cre]
Repository CRAN
Date/Publication 2020-04-03 14:10:36 UTC

R topics documented:

MINERV A2 ... 2
PASS1 .. 3
PASS2 .. 5
plot.JoF ... 6
print.JoF ... 7
TODAM2 ... 7
MINERVA2

Modeling Judgments of Frequency with MINERVA 2

Description

Modeling Judgments of Frequency with MINERVA 2

Usage

MINERVA2(x, y, ..., sqc, L, dec = NULL)

Arguments

x input handled by MINERVA 2. Values -1, 0 and 1 are allowed. -1 represents the absence of a feature, 0 the irrelevance of a feature and 1 the presence of a feature.

y another input handled by MINERVA 2. At least two inputs are needed for the simulation.

... other inputs for modeling.

sQC sequence of the different objects. Each input gets an ascending number. x gets the value 1, y gets the value 2, ... gets the value 3 and so on. The argument sqc = c(1, 2, 3, 2) means: first input x is processed, second input y is processed followed by processing input number three and fourth, th input y is used again. So sqc contains the frequency information too. In c(1, 2, 3, 2), x and the third input are presented once. The input y is presented twice.

L learning parameter. This is the proportion of a correctly stored vector. L = 1 means 100% of the input is processed correctly. If L is a vector, each input could be handled differently. So L = c(.5, .6, .9) means, input x is correctly stored to 50%, input y is stored to 60% and the third input (inserted in ...) is stored with 90% probability.

dec decay is not part of the original version of MINERVA 2. This is just implemented for a better comparison with the other models of JoF. In dec = NULL, decay has no effect. For dec = 'curve' decay uses a forgetting curve. If dec is a numeric Vector e.g. dec = c(.8, .9, 1) the memory traces are weighted. The first represented trace is weighted by .8 the second by .9 and the youngest trace by 1. The value dec = 1 corresponds with the original model.

Details

Calculations of MINERVA 2 contain four steps.

\[S_i = \frac{\sum_{j=1}^{N} P_j T_{ij}}{N_i} \]

\[A_i = S_i^3 \]
\[I = \sum_{i=1}^{M} A_i \]

\[\text{relativeJoF} = \frac{I_j}{\sum_{j} I_j} \]

Value

MINERVA2 returns the relative judgment of frequency

References

Examples

This example is presented in Dougherty, Gettys, & Ogden, 1999 (p. 185)
H1 <- c(-1, 1, 0, 1, 0, -1, 1, -1, 0)
H2 <- c(-1, 0, 0, 1, 0, 0, 1, 0, 0)
x <- MINERVA2(H1, H2, sqc = c(2, 1), L = 1)

PASS1 Modeling Judgments of Frequency with PASS 1

Description

Modeling Judgments of Frequency with PASS 1

Usage

PASS1(x, y, ..., sqc, att, dec, ifc, rdm_weights = TRUE, noise = 0)

Arguments

x input handled by PASS 1. Only binary input is allowed.
y a second binary input handled by PASS 1. At least two inputs are needed for the simulation.
... other binary inputs for modeling.
sqc sequence of the different objects. Each input gets an ascending number. x gets the value 1, y gets the value 2, ... gets the value 3 and so on. The argument sqc = c(1, 2, 3, 2) means: first input x is processed, second input y is processed followed by processing input number three and fourth, th input y is used again. So sqc contains the frequency information too. In c(1, 2, 3, 2), x and the third input are presented once. The input y is presented twice.
PASS1

- **att**: attention is a vector with numeric values between 0 and 1. att has the same length like sqc, so each input processing have its own value and PASS 1 can modulate attention by time or input. If att is exact one numeric value (e.g. att = .1), all inputs get the same parameter of attention.

- **dec**: decay is a vector with numeric values between -1 and 0. dec has the same length as sqc, so each input processing have its own value and PASS 1 can modulate decay by time. If dec is exact one numeric value (e.g. dec = -.1), all inputs get the same parameter of decay.

- **ifc**: interference is a vector with numeric values between -1 and 0. ifc must have the same length as sqc. So each input processing have its own value and PASS 1 can modulate inference by time. If ifc is exact one numeric value (e.g. ifc = -.1), all inputs get the same parameter of inference.

- **rdm_weights**: a logical value indicating whether random weights in the neural network are used or not. If rdm_weights = FALSE all network connections are zero at the beginning.

- **noise**: a proportion between 0 and 1 which determine the number of randome activated inputunits (higher numbers indicate higher noise).

Details

PASS 1 is a simple neural pattern associator learning by delta rule.

Learning:

\[\Delta w_{ij} = \Theta_1 (1 - w_{ij}) \]

Interference:

\[\text{if either } U_i \text{ or } U_j \text{ is activated, then } \Delta w_{ij} = \Theta_2 \cdot w_{ij} \]

Decay:

\[\text{if neither } U_i \text{ nor } U_j \text{ is activated, then } \Delta w_{ij} = \Theta_3 \cdot w_{ij} \]

Value

PASS1 returns the relative judgment of frequency for each input.

References

Examples

```r
o1 <- c(1, 0, 0, 0)
o2 <- c(0, 1, 0, 0)
o3 <- c(0, 0, 1, 0)
o4 <- c(0, 0, 0, 1)
PASS1(o1, o2, o3, o4,
     sqc = rep(1:4, 4:1), att = .1, dec = -.05,
     ifc = -.025, rdm_weights = FALSE, noise = 0)
```
PASS2 - Modelling Judgments of Frequency with PASS 2

Description

Modelling Judgments of Frequency with PASS 2

Usage

PASS2(x, y, ..., sqc, att, n_output_units = "half", rdm_weights = F, noise = 0)

Arguments

x
input handled by PASS 2. Only binary input is allowed.

y
a second binary input handled by PASS 1. At least two inputs are needed for the simulation.

...
other binary inputs for modeling.

t
sequence of the different objects. Each input gets an ascending number. x gets the value 1, y gets the value 2, ... gets the value 3 and so on. The argument sqc = c(1, 2, 3, 2) means: first input x is processed, second input y is processed followed by processing input number three and fourth, the input y is used again. So sqc contains the frequency information too. In c(1, 2, 3, 2), x and the third input are presented once. The input y is presented twice.

att
attention is a vector with numeric values between 0 and 1. att has the same length like sqc, so each input processing have its own value and PASS 1 can modulate attention by time or input. If att is exact one numeric value (e.g. att = .1), all inputs get the same parameter of attention.

n_output_units
number of output units as numeric value. This must be between 1 and the maximum number of input units. n_output_units = 'half' determines the half of the input units.

rdm_weights
a logical value indicating whether random weights in the neural network are used or not. If rdm_weights = FALSE all network connections are zero at the beginning.

noise
a proportion between 0 and 1 which determines the number of random activated input units (higher numbers indicate higher noise).

Details

PASS 2 uses a competitive learning algorithm, which usually clusters the input as side effect. If weights are equal, the winning unit is chosen randomly, because of this, each simulation is slightly different.

\[
\text{if an output unit losses: } \Delta w_{ij} = 0 \\
\text{if an output unit wins: } \Delta w_{ij} = g_w \sum_i a_i - g_w w_{ij}
\]
Value

PASS2 returns the relative judgment of frequency for each input.

References

Examples

```r
o1 <- c(1, 0, 0, 0)
o2 <- c(0, 1, 0, 0)
o3 <- c(0, 0, 1, 0)
o4 <- c(0, 0, 0, 1)
PASS2(o1, o2, o3, o4,
     sqc = rep(1:4, 4:1), att = .1, n_output_units = 2,
     rdm_weights = FALSE, noise = 0)
```

plot.JoF

plot progress of judgment of frequency simulation

Description

plot progress of judgment of frequency simulation

Usage

```r
## S3 method for class 'JoF'
plot(x, type = "l", ...)
```

Arguments

- `x` output of JoF simulation
- `type` "l" for lines, "p" for points, "b" for both
- `...` further arguments

Value

Displays the judgment of frequency as proportion of all inputs
print.JoF

Output of judgment of frequency simulation

Description

Output of judgment of frequency simulation

Usage

```r
## S3 method for class 'JoF'
print(x, ...)
```

Arguments

- `x`: output of JoF simulation
- `...`: further arguments

Value

Displays the judgment of frequency as proportion of all inputs

TODAM2

Modeling Judgments of Frequency with TODAM 2

Description

Modeling Judgments of Frequency with TODAM 2

Usage

```r
TODAM2(x, y, ..., sqc, gamma = 1, alpha = 1)
```

Arguments

- `x`: input handled by TODAM 2. Normal distributed inputs with mean = 0 and sd = 1 / n are allowed. This representation enables discrimination and similarity between different items. See vignette for details.
- `y`: another input handled by TODAM 2. At least two inputs are needed for the simulation.
- `...`: other inputs handled by TODAM 2.
- `sqc`: sequence of the different objects. Each input gets an ascending number. `x` gets the value 1, `y` gets the value 2, ..., `sqc` gets the value 3 and so on. The argument `sqc = c(1, 2, 3, 2)` means: first input `x` is processed, second input `y` is processed followed by processing input number three and fourth, th input `y` is used again. So `sqc` contains the frequency information too. In `c(1, 2, 3, 2)`, `x` and the third input are presented once. The input `y` is presented twice.
gamma is the attention- or learning parameter. Values between 0 and 1 are allowed. 1 represents perfect learning. If \(\gamma \) is a vector, each input could be handled differently. So \(\gamma = c(.5, .6, 1) \) means, the third input is stored correctly and better than the first input.

alpha represents the decay. If \(\alpha = 1 \), the complete memory vector is used (and no forgetting takes place). If \(\alpha \) is a numeric vector e.g. \(\alpha = c(.8, .9, 1) \), the memory vector is weighted. The memory for the first input is weaker than the second than the third.

Details

In the original publication TODAM 2 is more complex and has more parameters. Especially the design for the input is a concatenation between item and context. The normal distributed input has a mean = 0 and sd = 1/n. A pragmatic solution to make the models input comparable is to use a binary input like in PASS. There is no explicit argument for noise.

Convolution:

\[
F_t^2 = \sum_{i=1}^{m} f_i * f_{m-i+1} \quad \text{and} \quad m = 2n - 1
\]

Memory:

\[
M_t = \alpha M_{t-1} + \gamma F_t^2
\]

Correlation

\[
R_m = \sum_{(i,j) \in S(m)} F_t^2 \text{there(S)(m)}(i;j) - (n-1)/2 \leq i,j \leq (n-1)/2 \text{and} \quad \text{and} \quad i-j = m
\]

References

Examples

\[
o1 <- c(-0.27, -0.24, -0.24, 0.75)
o2 <- c(-0.06, -0.55, 0.66, -0.06)
o3 <- c(0.04, 0.57, -0.65, 0.04)
o4 <- c(0.73, -0.39, -0.20, -0.14)
\]

\[
\text{TODAM2(o1, o2, o3, o4, gamma = rep(c(0.7, 0.8), 5), alpha = 0.95, sqc = rep(1:4, 4:1))}
\]
Index

MINERVA2, 2
PASS1, 3
PASS2, 5
plot.JoF, 6
print.JoF, 7
TODAM2, 7