Package ‘JointAI’

April 2, 2024

Version 1.0.6

Title Joint Analysis and Imputation of Incomplete Data

Description Joint analysis and imputation of incomplete data in the Bayesian framework, using (generalized) linear (mixed) models and extensions there of, survival models, or joint models for longitudinal and survival data, as described in Erler, Rizopoulos and Lesaffre (2021) <doi:10.18637/jss.v100.i20>. Incomplete covariates, if present, are automatically imputed. The package performs some preprocessing of the data and creates a 'JAGS' model, which will then automatically be passed to 'JAGS' <https://mcmc-jags.sourceforge.io/> with the help of the package 'rjags'.

URL https://nerler.github.io/JointAI/

License GPL (>= 2)

BugReports https://github.com/nerler/JointAI/issues/

LazyData TRUE

RoxygenNote 7.2.3

Roxygen list(old_usage = TRUE, markdown = TRUE)

Imports rjags, mcmcse, coda, rlang, future, mathjaxr, survival, MASS

SystemRequirements JAGS (https://mcmc-jags.sourceforge.io/)

Suggests knitr, rmarkdown, bookdown, foreign, ggplot2, ggpubar, testthat, covr

VignetteBuilder knitr

Encoding UTF-8

RdMacros mathjaxr

Config/testthat/edition 3

Language en-GB
add_samples

Continue sampling from an object of class JointAI

Description

This function continues the sampling from the MCMC chains of an existing object of class 'JointAI'.

Usage

```r
add_samples(object, n.iter, add = TRUE, thin = NULL,
            monitor_params = NULL, progress.bar = "text", mess = TRUE)
```
clean_survname

Convert a survival outcome to a model name

Description

A helper function that converts the "name of a survival model" (the "Surv(time, status)" specification) into a valid variable name so that it can be used in the JAGS model syntax.

Usage

clean_survname(x)
default_hyperpars

Arguments

x a character string or vector of character strings

Examples

clean_survname("Surv(eventtime, event != 'censored')")

Description

This function returns a list of default values for the hyper-parameters.

Usage

default_hyperpars()

details

norm: hyper-parameters for normal and log-normal models

mu_reg_norm mean in the priors for regression coefficients
tau_reg_norm precision in the priors for regression coefficients
shape_tau_norm shape parameter in Gamma prior for the precision of the (log-)normal distribution
rate_tau_norm rate parameter in Gamma prior for the precision of the (log-)normal distribution

gamma: hyper-parameters for Gamma models

mu_reg_gamma mean in the priors for regression coefficients
tau_reg_gamma precision in the priors for regression coefficients
shape_tau_gamma shape parameter in Gamma prior for the precision of the Gamma distribution
rate_tau_gamma rate parameter in Gamma prior for the precision of the Gamma distribution

beta: hyper-parameters for beta models

mu_reg_beta mean in the priors for regression coefficients
tau_reg_beta precision in the priors for regression coefficients
shape_tau_beta shape parameter in Gamma prior for the precision of the beta distribution
rate_tau_beta rate parameter in Gamma prior for precision of the beta distribution

binom: hyper-parameters for binomial models

mu_reg_binom mean in the priors for regression coefficients
tau_reg_binom precision in the priors for regression coefficients

poisson: hyper-parameters for poisson models
default_hyperpars

- **mu_reg_poisson**: mean in the priors for regression coefficients
- **tau_reg_poisson**: precision in the priors for regression coefficients

multinomial: hyper-parameters for multinomial models

- **mu_reg_multinomial**: mean in the priors for regression coefficients
- **tau_reg_multinomial**: precision in the priors for regression coefficients

ordinal: hyper-parameters for ordinal models

- **mu_reg_ordinal**: mean in the priors for regression coefficients
- **tau_reg_ordinal**: precision in the priors for regression coefficients
- **mu_delta_ordinal**: mean in the prior for the intercepts
- **tau_delta_ordinal**: precision in the priors for the intercepts

ranef: hyper-parameters for the random effects variance-covariance matrices (when there is only one random effect a Gamma distribution is used instead of the Wishart distribution)

- **shape_diag_RinvD**: shape parameter in Gamma prior for the diagonal elements of RinvD
- **rate_diag_RinvD**: rate parameter in Gamma prior for the diagonal elements of RinvD
- **KinvD_expr**: a character string that can be evaluated to calculate the number of degrees of freedom in the Wishart distribution

surv: parameters for survival models (survreg, coxph and JM)

- **mu_reg_surv**: mean in the priors for regression coefficients
- **tau_reg_surv**: precision in the priors for regression coefficients

Note

From the JAGS user manual on the specification of the Wishart distribution:
For KinvD larger than the dimension of the variance-covariance matrix the prior on the correlation between the random effects is concentrated around 0, so that larger values of KinvD indicate stronger prior belief that the elements of the multivariate normal distribution are independent. For KinvD equal to the number of random effects the Wishart prior puts most weight on the extreme values (correlation 1 or -1).

Examples

```r
default_hyperpars()

# To change the hyper-parameters:
hyp <- default_hyperpars()
hyp$norm['rate_tau_norm'] <- 1e-3
mod <- lm_imp(y ~ C1 + C2 + B1, data = wideDF, hyperpars = hyp, mess = FALSE)
```
densplot

Plot the posterior density from object of class 'JointAI'

Description

The function plots a set of densities (per chain and coefficient) from the MCMC sample of an object of class "JointAI".

Usage

densplot(object, ...

S3 method for class 'JointAI'
densplot(object, start = NULL, end = NULL, thin = NULL,
subset = c(analysis_main = TRUE), outcome = NULL,
exclude_chains = NULL, vlines = NULL, nrow = NULL, ncol = NULL,
joined = FALSE, use_ggplot = FALSE, warn = TRUE, mess = TRUE, ...)

Arguments

object object inheriting from class 'JointAI'
... additional parameters passed to plot()
start the first iteration of interest (see window.mcmc)
end the last iteration of interest (see window.mcmc)
thin thinning interval (integer; see window.mcmc). For example, thin = 1 (default) will keep the MCMC samples from all iterations; thin = 5 would only keep every 5th iteration.
subset subset of parameters/variables/nodes (columns in the MCMC sample). Follows the same principle as the argument monitor_params in *_imp.
outcome optional; vector identifying a subset of sub-models included in the output, either by specifying their indices (using the order used in the list of model formulas), or their names (LHS of the respective model formula as character string)
exclude_chains optional vector of the index numbers of chains that should be excluded
vlines list, where each element is a named list of parameters that can be passed to graphics::abline() to create vertical lines. Each of the list elements needs to contain at least v = <x location> where <x location> is a vector of the same length as the number of plots (see examples).
nrow optional; number of rows in the plot layout; automatically chosen if unspecified
ncol optional; number of columns in the plot layout; automatically chosen if unspecified
joined logical; should the chains be combined before plotting?
use_ggplot logical; Should ggplot be used instead of the base graphics?
warn logical; should warnings be given? Default is TRUE.
mess logical; should messages be given? Default is TRUE.

See Also

The vignette Parameter Selection contains some examples how to specify the argument subset.
extract_state

Examples

Not run:
fit a JointAI object:
mod <- lm_imp(y ~ C1 + C2 + M1, data = wideDF, n.iter = 100)

Example 1: basic densityplot
densplot(mod)
densplot(mod, exclude_chains = 2)

Example 2: use vlines to mark zero
densplot(mod, col = c("darkred", "darkblue", "darkgreen"),
 vlines = list(v = rep(0, nrow(summary(mod)resy$regcoef)),
 col = grey(0.8)))

Example 3: use vlines to visualize posterior mean and 2.5%/97.5% quantiles
res <- rbind(summary(mod)resy$regcoef[, c("Mean", "2.5%", "97.5")],
 summary(mod)resy$sigma[, c("Mean", "2.5%", "97.5")],
 drop = FALSE)
densplot(mod, vlines = list(list(v = res[, "Mean"], lty = 1, lwd = 2),
 list(v = res[, "2.5%"], lty = 2),
 list(v = res[, "97.5%"], lty = 2)))

Example 4: ggplot version
densplot(mod, use_ggplot = TRUE)

Example 5: change how the ggplot version looks
library(ggplot2)
densplot(mod, use_ggplot = TRUE) +
 xlab("value") +
 theme(legend.position = "bottom") +
 scale_color_brewer(palette = 'Dark2', name = 'chain')

End(Not run)

extract_state

Return the current state of a 'JointAI' model

Description

Return the current state of a 'JointAI' model

Usage

evaluate_state(object, pattern = paste0("\", c("RinvD", "invD", "tau", "b"),
 ")\n
Arguments

- **object**: an object of class 'JointAI'
- **pattern**: vector of patterns to be matched with the names of the nodes

Value

A list with one element per chain of the MCMC sampler, containing the Returns the current state of the MCMC sampler (values of the last iteration) for the subset of nodes identified based on the pattern the user has specified.

Description

This function returns a dataset containing multiple imputed datasets stacked onto each other (i.e., long format; optionally including the original, incomplete data). These data can be automatically exported to SPSS (as a .txt file containing the data and a .sps file containing syntax to generate a .sav file). For the export function the foreign package needs to be installed.

Usage

```r
get_MIdat(object, m = 10, include = TRUE, start = NULL, minspace = 50, 
seed = NULL, export_to_SPSS = FALSE, resdir = NULL, filename = NULL)
```

Arguments

- **object**: object inheriting from class 'JointAI'
- **m**: number of imputed datasets
- **include**: should the original, incomplete data be included? Default is TRUE.
- **start**: the first iteration of interest (see `window.mcmc`)
- **minspace**: minimum number of iterations between iterations to be chosen as imputed values (to prevent strong correlation between imputed datasets in the case of high autocorrelation of the MCMC chains).
- **seed**: optional seed value
- **export_to_SPSS**: logical; should the completed data be exported to SPSS?
- **resdir**: optional; directory for results. If unspecified and export_to_SPSS = TRUE the current working directory is used.
- **filename**: optional; file name (without ending). If unspecified and export_to_SPSS = TRUE a name is generated automatically.

Value

A data.frame in which the original data (if include = TRUE) and the imputed datasets are stacked onto each other. The variable `Imputation_` indexes the imputation, while `.rownr` links the rows to the rows of the original data. In cross-sectional datasets the variable `.id` is added as subject identifier.
Note

In order to be able to extract (multiple) imputed datasets the imputed values must have been monitored, i.e., `imps = TRUE` had to be specified in the argument `monitor_params` in `_imp`.

See Also

`plot_imp_distr`

Examples

```r
## Not run:
# fit a model and monitor the imputed values with
# monitor_params = c(imps = TRUE)
mod <- lm_imp(y ~ C1 + C2 + M2, data = wideDF,
             monitor_params = c(imps = TRUE), n.iter = 100)

# Example 1: without export to SPSS
MIs <- get_MIdat(mod, m = 3, seed = 123)

# Example 2: with export for SPSS
# (here: to the temporary directory "temp_dir")
temp_dir <- tempdir()
MIs <- get_MIdat(mod, m = 3, seed = 123, resdir = temp_dir,
                 filename = "example_imputation",
                 export_to_SPSS = TRUE)

## End(Not run)
```

get_missinfo

Obtain a summary of the missing values involved in an object of class JointAI

Description

This function returns a `data.frame` or a list of `data.frames` per grouping level. Each of the `data.frames` has columns `variable`, `#NA` (number of missing values) and `%NA` (proportion of missing values in percent).

Usage

`get_missinfo(object)`

Arguments

- `object` object inheriting from class JointAI
Examples

```r
mod <- lm_imp(y ~ C1 + B2 + C2, data = wideDF, n.iter = 100)
get_missinfo(mod)
```

GR_crit

Gelman-Rubin criterion for convergence

Description

Calculates the Gelman-Rubin criterion for convergence (uses `gelman.diag` from package `coda`).

Usage

```r
GR_crit(object, confidence = 0.95, transform = FALSE, autoburnin = TRUE,
        multivariate = TRUE, subset = NULL, exclude_chains = NULL,
        start = NULL, end = NULL, thin = NULL, warn = TRUE, mess = TRUE,
        ...)```

Arguments

- `object`: object inheriting from class 'JointAI'
- `confidence`: the coverage probability of the confidence interval for the potential scale reduction factor
- `transform`: a logical flag indicating whether variables in \( x \) should be transformed to improve the normality of the distribution. If set to TRUE, a log transform or logit transform, as appropriate, will be applied.
- `autoburnin`: a logical flag indicating whether only the second half of the series should be used in the computation. If set to TRUE (default) and \( \text{start}(x) \) is less than \( \text{end}(x)/2 \) then start of series will be adjusted so that only second half of series is used.
- `multivariate`: a logical flag indicating whether the multivariate potential scale reduction factor should be calculated for multivariate chains
- `subset`: subset of parameters/variables/nodes (columns in the MCMC sample). Follows the same principle as the argument `monitor_params` in *imp.*
- `exclude_chains`: optional vector of the index numbers of chains that should be excluded
- `start`: the first iteration of interest (see `window.mcmc`)
- `end`: the last iteration of interest (see `window.mcmc`)
- `thin`: thinning interval (integer; see `window.mcmc`). For example, \( \text{thin} = 1 \) (default) will keep the MCMC samples from all iterations; \( \text{thin} = 5 \) would only keep every 5th iteration.
- `warn`: logical; should warnings be given? Default is TRUE.
- `mess`: logical; should messages be given? Default is TRUE.
- `...`: currently not used
References


See Also

The vignette Parameter Selection contains some examples how to specify the argument subset.

Examples

```r
mod1 <- lm_imp(y ~ C1 + C2 + M2, data = wideDF, n.iter = 100)
GR_crit(mod1)
```

Description

The JointAI package performs simultaneous imputation and inference for incomplete or complete data under the Bayesian framework. Models for incomplete covariates, conditional on other covariates, are specified automatically and modelled jointly with the analysis model. MCMC sampling is performed in 'JAGS' via the R package rjags.

Main functions

JointAI provides the following main functions that facilitate analysis with different models:

- `lm_imp` for linear regression
- `glm_imp` for generalized linear regression
- `betareg_imp` for regression using a beta distribution
- `lognorm_imp` for regression using a log-normal distribution
- `clm_imp` for (ordinal) cumulative logit models
- `mlogit_imp` for multinominal models
- `lme_imp` or `lmer_imp` for linear mixed models
- `glme_imp` or `glmer_imp` for generalized linear mixed models
- `betamm_imp` for mixed models using a beta distribution
- `lognormmm_imp` for mixed models using a log-normal distribution
- `clmm_imp` for (ordinal) cumulative logit mixed models
- `survreg_imp` for parametric (Weibull) survival models
- `coxph_imp` for (Cox) proportional hazard models
- `JM_imp` for joint models of longitudinal and survival data
As far as possible, the specification of these functions is analogous to the specification of widely used functions for the analysis of complete data, such as `lm`, `glm`, `lme` (from the package `nlme`), `survreg` (from the package `survival`) and `coxph` (from the package `survival`).

Computations can be performed in parallel to reduce computational time, using the package `future`. The argument `shrinkage` allows the user to impose a penalty on the regression coefficients of some or all models involved, and hyper-parameters can be changed via the argument `hyperpars`.

To obtain summaries of the results, the functions `summary()`, `coef()` and `confint()` are available, and results can be visualized with the help of `traceplot()` or `densplot()`.

The function `predict()` allows prediction (including credible intervals) from JointAI models.

### Evaluation and export

Two criteria for evaluation of convergence and precision of the posterior estimate are available:

- **GR_crit** implements the Gelman-Rubin criterion (‘potential scale reduction factor’) for convergence
- **MC_error** calculates the Monte Carlo error to evaluate the precision of the MCMC sample

Imputed data can be extracted (and exported to SPSS) using `get_MIdat()`. The function `plot_imp_distr()` allows visual comparison of the distribution of observed and imputed values.

### Other useful functions

- `parameters` and `list_models` to gain insight in the specified model
- `plot_all` and `md_pattern` to visualize the distribution of the data and the missing data pattern

### Vignettes

The following vignettes are available

- **Minimal Example:**
  A minimal example demonstrating the use of `lm_imp`, `summary.JointAI`, `traceplot` and `densplot`.

- **Visualizing Incomplete Data:**
  Demonstrations of the options in `plot_all` (plotting histograms and bar plots for all variables in the data) and `md_pattern` (plotting or printing the missing data pattern).

- **Model Specification:**
  Explanation and demonstration of all parameters that are required or optional to specify the model structure in `lm_imp`, `glm_imp` and `lme_imp`. Among others, the functions `parameters`, `list_models` and `set_refcat` are used.

- **Parameter Selection:**
  Examples on how to select the parameters/variables/nodes to follow using the argument `monitor_params` and the parameters/variables/nodes displayed in the `summary`, `traceplot`, `densplot` or when using `GR_crit` or `MC_error`.

- **MCMC Settings:**
  Examples demonstrating how to set the arguments controlling settings of the MCMC sampling, i.e., `n.adapt`, `n.iter`, `n.chains`, `thin`, `inits`.

- **After Fitting:**
  Examples on the use of functions to be applied after the model has been fitted, including `traceplot`, `densplot`, `summary`, `GR_crit`, `MC_error`, `predict`, `predDF` and `get_MIdat`.

- **Theoretical Background:**
  Explanation of the statistical method implemented in JointAI.
References


JointAIObject

Fitted object of class 'JointAI'

Description

An object returned by one of the main functions *_imp.

Value

- **analysis_type** 1m, glm, clm, lme, glme, clmm, survreg or coxph (with attributes family and link for GLM-type models)
- **formula** The formula used in the (analysis) model.
- **data** original (incomplete, but pre-processed) data
- **models** named vector specifying the the types of all sub-models
- **fixed** a list of the fixed effects formulas of the sub-model(s) for which the use had specified a formula
- **random** a list of the random effects formulas of the sub-model(s) for which the use had specified a formula
- **Mlist** a list (for internal use) containing the data and information extracted from the data and model formulas, split up into
  - a named vector identifying the levels (in the hierarchy) of all variables (Mlvls)
  - a vector of the id variables that were extracted from the random effects formulas (idvar)
  - a list of grouping information for each grouping level of the data (groups)
  - a named vector identifying the hierarchy of the grouping levels (group_lvls)
  - a named vector giving the number of observations on each level of the hierarchy (N)
  - the name of the time variable (only for survival models with time-varying covariates) (timevar)
  - a formula of auxiliary variables (auxvars)
  - a list specifying the reference categories and dummy variables for all factors involved in the models (refs)
  - a list of linear predictor information (column numbers per design matrix) for all sub-models (lp_cols)
JointAIObject

- a list identifying information for interaction terms found in the model formulas (interactions)
- a data.frame containing information on transformations of incomplete variables (trafos)
- a data.frame containing information on transformations of all variables (fcts_all)
- a logical indicator if parameter for posterior predictive checks should be monitored (ppc; not yet used)
- a vector specifying if shrinkage of regression coefficients should be performed, and if so for which models and what type of shrinkage (shrinkage)
- the number of degrees of freedom to be used in the spline specification of the baseline hazard in proportional hazards survival models (df_basehaz)
- a list of matrices, one per level of the data, specifying centring and scaling parameters for the data (scale_pars)
- a list containing information on the outcomes (mostly relevant for survival outcomes; outcomes)
- a list of terms objects, needed to be able to build correct design matrices for the Gauss-Kronrod quadrature when, for example, splines are used to model time in a joint model (terms_list)

par_index_main a list of matrices specifying the indices of the regression coefficients for each of the main models per design matrix

par_index_other a list of matrices specifying the indices of regression coefficients for each covariate model per design matrix

jagsmodel The JAGS model as character string.

mcmc_settings a list containing MCMC sampling related information with elements
modelfile: path and name of the JAGS model file
n.chains: number of MCMC chains
n.adapt: number of iterations in the adaptive phase
n.iter: number of iterations in the MCMC sample
variable.names: monitored nodes
thin: thinning interval of the MCMC sample
inits: a list containing the initial values that were passed to rjags

monitor_params the named list of parameter groups to be monitored

data_list list with data that was passed to rjags

hypermars a list containing the values of the hyper-parameters used

info_list a list with information used to write the imputation model syntax

coef_list a list relating the regression coefficient vectors used in the JAGS model to the names of the corresponding covariates

model the JAGS model (an object of class 'jags', created by rjags)

sample MCMC sample on the sampling scale (included only if keep_scaled_sample = TRUE)

MCMC MCMC sample, scaled back to the scale of the data

comp_info a list with information on the computational setting (start_time: date and time the calculation was started, duration: computational time of the model adaptive and sampling phase, JointAI_version: package version, R_version: the R.version.string, parallel: whether parallel computation was used, workers: if parallel computation was used, the number of workers)
list_models

fitted.values fitted/predicted values (if available)
residuals residuals (if available)
call the original call

Description
This function prints information on all models, those explicitly specified by the user and those
specified automatically by JointAI for (incomplete) covariates in a JointAI object.

Usage

list_models(object, predvars = TRUE, regcoef = TRUE, otherpars = TRUE,
priors = TRUE, refcat = TRUE)

Arguments

object object inheriting from class 'JointAI'
predvars logical; should information on the predictor variables be printed? (default is TRUE)
regcoef logical; should information on the regression coefficients be printed? (default is TRUE)
otherpars logical; should information on other parameters be printed? (default is TRUE)
priors logical; should information on the priors (and hyper-parameters) be printed?
(default is TRUE)
refcat logical; should information on the reference category be printed? (default is TRUE)

Note

The models listed by this function are not the actual imputation models, but the conditional models
that are part of the specification of the joint distribution. Briefly, the joint distribution is specified
as a sequence of conditional models

\[ p(y|x_1, x_2, x_3, ..., \theta)p(x_1|x_2, x_3, ..., \theta)p(x_2|x_3, ..., \theta)\ldots \]

The actual imputation models are the full conditional distributions \(p(x_1|\cdot)\) derived from this joint
distribution. Even though the conditional distributions do not contain the outcome and all other
covariates in their linear predictor, outcome and other covariates are taken into account implicitly,
since imputations are sampled from the full conditional distributions. For more details, see Erler et
al. (2016) and Erler et al. (2019).

The function list_models prints information on the conditional distributions of the covariates
(since they are what is specified; the full-conditionals are automatically derived within JAGS). The
outcome is, thus, not part of the printed linear predictor, but is still included during imputation.
References


Examples
```r
(set n.adapt = 0 and n.iter = 0 to prevent MCMC sampling to save time)
mod1 <- lm_imp(y ~ C1 + C2 + M2 + O2 + B2, data = wideDF, n.adapt = 0,
n.iter = 0, mess = FALSE)
list_models(mod1)
```

---

**longDF**

*Longitudinal example dataset*

**Description**
A simulated longitudinal dataset.

**Usage**
data(longDF)

**Format**
A simulated data frame with 329 rows and 21 variables with data from 100 subjects:

- **C1** continuous, complete baseline variable
- **C2** continuous, incomplete baseline variable
- **B1** binary, complete baseline variable
- **B2** binary, incomplete baseline variable
- **M1** unordered factor; complete baseline variable
- **M2** unordered factor; incomplete baseline variable
- **O1** ordered factor; complete baseline variable
- **O2** ordered factor; incomplete baseline variable
- **P1** count variable; complete baseline variable
- **P2** count variable; incomplete baseline variable
- **c1** continuous, complete longitudinal variable
- **c2** continuous incomplete longitudinal variable
- **b1** binary, complete longitudinal variable
- **b2** binary incomplete longitudinal variable
- **o1** ordered factor; complete longitudinal variable
- **o2** ordered factor; incomplete longitudinal variable
MC_error

- **p1** count variable; complete longitudinal variable
- **p2** count variable; incomplete longitudinal variable
- **id** id (grouping) variable
- **time** continuous complete longitudinal variable
- **y** continuous, longitudinal (outcome) variable

**MC_error**

*Calculate and plot the Monte Carlo error*

**Description**

Calculate, print and plot the Monte Carlo error of the samples from a 'JointAI' model, combining the samples from all MCMC chains.

**Usage**

```r
MC_error(x, subset = NULL, exclude_chains = NULL, start = NULL, end = NULL, thin = NULL, digits = 2, warn = TRUE, mess = TRUE, ...)
```

## S3 method for class 'MCElist'

```r
plot(x, data_scale = TRUE, plotpars = NULL, ablinepars = list(v = 0.05), minlength = 20, ...)
```

**Arguments**

- **x** object inheriting from class 'JointAI'
- **subset** subset of parameters/variables/nodes (columns in the MCMC sample). Follows the same principle as the argument `monitor_params` in *_imp*.
- **exclude_chains** optional vector of the index numbers of chains that should be excluded
- **start** the first iteration of interest (see `window.mcmc`)
- **end** the last iteration of interest (see `window.mcmc`)
- **thin** thinning interval (integer; see `window.mcmc`). For example, `thin = 1` (default) will keep the MCMC samples from all iterations; `thin = 5` would only keep every 5th iteration.
- **digits** number of digits for the printed output
- **warn** logical; should warnings be given? Default is TRUE.
- **mess** logical; should messages be given? Default is TRUE.
- **...** Arguments passed on to `mcmcse::mcse.mat`

**size** represents the batch size in “bm” and the truncation point in “bartlett” and “tukey”. Default is NULL which implies that an optimal batch size is calculated using the `batchSize` function. Can take character values of “sqroot” and “cuberoot” or any numeric value between 1 and n/2. “sqroot” means size is \( \lfloor n^{1/2} \rfloor \) and “cuberoot” means size is \( \lfloor n^{1/3} \rfloor \).

**g** a function such that \( E(g(x)) \) is the quantity of interest. The default is NULL, which causes the identity function to be used.
MC_error

method any of “bm”, “obm”, “bartlett”, “tukey”. “bm” represents batch means estimator, “obm” represents overlapping batch means estimator with, “bartlett” and “tukey” represents the modified-Bartlett window and the Tukey-Hanning windows for spectral variance estimators.

r The lugsail parameters (r) that converts a lag window into its lugsail equivalent. Larger values of r will typically imply less underestimation of “cov”, but higher variability of the estimator. Default is r = 3 and r = 1, 2 are also good choices although may lead to underestimates of the variance. r > 5 is not recommended.

data_scale logical; show the Monte Carlo error of the sample transformed back to the scale of the data (TRUE) or on the sampling scale (this requires the argument keep_scaled_mcmc = TRUE to be set when fitting the model)

plotpars optional; list of parameters passed to plot()

ablinepars optional; list of parameters passed to abline()

minlength number of characters the variable names are abbreviated to

Value

An object of class MCElist with elements unscaled, scaled and digits. The first two are matrices with columns est (posterior mean), MCSE (Monte Carlo error), SD (posterior standard deviation) and MCSE/SD (Monte Carlo error divided by post. standard deviation.)

Functions

• plot(MCElist): plot Monte Carlo error

Note

Lesaffre & Lawson (2012; p. 195) suggest the Monte Carlo error of a parameter should not be more than 5% of the posterior standard deviation of this parameter (i.e., MCSE/SD ≤ 0.05).

Long variable names:
The default plot margins may not be wide enough when variable names are longer than a few characters. The plot margin can be adjusted (globally) using the argument "mar" in par.

References


See Also

The vignette Parameter Selection provides some examples how to specify the argument subset.

Examples

## Not run:

mod <- lm_imp(y ~ C1 + C2 + M2, data = wideDF, n.iter = 100)

MC_error(mod)

plot(MC_error(mod), ablinepars = list(lty = 2),
    plotpars = list(pch = 19, col = 'blue'))
### md_pattern

#### Missing data pattern

**Description**

Obtain a plot of the pattern of missing data and/or return the pattern as a matrix.

**Usage**

```r
md_pattern(data, color = c(grDevices::grey(0.1), grDevices::grey(0.7)),
 border = grDevices::grey(0.5), plot = TRUE, pattern = FALSE,
 print_xaxis = TRUE, ylab = "Number of observations per pattern",
 print_yaxis = TRUE, legend.position = "bottom", sort_columns = TRUE,
 ...)```

Arguments

- `data`: data frame
- `color`: vector of length two, that specifies the colour used to indicate observed and missing values (in that order)
- `border`: colour of the grid
- `plot`: logical; should the missing data pattern be plotted? (default is `TRUE`)
- `pattern`: logical; should the missing data pattern be returned as matrix? (default is `FALSE`)
- `print_xaxis`, `print_yaxis`: logical; should the x-axis (below the plot) and y-axis (on the right) be printed?
- `ylab`: y-axis label
- `legend.position`: the position of legends ("none", "left", "right", "bottom", "top", or two-element numeric vector)
- `sort_columns`: logical; should the columns be sorted by number of missing values? (default is `TRUE`)
- `...`: optional additional parameters, currently not used

Note

This function requires the `ggplot2` package to be installed.

See Also

See the vignette **Visualizing Incomplete Data** for more examples.

Examples

```r
op <- par(mar = c(3, 1, 1.5, 1.5), mgp = c(2, 0.6, 0))
md_pattern(wideDF)
par(op)
```
Joint Analysis and Imputation of incomplete data

Description

Main analysis functions to estimate different types of models using MCMC sampling, while imputing missing values.

Usage

\[
\begin{align*}
\text{lmm}_\text{imp}(\text{formula, data, n.chains} = 3, \text{n.adapt} = 100, \text{n.iter} = 0, \\
\text{thin} = 1, \text{monitor_params} = c(\text{analysis_main} = \text{TRUE}), \text{auxvars} = \text{NULL}, \\
\text{refcats} = \text{NULL}, \text{models} = \text{NULL}, \text{no_model} = \text{NULL}, \text{shrinkage} = \text{FALSE}, \\
\text{ppc} = \text{TRUE}, \text{seed} = \text{NULL}, \text{inits} = \text{NULL}, \text{warn} = \text{TRUE}, \text{mess} = \text{TRUE}, \\
\ldots)
\end{align*}
\]

\[
\begin{align*}
\text{glm}_\text{imp}(\text{formula, family, data, n.chains} = 3, \text{n.adapt} = 100, \text{n.iter} = 0, \\
\text{thin} = 1, \text{monitor_params} = c(\text{analysis_main} = \text{TRUE}), \text{auxvars} = \text{NULL}, \\
\text{refcats} = \text{NULL}, \text{models} = \text{NULL}, \text{no_model} = \text{NULL}, \text{shrinkage} = \text{FALSE}, \\
\text{ppc} = \text{TRUE}, \text{seed} = \text{NULL}, \text{inits} = \text{NULL}, \text{warn} = \text{TRUE}, \text{mess} = \text{TRUE}, \\
\ldots)
\end{align*}
\]

\[
\begin{align*}
\text{clm}_\text{imp}(\text{formula, data, n.chains} = 3, \text{n.adapt} = 100, \text{n.iter} = 0, \\
\text{thin} = 1, \text{monitor_params} = c(\text{analysis_main} = \text{TRUE}), \text{auxvars} = \text{NULL}, \\
\text{refcats} = \text{NULL}, \text{nonprop} = \text{NULL}, \text{rev} = \text{NULL}, \text{models} = \text{NULL}, \\
\text{no_model} = \text{NULL}, \text{shrinkage} = \text{FALSE}, \text{ppc} = \text{TRUE}, \text{seed} = \text{NULL}, \\
\text{inits} = \text{NULL}, \text{warn} = \text{TRUE}, \text{mess} = \text{TRUE}, \\
\ldots)
\end{align*}
\]

\[
\begin{align*}
\text{lognorm}_\text{imp}(\text{formula, data, n.chains} = 3, \text{n.adapt} = 100, \text{n.iter} = 0, \\
\text{thin} = 1, \text{monitor_params} = c(\text{analysis_main} = \text{TRUE}), \text{auxvars} = \text{NULL}, \\
\text{refcats} = \text{NULL}, \text{models} = \text{NULL}, \text{no_model} = \text{NULL}, \text{shrinkage} = \text{FALSE}, \\
\text{ppc} = \text{TRUE}, \text{seed} = \text{NULL}, \text{inits} = \text{NULL}, \text{warn} = \text{TRUE}, \text{mess} = \text{TRUE}, \\
\ldots)
\end{align*}
\]

\[
\begin{align*}
\text{betareg}_\text{imp}(\text{formula, data, n.chains} = 3, \text{n.adapt} = 100, \text{n.iter} = 0, \\
\text{thin} = 1, \text{monitor_params} = c(\text{analysis_main} = \text{TRUE}), \text{auxvars} = \text{NULL}, \\
\text{refcats} = \text{NULL}, \text{models} = \text{NULL}, \text{no_model} = \text{NULL}, \text{shrinkage} = \text{FALSE}, \\
\text{ppc} = \text{TRUE}, \text{seed} = \text{NULL}, \text{inits} = \text{NULL}, \text{warn} = \text{TRUE}, \text{mess} = \text{TRUE}, \\
\ldots)
\end{align*}
\]

\[
\begin{align*}
\text{mlogit}_\text{imp}(\text{formula, data, n.chains} = 3, \text{n.adapt} = 100, \text{n.iter} = 0, \\
\text{thin} = 1, \text{monitor_params} = c(\text{analysis_main} = \text{TRUE}), \text{auxvars} = \text{NULL}, \\
\text{refcats} = \text{NULL}, \text{models} = \text{NULL}, \text{no_model} = \text{NULL}, \text{shrinkage} = \text{FALSE}, \\
\text{ppc} = \text{TRUE}, \text{seed} = \text{NULL}, \text{inits} = \text{NULL}, \text{warn} = \text{TRUE}, \text{mess} = \text{TRUE}, \\
\ldots)
\end{align*}
\]

\[
\begin{align*}
\text{lme}_\text{imp}(\text{fixed, data, random, n.chains} = 3, \text{n.adapt} = 100, \text{n.iter} = 0, \\
\text{thin} = 1, \text{monitor_params} = c(\text{analysis_main} = \text{TRUE}), \text{auxvars} = \text{NULL}, \\
\text{refcats} = \text{NULL}, \text{rd_vcov} = "blockdiag", \text{models} = \text{NULL}, \\
\text{no_model} = \text{NULL}, \text{shrinkage} = \text{FALSE}, \text{ppc} = \text{TRUE}, \text{seed} = \text{NULL}, \\
\text{inits} = \text{NULL}, \text{warn} = \text{TRUE}, \text{mess} = \text{TRUE}, \\
\ldots)
\end{align*}
\]


```r
lmer_imp(fixed, data, random, n.chains = 3, n.adapt = 100, n.iter = 0,
  thin = 1, monitor_params = c(analysis_main = TRUE),
  refcats = NULL, rd_vcov = "blockdiag", models = NULL,
  no_model = NULL, shrinkage = FALSE, ppc = TRUE, seed = NULL,
  inits = NULL, warn = TRUE, mess = TRUE, ...) 

glme_imp(fixed, data, random, family, n.chains = 3, n.adapt = 100,
  n.iter = 0, thin = 1, monitor_params = c(analysis_main = TRUE),
  auxvars = NULL, refcats = NULL, rd_vcov = "blockdiag", models = NULL,
  no_model = NULL, shrinkage = FALSE, ppc = TRUE, seed = NULL,
  inits = NULL, warn = TRUE, mess = TRUE, ...) 

glmer_imp(fixed, data, random, family, n.chains = 3, n.adapt = 100,
  n.iter = 0, thin = 1, monitor_params = c(analysis_main = TRUE),
  auxvars = NULL, refcats = NULL, rd_vcov = "blockdiag", models = NULL,
  no_model = NULL, shrinkage = FALSE, ppc = TRUE, seed = NULL,
  inits = NULL, warn = TRUE, mess = TRUE, ...) 

betamm_imp(fixed, random, data, n.chains = 3, n.adapt = 100,
  n.iter = 0, thin = 1, monitor_params = c(analysis_main = TRUE),
  refcats = NULL, rd_vcov = "blockdiag", models = NULL,
  no_model = NULL, shrinkage = FALSE, ppc = TRUE, seed = NULL,
  inits = NULL, warn = TRUE, mess = TRUE, ...) 

clognormmm_imp(fixed, random, data, n.chains = 3, n.adapt = 100,
  n.iter = 0, thin = 1, monitor_params = c(analysis_main = TRUE),
  refcats = NULL, rd_vcov = "blockdiag", models = NULL,
  no_model = NULL, shrinkage = FALSE, ppc = TRUE, seed = NULL,
  inits = NULL, warn = TRUE, mess = TRUE, ...) 

clmm_imp(fixed, data, random, n.chains = 3, n.adapt = 100,
  n.iter = 0, thin = 1, monitor_params = c(analysis_main = TRUE),
  refcats = NULL, nonprop = NULL, rev = NULL, rd_vcov = "blockdiag",
  models = NULL, no_model = NULL, shrinkage = FALSE, ppc = TRUE,
  seed = NULL, inits = NULL, warn = TRUE, mess = TRUE, ...) 

mlogitmm_imp(fixed, data, random, n.chains = 3, n.adapt = 100,
  n.iter = 0, thin = 1, monitor_params = c(analysis_main = TRUE),
  refcats = NULL, rd_vcov = "blockdiag", models = NULL,
  no_model = NULL, shrinkage = FALSE, ppc = TRUE, seed = NULL,
  inits = NULL, warn = TRUE, mess = TRUE, ...) 

survreg_imp(formula, data, n.chains = 3, n.adapt = 100,
  n.iter = 0, thin = 1, monitor_params = c(analysis_main = TRUE),
  refcats = NULL, models = NULL, no_model = NULL, shrinkage = FALSE,
  ppc = TRUE, seed = NULL, inits = NULL, warn = TRUE, mess = TRUE,
  ...) 

coxph_imp(formula, data, df_basehaz = 6, n.chains = 3, n.adapt = 100,
  n.iter = 0, thin = 1, monitor_params = c(analysis_main = TRUE),
  refcats = NULL, models = NULL, no_model = NULL,
```
shrinkage = FALSE, ppc = TRUE, seed = NULL, inits = NULL, warn = TRUE, mess = TRUE, ...)

JM_imp(formula, data, df_basehaz = 6, n.chains = 3, n.adapt = 100, n.iter = 0, thin = 1, monitor_params = c(analysis_main = TRUE), auxvars = NULL, timevar = NULL, refcats = NULL, rd_vcov = "blockdiag", models = NULL, no_model = NULL, assoc_type = NULL, shrinkage = FALSE, ppc = TRUE, seed = NULL, inits = NULL, warn = TRUE, mess = TRUE, ...)

Arguments

formula a two sided model formula (see formula) or a list of such formulas; (more details below).
data a data.frame containing the original data (more details below)
n.chains number of MCMC chains
n.adapt number of iterations for adaptation of the MCMC samplers (see adapt)
n.iter number of iterations of the MCMC chain (after adaptation; see codasamples)
thin thinning interval (integer; see window.mcmc). For example, thin = 1 (default) will keep the MCMC samples from all iterations; thin = 5 would only keep every 5th iteration.
monitor_params named list or vector specifying which parameters should be monitored (more details below)
auxvars optional; one-sided formula of variables that should be used as predictors in the imputation procedure (and will be imputed if necessary) but are not part of the analysis model(s). For more details with regards to the behaviour with non-linear effects see the vignette on Model Specification
refcats optional; either one of "first", "last", "largest" (which sets the category for all categorical variables) or a named list specifying which category should be used as reference category per categorical variable. Options are the category label, the category number, or one of "first" (the first category), "last" (the last category) or "largest" (chooses the category with the most observations). Default is "first". If reference categories are specified for a subset of the categorical variables the default will be used for the remaining variables. (See also set_refcat)
models optional; named vector specifying the types of models for (incomplete) covariates. This arguments replaces the argument meth used in earlier versions. If NULL (default) models will be determined automatically based on the class of the respective columns of data.
no_model optional; vector of names of variables for which no model should be specified. Note that this is only possible for completely observed variables and implies the assumptions of independence between the excluded variable and the incomplete variables.
shrinkage optional; either a character string naming the shrinkage method to be used for regression coefficients in all models or a named vector specifying the type of shrinkage to be used in the models given as names.
ppc logical: should monitors for posterior predictive checks be set? (not yet used)
seed optional; seed value (for reproducibility)
model_imp

inits optional; specification of initial values in the form of a list or a function (see jags.model). If omitted, starting values for the random number generator are created by JointAI, initial values are then generated by JAGS. It is an error to supply an initial value for an observed node.

warn logical; should warnings be given? Default is TRUE.

mess logical; should messages be given? Default is TRUE.

... additional, optional arguments

trunc named list specifying limits of truncation for the distribution of the named incomplete variables (see the vignette ModelSpecification)

hyperpars list of hyper-parameters, as obtained by default_hyperpars()

scale_vars named vector of (continuous) variables that will be centred and scaled (such that mean = 0 and sd = 1) when they enter a linear predictor to improve convergence of the MCMC sampling. Default is that all numeric variables and integer variables with >20 different values will be scaled. If set to FALSE no scaling will be done.

custom named list of JAGS model chunks (character strings) that replace the model for the given variable.

append_data_list list that will be appended to the list containing the data that is passed to rjags (data_list). This may be necessary if additional data / variables are needed for custom (covariate) models.

progress.bar character string specifying the type of progress bar. Possible values are "text" (default), "gui", and "none" (see update). Note: when sampling is performed in parallel it is not possible to display a progress bar.

quiet logical; if TRUE then messages generated by rjags during compilation as well as the progress bar for the adaptive phase will be suppressed, (see jags.model)

keep_scaled_mcmc should the "original" MCMC sample (i.e., the scaled version returned by coda.samples()) be kept? (The MCMC sample that is re-scaled to the scale of the data is always kept.)

modelName character string specifying the name of the model file (including the ending, either .R or .txt). If unspecified a random name will be generated.

modeldir directory containing the model file or directory in which the model file should be written. If unspecified a temporary directory will be created.

overwrite logical; whether an existing model file with the specified <modeldir>/<modelName> should be overwritten. If set to FALSE and a model already exists, that model will be used. If unspecified (NULL) and a file exists, the user is asked for input on how to proceed.

keep_model logical; whether the created JAGS model file should be saved or removed from (FALSE; default) when the sampling has finished.

family only for glm_imp and glmm_imp/glmer_imp: a description of the distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (For more details see below and family.)

nonprop optional named list of one-sided formulas specifying covariates that have non-proportional effects in cumulative logit models. These covariates should also be part of the regular model formula, and the names of the list should be the names of the ordinal response variables.

rev optional character vector; vector of ordinal outcome variable names for which the odds should be reversed, i.e., logit(y ≤ k) instead of logit(y > k).
fixed
a two sided formula describing the fixed-effects part of the model (see formula).

random
only for multi-level models: a one-sided formula of the form \(~x_1 + \ldots + x_n\ | \ g\), where \(x_1 + \ldots + x_n\) specifies the model for the random effects and \(g\) the grouping variable

rd_vcov
character string or list specifying the structure of the random effects variance covariance matrix, see details below.

df_basehaz
degrees of freedom for the B-spline used to model the baseline hazard in proportional hazards models (coxph_imp and JM_imp)

timevar
name of the variable indicating the time of the measurement of a time-varying covariate in a proportional hazards survival model (also in a joint model). The variable specified in "timevar" will automatically be added to "no_model".

assoc_type
named vector specifying the type of the association used for a time-varying covariate in the linear predictor of the survival model when using a "JM" model. Implemented options are "underl.value" (linear predictor; default for covariates modelled using a Gaussian, Gamma, beta or log-normal distribution) and "obs.value" (the observed/imputed value; default for covariates modelled using other distributions).

Value
An object of class JointAI.

Model formulas

Random effects:
It is possible to specify multi-level models as it is done in the package nlme, using fixed and random, or as it is done in the package lme4, using formula and specifying the random effects in brackets:

\[
\text{formula} = y \sim x_1 + x_2 + x_3 + (1 \mid id)
\]

is equivalent to

\[
\text{fixed} = y \sim x_1 + x_2 + x_3, \quad \text{random} = ~ 1|id
\]

Multiple levels of grouping:
For multiple levels of grouping the specification using formula should be used. There is no distinction between nested and crossed random effects, i.e., \(\ldots + (1 \mid id) + (1 \mid center)\) is treated the same as \(\ldots + (1 \mid center/id)\).

Nested vs crossed random effects:
The distinction between nested and crossed random effects should come from the levels of the grouping variables, i.e., if id is nested in center, then there cannot be observations with the same id but different values for center.

Modelling multiple models simultaneously & joint models:
To fit multiple main models at the same time, a list of formula objects can be passed to the argument formula. Outcomes of one model may be contained as covariates in another model and it is possible to combine models for variables on different levels, for example:

\[
\text{formula} = \text{list}(y \sim x_1 + x_2 + x_3 + x_4 + \text{time} + (\text{time} \mid id),
\quad x_2 \sim x_3 + x_4 + x_5)
\]
This principle is also used for the specification of a joint model for longitudinal and survival data. Note that it is not possible to specify multiple models for the same outcome variable.

Random effects variance-covariance structure:
(Note: This feature is new and has not been fully tested yet.)
By default, a block-diagonal structure is assumed for the variance-covariance matrices of the random effects in models with random effects. This means that per outcome and level random effects are assumed to be correlated, but random effects of different outcomes are modelled as independent. The argument `rd_vcov` allows the user specify different assumptions about these variance-covariance matrices. Implemented structures are `full`, `blockdiag` and `indep` (all off-diagonal elements are zero).
If `rd_vcov` is set to one of these options, the structure is assumed for all random effects variance-covariance matrices. Alternatively, it is possible to specify a named list of vectors, where the names are the structures and the vectors contain the names of the response variables which are included in this structure.
For example, for a multivariate mixed model with five outcomes $y_1, ..., y_5$, the specification could be:

```r
rd_vcov = list(blockdiag = c("y1", "y2"),
               full = c("y3", "y4"),
               indep = "y5")
```
This would entail that the random effects for y_3 and y_4 are assumed to be correlated (within and across outcomes), random effects for y_1 and y_2 are assumed to be correlated within each outcome, and the random effects for y_5 are assumed to be independent.
It is possible to have multiple sets of response variables for which separate full variance-covariance matrices are used, for example:

```r
rd_vcov = list(full = c("y1", "y2", "y5"),
               full = c("y3", "y4"))
```
In models with multiple levels of nesting, separate structures can be specified per level:

```r
rd_vcov = list(id = list(blockdiag = c("y1", "y2"),
                        full = c("y3", "y4"),
                        indep = "y5"),
               center = "indep")
```

Survival models with frailties or time-varying covariates:
Random effects specified in brackets can also be used to indicate a multi-level structure in survival models, as would, for instance be needed in a multi-centre setting, where patients are from multiple hospitals.
It also allows to model time-dependent covariates in a proportional hazards survival model (using `coxph_imp`), also in combination with additional grouping levels.
In time-dependent proportional hazards models, last-observation-carried-forward is used to fill in missing values in the time-varying covariates, and to determine the value of the covariate at the event time. Preferably, all time-varying covariates should be measured at baseline (`timevar = 0`). If a value for a time-varying covariate needs to be filled in and there is no previous observation, the next observation will be carried backward.

Differences to basic regression models:
It is not possible to specify transformations of outcome variables, i.e., it is not possible to use a model formula like

```r
log(y) ~ x1 + x2 + ...
```
In the specific case of a transformation with the natural logarithm, a log-normal model can be used instead of a normal model.
Moreover, it is not possible to use \texttt{.} to indicate that all variables in a \texttt{data.frame} other than the outcome variable should be used as covariates. I.e., a formula \texttt{y ~ .} is not valid in \textbf{JointAI}.

Data structure

For multi-level settings, the data must be in long format, so that repeated measurements are recorded in separate rows.

For survival data with time-varying covariates (\texttt{coxph_imp} and \texttt{JM_imp}) the data should also be in long format. The survival/censoring times and event indicator variables must be stored in separate variables in the same data and should be constant across all rows referring to the same subject.

During the pre-processing of the data the survival/censoring times will automatically be merged with the observation times of the time-varying covariates (which must be supplied via the argument \texttt{timevar}).

It is possible to have multiple time-varying covariates, which do not have to be measured at the same time points, but there can only be one \texttt{timevar}.

Distribution families and link functions

\begin{verbatim}
 gaussian with links: identity, log
 binomial with links: logit, probit, log, cloglog
 Gamma with links: inverse, identity, log
 poisson with links: log, identity
\end{verbatim}

Imputation methods / model types

Implemented model types that can be chosen in the argument models for baseline covariates (not repeatedly measured) are:

\begin{verbatim}
 lm linear (normal) model with identity link (alternatively: glm_gaussian_identity); default for continuous variables
 glm_gaussian_log linear (normal) model with log link
 glm_gaussian_inverse linear (normal) model with inverse link
 glm_logit logistic model for binary data (alternatively: glm_binomial_logit); default for binary variables
 glm_probit probit model for binary data (alternatively: glm_binomial_probit)
 glm_binomial_log binomial model with log link
 glm_binomial_cloglog binomial model with complementary log-log link
 glm_gamma_inverse gamma model with inverse link for skewed continuous data
 glm_gamma_identity gamma model with identity link for skewed continuous data
 glm_gamma_log gamma model with log link for skewed continuous data
 glm_poisson_log Poisson model with log link for count data
 glm_poisson_identity Poisson model with identity link for count data
 lognorm log-normal model for skewed continuous data
 beta beta model (with logit link) for skewed continuous data in (0, 1)
 mlogit multinomial logit model for unordered categorical variables; default for unordered factors with
 cumulative logit model for ordered categorical variables; default for ordered factors
\end{verbatim}

For repeatedly measured variables the following model types are available:
When models are specified for only a subset of the variables for which a model is needed, the default model choices (as indicated in the tables) are used for the unspecified variables.

Parameters to follow (monitor_params)

See also the vignette: Parameter Selection

Named vector specifying which parameters should be monitored. This can be done either directly by specifying the name of the parameter or indirectly by one of the key words selecting a set of parameters. Except for other, in which parameter names are specified directly, parameter (groups) are just set as TRUE or FALSE.

Models are divided into two groups, the main models, which are the models for which the user has explicitly specified a formula (via formula or fixed), and all other models, for which models were specified automatically.

If left unspecified, monitor_params = c("analysis_main" = TRUE) will be used.

<table>
<thead>
<tr>
<th>name/key word</th>
<th>what is monitored</th>
</tr>
</thead>
<tbody>
<tr>
<td>analysis_main</td>
<td>betas and sigma_main, tau_main (for beta regression) or shape_main (for parametric survival model)</td>
</tr>
<tr>
<td>analysis_random</td>
<td>ranef_main, D_main, invD_main, RinvD_main</td>
</tr>
<tr>
<td>other_models</td>
<td>alphas, tau_other, gamma_other, delta_other</td>
</tr>
<tr>
<td>imps</td>
<td>imputed values</td>
</tr>
<tr>
<td>betas</td>
<td>regression coefficients of the main analysis model</td>
</tr>
<tr>
<td>tau_main</td>
<td>precision of the residuals from the main analysis model(s)</td>
</tr>
<tr>
<td>sigma_main</td>
<td>standard deviation of the residuals from the main analysis model(s)</td>
</tr>
<tr>
<td>gamma_main</td>
<td>intercepts in ordinal main model(s)</td>
</tr>
<tr>
<td>delta_main</td>
<td>increments of ordinal main model(s)</td>
</tr>
<tr>
<td>ranef_main</td>
<td>random effects from the main analysis model(s)</td>
</tr>
<tr>
<td>D_main</td>
<td>covariance matrix of the random effects from the main model(s)</td>
</tr>
<tr>
<td>invD_main</td>
<td>inverse(s) of D_main</td>
</tr>
<tr>
<td>RinvD_main</td>
<td>matrices in the priors for invD_main</td>
</tr>
<tr>
<td>alphas</td>
<td>regression coefficients in the covariate models</td>
</tr>
<tr>
<td>tau_other</td>
<td>precision parameters of the residuals from covariate models</td>
</tr>
<tr>
<td>gamma_other</td>
<td>intercepts in ordinal covariate models</td>
</tr>
<tr>
<td>delta_other</td>
<td>increments of ordinal intercepts</td>
</tr>
</tbody>
</table>
ranef_other: random effects from the other models
D_other: covariance matrix of the random effects from the other models
invD_other: inverses of D_other
RinvD_other: matrices in the priors for invD_other
other: additional parameters

For example:
monitor_params = c(analysis_main = TRUE, tau_main = TRUE, sigma_main = FALSE) would monitor the regression parameters betas and the residual precision tau_main instead of the residual standard deviation sigma_main.

For a linear model, monitor_params = c(imps = TRUE) would monitor betas, and sigma_main (because analysis_main = TRUE by default) as well as the imputed values.

Cumulative logit (mixed) models

In the default setting for cumulative logit models, i.e, rev = NULL, the odds for a variable y with K ordered categories are defined as

$$\log \left(\frac{P(y_i > k)}{P(y_i \leq k)} \right) = \gamma_k + \eta_i, \quad k = 1, \ldots, K - 1,$$

where γ_k is a category specific intercept and η_i the subject specific linear predictor.

To reverse the odds to

$$\log \left(\frac{P(y_i \leq k)}{P(y_i > k)} \right) = \gamma_k + \eta_i, \quad k = 1, \ldots, K - 1,$$

the name of the response variable has to be specified in the argument rev, e.g., rev = c("y").

By default, proportional odds are assumed and only the intercepts differ per category of the ordinal response. To allow for non-proportional odds, i.e.,

$$\log \left(\frac{P(y_i > k)}{P(y_i \leq k)} \right) = \gamma_k + \eta_i + \eta_{ki}, \quad k = 1, \ldots, K - 1,$$

the argument nonprop can be specified. It takes a one-sided formula or a list of one-sided formulas. When a single formula is supplied, or an unnamed list with just one element, it is assumed that the formula corresponds to the main model. To specify non-proportional effects for linear predictors in models for ordinal covariates, the list has to be named with the names of the ordinal response variables.

For example, the following three specifications are equivalent and assume a non-proportional effect of C_1 on O_1, but C_1 is assumed to have a proportional effect on the incomplete ordinal covariate O_2:

```r
clm_imp(O1 ~ C1 + C2 + B2 + O2, data = wideDF, nonprop = ~ C1)
clm_imp(O1 ~ C1 + C2 + B2 + O2, data = wideDF, nonprop = list(~ C1))
clm_imp(O1 ~ C1 + C2 + B2 + O2, data = wideDF, nonprop = list(O1 = ~ C1))
```

To specify non-proportional effects on O_2, a named list has to be provided:

```r
clm_imp(O1 ~ C1 + C2 + B2 + O2 + B1, data = wideDF,
        nonprop = list(O1 = ~ C1,
                      O2 = ~ C1 + B1))
```

The variables for which a non-proportional effect is assumed also have to be part of the regular model formula.
Custom model parts

(Note: This feature is experimental and has not been fully tested yet.)

Via the argument custom it is possible to provide custom sub-models that replace the sub-models that are automatically generated by JointAI.

Using this feature it is, for instance, possible to use the value of a repeatedly measured variable at a specific time point as covariate in another model. An example would be the use of "baseline" cholesterol (chol at day = 0) as covariate in a survival model.

First, the variable chol0 is added to the PBC data. For most patients the value of cholesterol at baseline is observed, but not for all. It is important that the data has a row with day = 0 for each patient.

```r
PBC <- merge(PBC,
             subset(PBC, day == 0, select = c("id", "chol")),
             by = "id", suffixes = c("", "0"))
```

Next, the custom piece of JAGS model syntax needs to be specified. We loop here only over the patients for which the baseline cholesterol is missing.

```r
calc_chol0 <- "
for (ii in 1:28) {
  M_id[row_chol0_id[ii], 3] <- M_lvlone[row_chol0_lvlone[ii], 1]
}
"
```

To be able to run the model with the custom imputation "model" for baseline cholesterol we need to provide the numbers of the rows in the data matrices that contain the missing values of baseline cholesterol and the rows that contain the imputed cholesterol at day = 0:

```r
row_chol0_lvlone <- which(PBC$day == 0 & is.na(PBC$chol0))
row_chol0_id <- match(PBC$id, unique(PBC$id))[row_chol0_lvlone]
```

Then we pass both the custom sub-model and the additional data to the analysis function coxph_imp(). Note that we explicitly need to specify the model for chol.

```r
coxph_imp(list(Surv(futime, status != "censored") ~ age + sex + chol0,
               chol ~ age + sex + day + (day | id)),
           no_model = "day", data = PBC,
           append_data_list = list(row_chol0_lvlone = row_chol0_lvlone,
                                    row_chol0_id = row_chol0_id),
           custom = list(chol0 = calc_chol0))
```

Note

Coding of variables:

The default covariate (imputation) models are chosen based on the class of each of the variables, distinguishing between numeric, factor with two levels, unordered factor with >2 levels and ordered factor with >2 levels.

When a continuous variable has only two different values it is assumed to be binary and its coding and default (imputation) model will be changed accordingly. This behaviour can be overwritten specifying a model type via the argument models.

Variables of type logical are automatically converted to unordered factors.
Contrasts:
JointAI version ≥ 1.0.0 uses the globally (via options("contrasts")) specified contrasts. However, for incomplete categorical variables, for which the contrasts need to be re-calculated within the JAGS model, currently only contr.treatment and contr.sum are possible. Therefore, when an in complete ordinal covariate is used and the default contrasts (contr.poly()) are set to be used for ordered factors, a warning message is printed and dummy coding (contr.treatment()) is used for that variable instead.

Non-linear effects and transformation of variables::
JointAI handles non-linear effects, transformation of covariates and interactions the following way:
When, for instance, a model formula contains the function log(x) and x has missing values, x will be imputed and used in the linear predictor of models for which no formula was specified, i.e., it is assumed that the other variables have a linear association with x. The log() of the observed and imputed values of x is calculated and used in the linear predictor of the main analysis model.

If, instead of using log(x) in the model formula, a pre-calculated variable logx is used, this variable is imputed directly and used in the linear predictors of all models, implying that variables that have logx in their linear predictors have a linear association with logx but not with x.

When different transformations of the same incomplete variable are used in one model it is strongly discouraged to calculate these transformations beforehand and supply them as different variables. If, for example, a model formula contains both x and x^2 (where \(x^2 = x^*2 \)), they are treated as separate variables and imputed with separate models. Imputed values of \(x^2 \) are thus not equal to the square of imputed values of x. Instead, x and I(x^2) should be used in the model formula. Then only x is imputed and \(x^2 \) is calculated from the imputed values of x internally. The same applies to interactions involving incomplete variables.

Sequence of models::
Models generated automatically (i.e., not mentioned in formula or fixed) are specified in a sequence based on the level of the outcome of the respective model in the multi-level hierarchy and within each level according to the number of missing values. This means that level-1 variables have all level-2, level-3, ... variables in their linear predictor, and variables on the highest level only have variables from the same level in their linear predictor. Within each level, the variable with the most missing values has the most variables in its linear predictor.

Not (yet) possible::
- prediction (using predict) conditional on random effects
- the use of splines for incomplete variables
- the use of (or equivalents for) pspline, or strata in survival models
- left censored or interval censored data

See Also
set_refcat, traceplot, densplot, summary.JointAI, MC_error, GR_crit, predict.JointAI, add_samples, JointAIObject, add_samples, parameters, list_models

Vignettes
- Minimal Example
- Model Specification
- Parameter Selection
• MCMC Settings
• After Fitting
• Theoretical Background

Examples

Example 1: Linear regression with incomplete covariates
mod1 <- lm_imp(y ~ C1 + C2 + M1 + B1, data = wideDF, n.iter = 100)

Example 2: Logistic regression with incomplete covariates
mod2 <- glm_imp(B1 ~ C1 + C2 + M1, data = wideDF,
 family = binomial(link = "logit"), n.iter = 100)

Not run:
Example 3: Linear mixed model with incomplete covariates
mod3 <- lme_imp(y ~ C1 + B2 + c1 + time, random = ~ time|id,
 data = longDF, n.iter = 300)

Example 4: Parametric Weibull survival model
mod4 <- survreg_imp(Surv(time, status) ~ age + sex + meal.cal + wt.loss,
 data = survival::lung, n.iter = 100)

Example 5: Proportional hazards survival model
mod5 <- coxph_imp(Surv(time, status) ~ age + sex + meal.cal + wt.loss,
 data = survival::lung, n.iter = 200)

Example 6: Joint model for longitudinal and survival data
mod6 <- JM_imp(list(Surv(futime, status != 'censored') ~ age + sex +
 albumin + copper + trig + (1 | id),
 albumin ~ day + age + sex + (day | id)),
 timevar = 'day', data = PBC, n.iter = 100)

Example 7: Proportional hazards model with a time-dependent covariate
mod7 <- coxph_imp(Surv(futime, status != 'censored') ~ age + sex + copper +
 trig + stage + (1 | id),
 timevar = 'day', data = PBC, n.iter = 100)

Example 8: Parallel computation
If no strategy how the "future" should be handled is specified, the
MCMC chains are run sequentially.
To run MCMC chains in parallel, a strategy can be specified using the
package \pkg{future} (see \fn{?future::plan}), for example:
future::plan(future::multisession, workers = 4)
mod8 <- lm_imp(y ~ C1 + C2 + B2, data = wideDF, n.iter = 500, n.chains = 8)
mod8$comp_info$future
To re-set the strategy to sequential computation, the sequential strategy
can be specified:
future::plan(future::sequential)
NHANES National Health and Nutrition Examination Survey (NHANES) Data

Description

This data is a small subset of the data collected within the 2011-2012 wave of the NHANES study, a study designed to assess the health and nutritional status of adults and children in the United States, conducted by the National Center for Health Statistics.

Usage

data(NHANES)

Format

A data frame with 186 rows and 13 variables:

- **SBP** systolic blood pressure
- **gender** male or female
- **age** in years
- **race** race / Hispanic origin (5 categories)
- **WC** waist circumference in cm
- **alc** alcohol consumption (binary: <1 drink per week vs. >= 1 drink per week)
- **educ** educational level (binary: low vs. high)
- **creat** creatinine concentration in mg/dL
- **albu** albumin concentration in g/dL
- **uricacid** uric acid concentration in mg/dL
- **bili** bilirubin concentration in mg/dL
- **occup** occupational status (3 categories)
- **smoke** smoking status (3 ordered categories)

Note

The subset provided here was selected and re-coded to facilitate demonstration of the functionality of the JointAI package, and no clinical conclusions should be derived from it.

Source

Examples

summary(NHANES)
parameters

Parameter names of an JointAI object

Description

Returns the names of the parameters/nodes of an object of class 'JointAI' for which a monitor is set.

Usage

```r
parameters(object, expand_ranef = FALSE, mess = TRUE, warn = TRUE, ...)
```

Arguments

- `object` object inheriting from class 'JointAI'
- `expand_ranef` logical; should all elements of the random effects vectors/matrices be shown separately?
- `mess` logical; should messages be given? Default is `TRUE`.
- `warn` logical; should warnings be given? Default is `TRUE`.
- `...` currently not used

Examples

```r
# (This function does not need MCMC samples to work, so we will set
# n.adapt = 0 and n.iter = 0 to reduce computational time)
mod1 <- lm_imp(y ~ C1 + C2 + M2 + O2 + B2, data = wideDF, n.adapt = 0,
               n.iter = 0, mess = FALSE)

parameters(mod1)
```

PBC

PBC data

Description

Data from the Mayo Clinic trial in primary biliary cirrhosis (PBC) of the liver. This dataset was obtained from the `survival` package: the variables `copper` and `trig` from `survival::pbc` were merged into `survival::pbcseq` and several categorical variables were re-coded.

Format

PBC: A data frame of 312 individuals in long format with 1945 rows and 21 variables.

Survival outcome and id

- `id` case number
- `futime` number of days between registration and the earlier of death, transplantation, or end of follow-up
- `status` status at endpoint ("censored", "transplant" or "dead")
Baseline covariates

- **trt** D-pen (D-penicillamine) vs placebo
- **age** in years
- **sex** male or female
- **copper** urine copper (µg/day)
- **trig** triglycerides (mg/dl)

Time-varying covariates

- **day** number of days between enrolment and this visit date; all measurements below refer to this date
- **albumin** serum albumin (mg/dl)
- **alk.phos** alkaline phosphatase (U/liter)
- **ascites** presence of ascites
- **ast** aspartate aminotransferase (U/ml)
- **bili** serum bilirubin (mg/dl)
- **chol** serum cholesterol (mg/dl)
- **edema** "no": no oedema, "(un)treated": untreated or successfully treated 1 oedema, "edema": oedema despite diuretic therapy
- **hepato** presence of hepatomegaly (enlarged liver)
- **platelet** platelet count
- **protime** standardised blood clotting time
- **spiders** blood vessel malformations in the skin
- **stage** histologic stage of disease (4 levels)

Examples

- `summary(PBC)`

plot.JointAI

Plot an object object inheriting from class 'JointAI'

Description

Plot an object object inheriting from class 'JointAI'

Usage

```r
## S3 method for class 'JointAI'
plot(x, ...)
```

Arguments

- **x** object inheriting from class 'JointAI'
- **...** currently not used
Note
Currently, `plot()` can only be used with (generalized) linear (mixed) models.

Examples
```r
mod <- lm_imp(y ~ C1 + C2 + B1, data = wideDF, n.iter = 100)
plot(mod)
```

plot_all

Visualize the distribution of all variables in the dataset

Description
This function plots a grid of histograms (for continuous variables) and bar plots (for categorical variables) and labels it with the proportion of missing values in each variable.

Usage
```r
plot_all(data, nrow = NULL, ncol = NULL, fill = grDevices::grey(0.8),
          border = "black", allNA = FALSE, idvars = NULL, xlab = "",
          ylab = "frequency", ...)
```

Arguments
- `data`: a data.frame (or a matrix)
- `nrow`: optional; number of rows in the plot layout; automatically chosen if unspecified
- `ncol`: optional; number of columns in the plot layout; automatically chosen if unspecified
- `fill`: colour the histograms and bars are filled with
- `border`: colour of the borders of the histograms and bars
- `allNA`: logical; if FALSE (default) the proportion of missing values is only given for variables that have missing values, if TRUE it is given for all variables
- `idvars`: name of the column that specifies the multi-level grouping structure
- `xlab`, `ylab`: labels for the x- and y-axis
- `...`: additional parameters passed to `barplot` and `hist`

See Also
Vignette: Visualizing Incomplete Data

Examples
```r
op <- par(mar = c(2,2,3,1), mgp = c(2, 0.6, 0))
plot_all(wideDF)
par(op)
```
plot_imp_distr
Plot the distribution of observed and imputed values

Description

Plots densities and bar plots of the observed and imputed values in a long-format dataset (multiple imputed datasets stacked onto each other).

Usage

```r
plot_imp_distr(data, imp = "Imputation_", id = ".id", rownr = ".rownr",
ncol = NULL, nrow = NULL, labeller = NULL)
```

Arguments

- `data`: a data.frame containing multiple imputations and the original incomplete data stacked onto each other.
- `imp`: the name of the variable specifying the imputation indicator.
- `id`: the name of the variable specifying the subject indicator.
- `rownr`: the name of a variable identifying which rows correspond to the same observation in the original (un-imputed) data.
- `ncol`: optional; number of columns in the plot layout; automatically chosen if unspecified.
- `nrow`: optional; number of rows in the plot layout; automatically chosen if unspecified.
- `labeller`: optional labeller to be passed to `ggplot2::facet_wrap()` to change the facet labels.

Examples

```r
## Not run:
mod <- lme_imp(y ~ C1 + c2 + B2 + C2, random = ~ 1 | id, data = longDF,
n.iter = 200, monitor_params = c(imps = TRUE), mess = FALSE)
impDF <- get_MIdat(mod, m = 5)
plot_imp_distr(impDF, id = "id", ncol = 3)
## End(Not run)
```

predict.JointAI
Predict values from an object of class JointAI

Description

Obtains predictions and corresponding credible intervals from an object of class `JointAI`.

```r
mod <- lme_imp(y ~ C1 + c2 + B2 + C2, random = ~ 1 | id, data = longDF,
n.iter = 200, monitor_params = c(imps = TRUE), mess = FALSE)
impDF <- get_MIdat(mod, m = 5)
predict.JointAI(impDF, id = "id", ncol = 3)
```
S3 method for class 'JointAI'
predict(object, outcome = 1L, newdata, quantiles = c(0.025, 0.975), type = "lp", start = NULL, end = NULL, thin = NULL, exclude_chains = NULL, mess = TRUE, warn = TRUE, return_sample = FALSE, ...)

Arguments

- **object**: object inheriting from class 'JointAI'
- **outcome**: vector of variable names or integers identifying for which outcome(s) the prediction should be performed.
- **newdata**: optional new dataset for prediction. If left empty, the original data is used.
- **quantiles**: quantiles of the predicted distribution of the outcome
- **type**: the type of prediction. The default is on the scale of the linear predictor ("link" or "lp"). Additionally, for generalized linear (mixed) models (incl. beta and log-normal) type = "response" transforms the predicted values to the scale of the response, and for ordinal and multinomial (mixed) models type may be "prob" (to obtain probabilities per class), "class" to obtain the class with the highest posterior probability, or "lp". For parametric survival models type can be "lp" or "response", and for proportional hazards survival models the options are "lp", "risk" (= exp(lp)), "survival" or "expected" (= -log(survival)).
- **start**: the first iteration of interest (see window.mcmc)
- **end**: the last iteration of interest (see window.mcmc)
- **thin**: thinning interval (integer; see window.mcmc). For example, thin = 1 (default) will keep the MCMC samples from all iterations; thin = 5 would only keep every 5th iteration.
- **exclude_chains**: optional vector of the index numbers of chains that should be excluded
- **mess**: logical; should messages be given? Default is TRUE.
- **warn**: logical; should warnings be given? Default is TRUE.
- **return_sample**: logical; should the full sample on which the summary (mean and quantiles) is calculated be returned?#
- **...**: currently not used

Details

A model.matrix X is created from the model formula (currently fixed effects only) and newdata. $X\beta$ is then calculated for each iteration of the MCMC sample in object, i.e., $X\beta$ has n.iter rows and nrow(newdata) columns. A subset of the MCMC sample can be selected using start, end and thin.

Value

A list with entries dat, fit and quantiles, where fit contains the predicted values (mean over the values calculated from the iterations of the MCMC sample), quantiles contain the specified quantiles (by default 2.5% and 97.5%), and dat is newdata, extended with fit and quantiles (unless prediction for an ordinal outcome is done with type = "prob", in which case the quantiles are an array with three dimensions and are therefore not included in dat).
Note

- So far, predict cannot calculate predicted values for cases with missing values in covariates. Predicted values for such cases are NA.
- For repeated measures models prediction currently only uses fixed effects. Functionality will be extended in the future.

See Also

predDF.JointAI,*_imp

Examples

```r
# fit model
mod <- lm_imp(y ~ C1 + C2 + I(C2^2), data = wideDF, n.iter = 100)

# calculate the fitted values
fit <- predict(mod)

# create dataset for prediction
newDF <- predDF(mod, vars = ~ C2)

# obtain predicted values
pred <- predict(mod, newdata = newDF)

# plot predicted values and 95% confidence band
matplot(newDF$C2, pred$fitted, lty = c(1, 2, 2), type = "l", col = 1,
        xlab = 'C2', ylab = 'predicted values')
```

Summary

print.Dmat

Summarize the results from an object of class JointAI

Description

Obtain and print the summary, (fixed effects) coefficients (coef) and credible interval (confint) for an object of class 'JointAI'.

Usage

```r
## S3 method for class 'Dmat'
print(x, digits = getOption("digits"),
      scientific = getOption("scipen"), ...)

## S3 method for class 'JointAI'
summary(object, start = NULL, end = NULL, thin = NULL,
        quantiles = c(0.025, 0.975), subset = NULL, exclude_chains = NULL,
        outcome = NULL, missinfo = FALSE, warn = TRUE, mess = TRUE, ...)

## S3 method for class 'summary.JointAI'
print(x, digits = max(3, .Options$digits - 4), ...)
```
S3 method for class 'JointAI'
coef(object, start = NULL, end = NULL, thin = NULL,
 subset = NULL, exclude_chains = NULL, warn = TRUE, mess = TRUE, ...)

S3 method for class 'JointAI'
confint(object, parm = NULL, level = 0.95,
 quantiles = NULL, start = NULL, end = NULL, thin = NULL,
 subset = NULL, exclude_chains = NULL, warn = TRUE, mess = TRUE, ...)

S3 method for class 'JointAI'
print(x, digits = max(4, getOption("digits") - 4), ...)

Arguments

- **x**: an object of class `summary.JointAI` or `JointAI`
- **digits**: the minimum number of significant digits to be printed in values.
- **scientific**: A penalty to be applied when deciding to print numeric values in fixed or exponential notation, by default the value obtained from `getOption("scipen")`
- **...**: currently not used
- **object**: object inheriting from class 'JointAI'
- **start**: the first iteration of interest (see `window.mcmc`)
- **end**: the last iteration of interest (see `window.mcmc`)
- **thin**: thinning interval (integer; see `window.mcmc`). For example, `thin = 1` (default) will keep the MCMC samples from all iterations; `thin = 5` would only keep every 5th iteration.
- **quantiles**: posterior quantiles
- **subset**: subset of parameters/variables/nodes (columns in the MCMC sample). Follows the same principle as the argument `monitor.params` in `*_imp`.
- **exclude_chains**: optional vector of the index numbers of chains that should be excluded
- **outcome**: optional; vector identifying for which outcomes the summary should be given, either by specifying their indices, or their names (LHS of the respective model formulas as character string).
- **missinfo**: logical; should information on the number and proportion of missing values be included in the summary?
- **warn**: logical; should warnings be given? Default is `TRUE`.
- **mess**: logical; should messages be given? Default is `TRUE`.
- **parm**: same as `subset` (for consistency with `confint` method for other types of objects)
- **level**: confidence level (default is 0.95)

See Also

The model fitting functions `lm_imp`, `glm_imp`, `clm_imp`, `lme_imp`, `glme_imp`, `survreg_imp` and `coxph_imp`, and the vignette `Parameter Selection` for examples how to specify the parameter subset.
Examples

```r
## Not run:
mod1 <- lm_imp(y ~ C1 + C2 + M2, data = wideDF, n.iter = 100)

summary(mod1, missinfo = TRUE)
coef(mod1)
confint(mod1)

## End(Not run)
```

rd_vcov

Extract the random effects variance covariance matrix Returns the posterior mean of the variance-covariance matrix/matrices of the random effects in a fitted JointAI object.

Description

Extract the random effects variance covariance matrix Returns the posterior mean of the variance-covariance matrix/matrices of the random effects in a fitted JointAI object.

Usage

```r
rd_vcov(object, outcome = NULL, start = NULL, end = NULL, thin = NULL,
        exclude_chains = NULL, mess = TRUE, warn = TRUE)
```

Arguments

- **object**: object inheriting from class 'JointAI'
- **outcome**: optional; vector of integers giving the indices of the outcomes for which the random effects variance-covariance matrix/matrices should be returned.
- **start**: the first iteration of interest (see `window.mcmc`)
- **end**: the last iteration of interest (see `window.mcmc`)
- **thin**: thinning interval (integer; see `window.mcmc`). For example, `thin = 1` (default) will keep the MCMC samples from all iterations; `thin = 5` would only keep every 5th iteration.
- **exclude_chains**: optional vector of the index numbers of chains that should be excluded
- **mess**: logical; should messages be given? Default is `TRUE`.
- **warn**: logical; should warnings be given? Default is `TRUE`.

residuals.JointAI

Extract residuals from an object of class JointAI

Description

Extract residuals from an object of class JointAI

Usage

```r
## S3 method for class 'JointAI'
residuals(object, type = c("working", "pearson", "response"), warn = TRUE, ...)
```

Arguments

- `object`: object inheriting from class 'JointAI'
- `type`: type of residuals: "deviance", "response", "working"
- `warn`: logical; should warnings be given? Default is TRUE.
- `...`: currently not used

Note

- For mixed models residuals are currently calculated using the fixed effects only.
- For ordinal (mixed) models and parametric survival models only `type = "response"` is available.
- For Cox proportional hazards models residuals are not yet implemented.

Examples

```r
mod <- glm_imp(B1 ~ C1 + C2 + O1, data = wideDF, n.iter = 100, 
              family = binomial(), mess = FALSE)
summary(residuals(mod, type = "response"))
summary(residuals(mod, type = "working"))
```

set_refcat

Specify reference categories for all categorical covariates in the model

Description

The function is a helper function that asks questions and, depending on the answers given by the user, returns the input for the argument `refcats` in the main analysis functions `*_imp`.

Usage

```r
set_refcat(data, formula, covars, auxvars = NULL)
```
Arguments

data a data.frame
formula optional; model formula or a list of formulas (used to select subset of relevant columns of data)
covars optional; vector containing the names of relevant columns of data
auxvars optional; formula containing the names of relevant columns of data that should be considered additionally to the columns occurring in the formula

Details

The arguments formula, covars and auxvars can be used to specify a subset of the data to be considered. If none of these arguments is specified, all variables in data will be considered.

Examples

```r
## Not run:
# Example 1: set reference categories for the whole dataset and choose answer option 3:
set_refcat(data = NHANES)
3

# insert the returned string as argument refcats
mod1 <- lm_imp(SBP ~ age + race + creat + educ, data = NHANES,
               refcats = 'largest')

# Example 2:
# specify a model formula
fmla <- SBP ~ age + gender + race + bili + smoke + alc

# write the output of set_refcat to an object
ref_mod2 <- set_refcat(data = NHANES, formula = fmla)
4
2
5
1
1

# enter the output in the model specification
mod2 <- lm_imp(formula = fmla, data = NHANES, refcats = ref_mod2, n.adapt = 0)

## End(Not run)
```

sharedParams Parameters used by several functions in JointAI

Description

Parameters used by several functions in JointAI
Arguments

object object inheriting from class 'JointAI'
no_model optional; vector of names of variables for which no model should be specified. Note that this is only possible for completely observed variables and implies the assumptions of independence between the excluded variable and the incomplete variables.
timevar name of the variable indicating the time of the measurement of a time-varying covariate in a proportional hazards survival model (also in a joint model). The variable specified in "timevar" will automatically be added to "no_model".
assoc_type named vector specifying the type of the association used for a time-varying covariate in the linear predictor of the survival model when using a "JM" model. Implemented options are "underl.value" (linear predictor; default for covariates modelled using a Gaussian, Gamma, beta or log-normal distribution) covariates) and "obs.value" (the observed/imputed value; default for covariates modelled using other distributions).
subset subset of parameters/variables/nodes (columns in the MCMC sample). Follows the same principle as the argument monitor_params in *_imp.
exclude_chains optional vector of the index numbers of chains that should be excluded
start the first iteration of interest (see window.mcmc)
end the last iteration of interest (see window.mcmc)
n.adapt number of iterations for adaptation of the MCMC samplers (see adapt)
n.iter number of iterations of the MCMC chain (after adaptation; see coda.samples)
n.chains number of MCMC chains
quiet logical; if TRUE then messages generated by rjags during compilation as well as the progress bar for the adaptive phase will be suppressed, (see jags.model)
progress.bar character string specifying the type of progress bar. Possible values are "text" (default), "gui", and "none" (see update). Note: when sampling is performed in parallel it is not possible to display a progress bar.
thin thinning interval (integer; see window.mcmc). For example, thin = 1 (default) will keep the MCMC samples from all iterations; thin = 5 would only keep every 5th iteration.
nrow optional; number of rows in the plot layout; automatically chosen if unspecified
ncol optional; number of columns in the plot layout; automatically chosen if unspecified
use_ggplot logical; Should ggplot be used instead of the base graphics?
warn logical; should warnings be given? Default is TRUE.
mess logical; should messages be given? Default is TRUE.
xlab, ylab labels for the x- and y-axis
idvars name of the column that specifies the multi-level grouping structure
seed optional; seed value (for reproducibility)
ppc logical: should monitors for posterior predictive checks be set? (not yet used)
rd_vcov optional character string or list (of lists or character strings) specifying the structure of the variance covariance matrix/matrices of the random effects for multivariate mixed models. Options are "full", "blockdiag" (default) and "indep". Different structures can be specified per grouping level (in multi-level models
with more than two levels) by specifying a list with elements per grouping level. To specify different structures for different outcomes, a list (maybe nested in the list per grouping level) can be specified. This list should have the type of structure as names and contain vectors of variable names that belong to the respective structure.

Description

This data was simulated to mimic data from a longitudinal cohort study following mothers and their child from birth until approximately 4 years of age. It contains 2400 observations of 200 mother-child pairs. Children’s BMI and head circumference was measured repeatedly and their age in months was recorded at each measurement. Furthermore, the data contain several baseline variables with information on the mothers’ demographics and socio-economic status.

Usage

```r
simLong
simWide
```

Format

- **simLong**: A data frame in long format with 2400 rows and 16 variables
- **simWide**: A data frame in wide format with 200 rows and 81 variables

An object of class `data.frame` with 2400 rows and 16 columns.
An object of class `data.frame` with 200 rows and 81 columns.

Baseline covariates

(in `simLong` and `simWide`)

- **GESTBIR**: gestational age at birth (in weeks)
- **ETHN**: ethnicity (binary: European vs. other)
- **AGE_M**: age of the mother at intake
- **HEIGHT_M**: height of the mother (in cm)
- **PARITY**: number of times the mother has given birth (binary: 0 vs. >=1)
- **SMOKE**: smoking status of the mother during pregnancy (3 ordered categories: never smoked during pregnancy, smoked until pregnancy was known, continued smoking in pregnancy)
- **EDUC**: educational level of the mother (3 ordered categories: low, mid, high)
- **MARITAL**: marital status (3 categories)
- **ID**: subject identifier
Long-format variables

(only in `simLong`)

- **time** measurement occasion/visit (by design, children should be measured at/around 1, 2, 3, 4, 7, 11, 15, 20, 26, 32, 40 and 50 months of age)
- **age** child age at measurement time in months
- **bmi** child BMI
- **hc** child head circumference in cm
- **hgt** child height in cm
- **wgt** child weight in gram
- **sleep** sleeping behaviour of the child (3 ordered categories)

Wide-format variables

(only in `simWide`)

- **age1, age2, age3, age4, age7, age11, age15, age20, age26, age32, age40, age50** child age at the repeated measurements in months
- **bmi1, bmi2, bmi3, bmi4, bmi7, bmi11, bmi15, bmi20, bmi26, bmi32, bmi40, bmi50** repeated measurements of child BMI
- **hc1, hc2, hc3, hc4, hc7, hc11, hc15, hc20, hc26, hc32, hc40, hc50** repeated measurements of child head circumference in cm
- **hgt1, hgt2, hgt3, hgt4, hgt7, hgt11, hgt15, hgt20, hgt26, hgt32, hgt40, hgt50** repeated measurements of child height in cm
- **wgt1, wgt2, wgt3, wgt4, wgt7, wgt11, wgt15, wgt20, wgt26, wgt32, wgt40, wgt50** repeated measurements of child weight in gram
- **sleep1, sleep2, sleep3, sleep4, sleep7, sleep11, sleep15, sleep20, sleep26, sleep32, sleep40, sleep50** repeated measurements of child sleep behaviour (3 ordered categories)

Examples

```r
summary(simLong)
summary(simWide)
```

sum_duration
Calculate the sum of the computational duration of a JointAI object

Description

Calculate the sum of the computational duration of a JointAI object

Usage

```r
sum_duration(object, by = NULL)
```
traceplot

Arguments

- **object**: object of class `JointAI`
- **by**: optional grouping information; options are `NULL` (default) to calculate the sum over all chains and runs and both the adaptive and sampling phase, "run" to get the duration per run, "phase" to get the sum over all chains and runs per phase, "chain" to get the sum per chain over both phases and all runs, "phase and run" to get the sum over all chains, separately per phase and run.

Description

Create a set of traceplots from the MCMC sample of an object of class 'JointAI'.

Usage

```r
traceplot(object, ...)  
```

S3 method for class 'JointAI'

```r
traceplot(object, start = NULL, end = NULL, thin = NULL, subset = c(analysis_main = TRUE), outcome = NULL, exclude_chains = NULL, nrow = NULL, ncol = NULL, use_ggplot = FALSE, warn = TRUE, mess = TRUE, ...)
```

Arguments

- **object**: object inheriting from class 'JointAI'
- **...**: Arguments passed on to `graphics::matplot`
 - `lty`, `lwd`, `lend` vector of line types, widths, and end styles. The first element is for the first column, the second element for the second column, etc., even if lines are not plotted for all columns. Line types will be used cyclically until all plots are drawn.
 - `col` vector of colors. Colors are used cyclically.
 - `cex` vector of character expansion sizes, used cyclically. This works as a multiple of `par("cex")`. NULL is equivalent to 1.0.
 - `bg` vector of background (fill) colors for the open plot symbols given by `pch = 21:25` as in `points`. The default NA corresponds to the one of the underlying function `plot.xy`
 - `add` logical. If TRUE, plots are added to current one, using `points` and `lines`.
 - `verbose` logical. If TRUE, write one line of what is done.
- **start**: the first iteration of interest (see `window.mcmc`)
- **end**: the last iteration of interest (see `window.mcmc`)
- **thin**: thinning interval (integer; see `window.mcmc`). For example, `thin = 1` (default) will keep the MCMC samples from all iterations; `thin = 5` would only keep every 5th iteration.
- **subset**: subset of parameters/variables/nodes (columns in the MCMC sample). Follows the same principle as the argument `monitor_params` in *_imp.
outcome optional; vector identifying a subset of sub-models included in the output, either by specifying their indices (using the order used in the list of model formulas), or their names (LHS of the respective model formula as character string)
exclude_chains optional vector of the index numbers of chains that should be excluded
nrow optional; number of rows in the plot layout; automatically chosen if unspecified
ncol optional; number of columns in the plot layout; automatically chosen if unspecified
use_ggplot logical; Should ggplot be used instead of the base graphics?
warn logical; should warnings be given? Default is TRUE.
mess logical; should messages be given? Default is TRUE.

See Also

summary.JointAI, *_imp, densplot

The vignette Parameter Selection contains some examples how to specify the parameter subset.

Examples

fit a JointAI model
mod <- lm_imp(y ~ C1 + C2 + M1, data = wideDF, n.iter = 100)

Example 1: simple traceplot
traceplot(mod)

Example 2: ggplot version of traceplot
traceplot(mod, use_ggplot = TRUE)

Example 5: changing how the ggplot version looks (using ggplot syntax)
library(ggplot2)
traceplot(mod, use_ggplot = TRUE) +
 theme(legend.position = 'bottom') +
 xlab('iteration') +
 ylab('value') +
 scale_color_discrete(name = 'chain')

wideDF Cross-sectional example dataset

Description

A simulated cross-sectional dataset.

Usage

data(wideDF)
Format

A simulated data frame with 100 rows and 13 variables:

C1 continuous, complete variable
C2 continuous, incomplete variable
B1 binary, complete variable
B2 binary, incomplete variable
M1 unordered factor; complete variable
M2 unordered factor; incomplete variable
O1 ordered factor; complete variable
O2 ordered factor; incomplete variable
L1 continuous, complete variable
L2 continuous incomplete variable
id id (grouping) variable
time continuous complete variable
y continuous, complete variable
Index

* datasets
 longDF, 16
 NHANES, 32
 PBC, 33
 simLong, 44
 wideDF, 47
* _imp, 3, 6, 9, 10, 13, 17, 38, 39, 41, 43, 46, 47
 abline, 18
 adapt, 22, 43
 add_samples, 2, 30
 barplot, 35
 betamm_imp, 11
 betamm_imp(model_imp), 20
 betareg_imp, 11
 betareg_imp(model_imp), 20
 clean_survname, 3
 clm_imp, 11, 39
 clm_imp(model_imp), 20
 clmm_imp, 11
 clmm_imp(model_imp), 20
 coda.samples, 22, 43
 coef(), 12
 coef.JointAI(print.Dmat), 38
 confint(), 12
 confint.JointAI(print.Dmat), 38
 coxph(), 12
 coxph_imp, 11, 39
 coxph_imp(model_imp), 20
 default_hyperpars, 4, 23
 densplot, 6, 12, 30, 47
 densplot(), 12
 extract_state, 7
 family, 23
 formula, 22, 24
 gelman.diag, 10
 get_MIdat, 8, 12
 get_MIdat(), 12
 get_missinfo, 9
 ggplot2::facet_wrap(), 36
 glm, 12
 glm_imp, 11, 12, 39
 glm_imp(model_imp), 20
 glme_imp, 11, 39
 glme_imp(model_imp), 20
 glmer_imp, 11
 glmer_imp(model_imp), 20
 GR_crit, 10, 12, 30
 graphics::matplot, 46
 hist, 35
 jags.model, 23, 43
 JM_imp, 11
 JM_imp(model_imp), 20
 JointAI, 11, 24
 JointAIObject, 13, 30
 lines, 46
 list_models, 12, 15, 30
 lm, 12
 lm_imp, 11, 12, 39
 lm_imp(model_imp), 20
 lme, 12
 lme_imp, 11, 12, 39
 lme_imp(model_imp), 20
 lmer_imp, 11
 lmer_imp(model_imp), 20
 lognorm_imp, 11
 lognorm_imp(model_imp), 20
 lognormmm_imp, 11
 lognormmm_imp(model_imp), 20
 longDF, 16
 MC_error, 12, 17, 30
 mcmcse::mcse.mat, 17
 md_pattern, 12, 19
 mlogit_imp, 11
 mlogit_imp(model_imp), 20
 mlogitmm_imp(model_imp), 20
 model_imp, 20
 NHANES, 32
par, 18, 46
parameters, 12, 30, 33
PBC, 33
plot.JointAI, 34
plot.MCElist (MC_error), 17
plot.xy, 46
plot_all, 12, 35
plot_imp_distr, 9, 36
plot_imp_distr(), 12
points, 46
predDF, 12
predDF.JointAI, 38
predict, 12
predict(), 12
predict.JointAI, 30, 36
print.Dmat, 38
print.JointAI (print.Dmat), 38
print.summary.JointAI (print.Dmat), 38
pspline, 30
rd_vcov, 40
residuals.JointAI, 41
set_refcat, 12, 22, 30, 41
sharedParams, 42
simLong, 44
simWide (simLong), 44
strata, 30
sum_duration, 45
summary, 12
summary(), 12
summary.JointAI, 12, 30, 47
summary.JointAI (print.Dmat), 38
survreg, 12
survreg_imp, 11, 39
survreg_imp (model_imp), 20
traceplot, 12, 30, 46
traceplot(), 12
update, 3, 23, 43
wideDF, 47
window.mcmc, 3, 6, 8, 10, 17, 22, 37, 39, 40, 43, 46