Package ‘KRMM’

Type Package
Title Kernel Ridge Mixed Model
Version 1.0
Author Laval Jacquin [aut, cre]
Maintainer Laval Jacquin <jacquin.julien@gmail.com>
Description Solves kernel ridge regression, within the mixed model framework, for the linear, polynomial, Gaussian, Laplacian and ANOVA kernels. The model components (i.e. fixed and random effects) and variance parameters are estimated using the expectation-maximization (EM) algorithm. All the estimated components and parameters, e.g. BLUP of dual variables and BLUP of random predictor effects for the linear kernel (also known as RR-BLUP), are available. The kernel ridge mixed model (KRMM) is described in Jacquin L, Cao T-V and Ahmadi N (2016) A Unified and Comprehensible View of Parametric and Kernel Methods for Genomic Prediction with Application to Rice. Front. Genet. 7:145. <doi:10.3389/fgene.2016.00145>.
Depends R (>= 3.3.0)
Imports stats, MASS, kernlab, cvTools, robustbase
License GPL-2 | GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 5.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2017-06-03 17:46:04 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRMM-package</td>
<td>2</td>
</tr>
<tr>
<td>EM_REML_MM</td>
<td>4</td>
</tr>
<tr>
<td>Kernel_Ridge_MM</td>
<td>5</td>
</tr>
<tr>
<td>Predict_kernel_Ridge_MM</td>
<td>8</td>
</tr>
<tr>
<td>Tune_kernel_Ridge_MM</td>
<td>10</td>
</tr>
</tbody>
</table>

Index 14
Description

Solves kernel ridge regression, within the the mixed model framework, for the linear, polynomial, Gaussian, Laplacian and ANOVA kernels. The model components (i.e. fixed and random effects) and variance parameters are estimated using the expectation-maximization (EM) algorithm. All the estimated components and parameters, e.g. BLUP of dual variables and BLUP of random predictor effects for the linear kernel (also known as RR-BLUP), are available. The kernel ridge mixed model (KRMM) is described in Jacquin L, Cao T-V and Ahmadi N (2016) A Unified and Comprehensible View of Parametric and Kernel Methods for Genomic Prediction with Application to Rice. Front. Genet. 7:145.

Details

This package solves kernel ridge regression for various kernels within the following mixed model framework: $Y = X*Beta + Z*U + E$, where X and Z correspond to the design matrices of predictors with fixed and random effects respectively. The functions provided with this package are `Kernel_Ridge_MM`, `Tune_kernel_Ridge_MM`, `Predict_kernel_Ridge_MM` and `EM_REML_MM`.

Author(s)

Laval Jacquin Maintainer: Laval Jacquin <jacquin.julien@gmail.com>

References

Examples

```r
## Not run:

library(KRMM)

### SIMULATE DATA
set.seed(123)
p=200
N=100

beta=rnorm(p, mean=0, sd=1.0)
X=matrix(runif(p*N, min=0, max=1), ncol=p, byrow=TRUE) #X: covariates (i.e. predictors)
```
f=XX*beta #f: data generating process (i.e. DGP)
E=rnorm(N, mean=0, sd=0.5)
Y=f+E #Y: observed response data

hist(f)
hist(beta)
Nb_train=floor((2/3)*N)

Index_train=sample(1:N, size=Nb_train, replace=FALSE)

Covariates (i.e. predictors) for training and target sets
Predictors_train=X[Index_train,]
Response_train=Y[Index_train]

Predictors_target=X[-Index_train,]
True_value_target=f[-Index_train] #True value (generated by DGP) we want to predict

Prediction with kernel ridge regression solved within the mixed model framework

#Linear kernel
Linear_KRR_model_train = Kernel_Ridge_MM(Y_train=Response_train, Matrix_covariates_train=Predictors_train, method="RR-BLUP")

f_hat_target_Linear_KRR = Predict_kernel_Ridge_MM(Linear_KRR_model_train, Matrix_covariates_target=Predictors_target)

#Gaussian kernel
Gaussian_KRR_model_train = Kernel_Ridge_MM(Y_train=Response_train, Matrix_covariates_train=Predictors_train, method="RKHS", rate_decay_kernel=5.0)

f_hat_target_Gaussian_KRR = Predict_kernel_Ridge_MM(Gaussian_KRR_model_train, Matrix_covariates_target=Predictors_target)

#Graphics for RR-BLUP
dev.new(width=30, height=20)
par(mfrow=c(3,1))
plot(f_hat_target_Linear_KRR, True_value_target)
plot(Linear_KRR_model_train$Gamma_hat, xlab="Feature (i.e. covariate) number", ylab="Feature effect (i.e. Gamma_hat)", main="BLUP of covariate effects based on training data")
hist(Linear_KRR_model_train$Gamma_hat, main="Distribution of BLUP of"
EM_REML_MM

```r
# Compare prediction based on linear (i.e. RR-BLUP) and Gaussian kernel
dev.new(width=30, height=20)
par(mfrow=c(1,2))
plot(f_hat_target_linear_KRR, True_value_target)
plot(f_hat_target_gaussian_KRR, True_value_target)

mean((f_hat_target_linear_KRR - True_value_target)^2)
mean((f_hat_target_gaussian_KRR - True_value_target)^2)

## End(Not run)
```

EM_REML_MM

Expectation-Maximization (EM) algorithm for the restricted maximum likelihood (REML) associated to the mixed model

Description

EM_REML_MM estimates the components and variance parameters of the following mixed model:

\[
Y = X*\beta + Z*u + e
\]

using the EM-REML algorithm.

Usage

```r
EM_REML_MM( Mat_K_inv, y, x, z, init_sigma2K, init_sigma2E, convergence_precision, nb_iter, display )
```

Arguments

- `Mat_K_inv`: numeric matrix; the inverse of the kernel matrix
- `y`: numeric vector; response vector
- `x`: numeric matrix; design matrix of predictors with fixed effects
- `z`: numeric matrix; design matrix of predictors with random effects
- `init_sigma2K`, `init_sigma2E`: numeric scalars; initial guess values, associated to the mixed model variance parameters, for the EM-REML algorithm
- `convergence_precision`, `nb_iter`: convergence precision (i.e. tolerance) associated to the mixed model variance parameters, for the EM-REML algorithm, and number of maximum iterations allowed if convergence is not reached
Kernel_Ridge_MM

display boolean (TRUE or FALSE character string); should estimated components be displayed at each iteration

Value

Beta_hat Estimated fixed effect(s)
Sigma2K_hat, Sigma2E_hat Estimated variance components

Author(s)

Laval Jacquin <jacquin.julien@gmail.com>

References

Kernel_Ridge_MM

Kernel ridge regression in the mixed model framework

Description

Kernel_Ridge_MM solves kernel ridge regression for various kernels within the following mixed model framework: \(Y = X \beta + Z U + E \), where \(X \) and \(Z \) correspond to the design matrices of predictors with fixed and random effects respectively.

Usage

Kernel_Ridge_MM(y_train, x_train=as.vector(rep(1,length(y_train))),
Z_train=diag(1,length(Y_train)), Matrix_covariates_train, method="RKHS",
kernel="Gaussian", rate_decay_kernel=0.1, degree_poly=2, scale_poly=1,
offset_poly=1, degree_anova=3, init_sigma2K=2, init_sigma2E=3,
convergence_precision=1e-8, nb_iter=1000, display="FALSE")

Arguments

Y_train numeric vector; response vector for training data
X_train numeric matrix; design matrix of predictors with fixed effects for training data (default is a vector of ones)
Kernel_Ridge_MM

- **Z_train**: numeric matrix; design matrix of predictors with random effects for training data (default is identity matrix)
- **Matrix_covariates_train**: numeric matrix of entries used to build the kernel matrix
- **method**: character string; RKHS, GBLUP or RR-BLUP
- **kernel**: character string; Gaussian, Laplacian or ANOVA (kernels for RKHS regression ONLY, the linear kernel is automatically built for GBLUP and RR-BLUP and hence no kernel is supplied for these methods)
- **rate_decay_kernel**: numeric scalar; hyperparameter of the Gaussian, Laplacian or ANOVA kernel (default is 0.1)
- **degree_poly**, **scale_poly**, **offset_poly**: numeric scalars; parameters for polynomial kernel (defaults are 2, 1 and 1 respectively)
- **degree_anova**: numeric scalar; parameter for ANOVA kernel (defaults is 3)
- **init_sigmaK**, **init_sigma2E**: numeric scalars; initial guess values, associated to the mixed model variance parameters, for the EM-REML algorithm (defaults are 2 and 3 respectively)
- **convergence_precision**, **nb_iter**: numeric scalars; convergence precision (i.e. tolerance) associated to the mixed model variance parameters, for the EM-REML algorithm, and number of maximum iterations allowed if convergence is not reached (defaults are 1e-8 and 1000 respectively)
- **display**: boolean (TRUE or FALSE character string); should estimated components be displayed at each iteration

Details

The matrix **Matrix_covariates_train** is mandatory to build the kernel matrix for model estimation, and prediction (see **Predict_kernel_Ridge_MM**).

Value

- **Beta_hat**: Estimated fixed effect(s)
- **Sigma2K_hat**, **Sigma2E_hat**: Estimated variance components
- **Vect_alpha**: Estimated dual variables
- **Gamma_hat**: RR-BLUP of covariates effects (i.e. available for RR-BLUP method only)

Author(s)

Laval Jacquin <jacquin.julien@gmail.com>
References

Examples

```r
## Not run:
library(KRMM)

### SIMULATE DATA
set.seed(123)
p=200
N=100

beta=rnorm(p, mean=0, sd=1.0)
X=matrix(runif(p*N, min=0, max=1), ncol=p, byrow=TRUE)  #X: covariates (i.e. predictors)

f=X%*%beta  #f: data generating process (i.e. DGP)
E=rnorm(N, mean=0, sd=0.5)

Y=f+E  #Y: observed response data

hist(f)
hist(beta)

Nb_train=floor((2/3)*N)

### CREATE TRAINING AND TARGET SETS FOR RESPONSE AND PREDICTOR VARIABLES ###

Index_train=sample(1:N, size=Nb_train, replace=FALSE)

### Covariates (i.e. predictors) for training and target sets ###
Predictors_train=X[Index_train, ]
Response_train=Y[Index_train]

Predictors_target=X[-Index_train, ]
True_value_target=f[-Index_train]  #True value (generated by DGP) we want to predict

### PREDICTION WITH KERNEL RIDGE REGRESSION SOLVED WITHIN THE MIXED MODEL FRAMEWORK ###
```
Linear kernel

```r
Linear_KRR_model_train = Kernel_Ridge_MM(Y_train=Response_train,
Matrix_covariates_train=Predictors_train, method="RR-BLUP")

f_hat_target_Linear_KRR = Predict_kernel_Ridge_MM( Linear_KRR_model_train,
Matrix_covariates_target=Predictors_target )
```

Gaussian kernel

```r
Gaussian_KRR_model_train = Kernel_Ridge_MM( Y_train=Response_train,
Matrix_covariates_train=Predictors_train, method="RKHS", rate_decay_kernel=5.0)
f_hat_target_Gaussian_KRR = Predict_kernel_Ridge_MM( Gaussian_KRR_model_train,
Matrix_covariates_target=Predictors_target )
```

Graphics for RR-BLUP

```r
dev.new(width=30, height=20)
par(mfrow=c(3,1))
plot(f_hat_target_Linear_KRR, True_value_target)
plot(Linear_KRR_model_train$Gamma_hat, xlab="Feature (i.e. covariate) number",
ylab="Feature effect (i.e. Gamma_hat)", main="BLUP of covariate effects based on training data")
hist(Linear_KRR_model_train$Gamma_hat, main="Distribution of BLUP of
covariate effects based on training data")

# Compare prediction based on linear (i.e. RR-BLUP) and Gaussian kernel

```r
par(mfrow=c(1,2))
plot(f_hat_target_Linear_KRR, True_value_target)
plot(f_hat_target_Gaussian_KRR, True_value_target)

mean((f_hat_target_Linear_KRR - True_value_target)^2)
mean((f_hat_target_Gaussian_KRR - True_value_target)^2)
```

## End (Not run)

---

**Predict_kernel_Ridge_MM**

*Predict function for Kernel_Ridge_MM object*

**Description**

Predict the value(s) for a vector or a design matrix of covariates (i.e. features)
**Usage**

`Predict_kernel_Ridge_MM( Model_kernel_Ridge_MM, Matrix_covariates_target,`  

`X_target=as.vector(rep(1,dim(Matrix_covariates_target)[1]))),`  

`Z_target=diag(1,dim(Matrix_covariates_target)[1]) )`  

**Arguments**

- `Model_kernel_Ridge_MM`: a Kernel_Ridge_MM object
- `Matrix_covariates_target`: numeric matrix; design matrix of covariates for target data
- `X_target`: numeric matrix; design matrix of predictors with fixed effects for target data (default is a vector of ones)
- `Z_target`: numeric matrix; design matrix of predictors with random effects for target data (default is identity matrix)

**Details**

The matrix `Matrix_covariates_target` is mandatory to build the kernel matrix (with `Matrix_covariates_train` from `Model_kernel_Ridge_MM`) for prediction.

**Value**

`f_hat`: Predicted value for target data, i.e. $f_{\text{hat}} = X_{\text{target}}^*\text{Beta}_{\text{hat}} + Z_{\text{target}}^*U_{\text{target}}$  
where $U_{\text{target}}=K_{\text{target}}^*\text{alpha}_{\text{train}}$ and $\text{alpha}_{\text{train}}$ is the BLUP of alpha for the model, i.e. $\text{alpha}_{\text{train}}=\text{Cov(alpha,Y_{\text{train}})}/\text{Var(Y}_{\text{train}})^{-1}*(Y_{\text{train}} - E[Y_{\text{train}}])$

**Author(s)**

Laval Jacquin <jacquin.julien@gmail.com>

**Examples**

```r
Not run:

library(KRMM)

SIMULATE DATA
set.seed(123)
p=200
N=100

beta=rnorm(p, mean=0, sd=1.0)
X=matrix(runif(p*N, min=0, max=1), ncol=p, byrow=TRUE) #X: covariates (i.e. predictors)
```
Tune_kernel_Ridge_MM

Tune kernel ridge regression in the mixed model framework

Description

Tune_kernel_Ridge_MM tunes the rate of decay parameter of kernels, by K-folds cross-validation, for kernel ridge regression.

---

```R
f=X%*%beta #f: data generating process (i.e. DGP)
E=rnorm(N, mean=0, sd=0.5)
Y=f+E #Y: observed response data

hist(f)
hist(beta)
Nb_train=floor((2/3)*N)

Index_train=sample(1:N, size=Nb_train, replace=FALSE)

Predictors_train=X[Index_train,]
Response_train=Y[Index_train]

Predictors_target=X[-Index_train,]
True_value_target=f[-Index_train] #True value (generated by DGP) we want to predict

Gaussian_KRR_model_train = Kernel_Ridge.MM(Y_train=Response_train,
 Matrix_covariates_train=Predictors_train, method="RKHS", rate_decay_kernel=5.0)

f_hat_target_Gaussian_KRR = Predict_kernel_Ridge.MM(Gaussian_KRR_model_train,
 Matrix_covariates_target=Predictors_target)

plot(f_hat_target_Gaussian_KRR, True_value_target)
```

---

Tune_kernel_Ridge_MM  Tune kernel ridge regression in the mixed model framework

Description

Tune_kernel_Ridge_MM tunes the rate of decay parameter of kernels, by K-folds cross-validation, for kernel ridge regression.
Tune_kernel_Ridge_MM

Usage

Tune_kernel_Ridge_MM(  Y_train, X_train=as.vector(rep(1,length(Y_train))),
Z_train=diag(1,length(Y_train)), Matrix_covariates_train,
method="RKHS", kernel="Gaussian", rate_decay_kernel=0.1,
degree_poly=2, scale_poly=1, offset_poly=1,
degree_anova=3, init_sigma2K=2, init_sigma2E=3,
convergence_precision=1e-8, nb_iter=1000, display="FALSE",
rate_decay_grid=seq(0.1,1.0,length.out=10),
  nb_folds=5, loss="mse")

Arguments

rate_decay_grid
  Grid over which the rate of decay is tuned by K-folds cross-validation

nb_folds
  Number of folds, i.e. K=nb_folds (default is 5)

loss
  mse (mean square error) or cor (correlation) (default is mse)

Y_train
  numeric vector; response vector for training data

X_train
  numeric matrix; design matrix of predictors with fixed effects for training data
  (default is a vector of ones)

Z_train
  numeric matrix; design matrix of predictors with random effects for training data
  (default is identity matrix)

Matrix_covariates_train
  numeric matrix of entries used to build the kernel matrix

method
  character string; RKHS, GBLUP or RR-BLUP

kernel
  character string; Gaussian, Laplacian or ANOVA (kernels for RKHS regression
  ONLY, the linear kernel is automatically built for GBLUP and RR-BLUP and
  hence no kernel is supplied for these methods)

rate_decay_kernel
  numeric scalar; hyperparameter of the Gaussian, Laplacian or ANOVA kernel
  (default is 0.1)

degree_poly, scale_poly, offset_poly
  numeric scalars; parameters for polynomial kernel (defaults are 2, 1 and 1 re-
  spectively)

degree_anova
  numeric scalar; parameter for ANOVA kernel (defaults is 3)

init_sigma2K, init_sigma2E
  numeric scalars; initial guess values, associated to the mixed model variance
  parameters, for the EM-REML algorithm (defaults are 2 and 3 respectively)
convergence_precision, nb_iter
numeric scalars; convergence precision (i.e. tolerance) associated to the mixed model variance parameters, for the EM-REML algorithm, and number of maximum iterations allowed if convergence is not reached (defaults are 1e-8 and 1000 respectively)
display boolean (TRUE or FALSE character string); should estimated components be displayed at each iteration

Value
- tuned_model the tuned model (a Kernel_Ridge_MM object)
- expected_loss_grid the average loss for each rate of decay tested over the grid
- optimal_h the rate of decay minimizing the average loss

Author(s)
Laval Jacquin <jacquin.julien@gmail.com>

Examples

```r
Not run:

library(KRMM)

SIMULATE DATA
set.seed(123)
p=200
N=100

beta=rnorm(p, mean=0, sd=1.0)
X=matrix(runif(p*N, min=0, max=1), ncol=p, byrow=TRUE) #X: covariates (i.e. predictors)

f=X%*%beta #f: data generating process (i.e. DGP)
E=rnorm(N, mean=0, sd=0.5)

Y=f+E #Y: response data

hist(f)
hist(beta)
Nb_train=floor((2/3)*N)

CREATE TRAINING AND TARGET SETS FOR RESPONSE AND PREDICTOR VARIABLES

Index_train=sample(1:N, size=Nb_train, replace=FALSE)

Covariates (i.e. predictors) for training and target sets
```
Predictors_train=X[Index_train,]
Response_train=Y[Index_train]

Predictors_target=X[-Index_train,]
True_value_target=f[-Index_train] #True value (generated by DGP) we want to predict

### Tuned Gaussian Kernel ###

Tuned_Gaussian_KRR_train = Tune_kernel_Ridge_MM( Y_train=Response_train, Matrix_covariates_train =Predictors_train, method='RKHS', rate_decay_grid=seq(1,10,length.out=10), nb_folds=5, loss='mse' )

Tuned_Gaussian_KRR_model_train = Tuned_Gaussian_KRR_train$tuned_model
Tuned_Gaussian_KRR_train$optimal_h
Tuned_Gaussian_KRR_train$expected_loss_grid

dev.new()
plot(Tuned_Gaussian_KRR_train$rate_decay_grid, Tuned_Gaussian_KRR_train$expected_loss_grid,
    type="l", main="Tuning the rate of decay (for Gaussian kernel) with K-folds cross-validation")

### Predict with tuned model ###

f_hat_target_tuned_Gaussian_KRR = Predict_kernel_Ridge_MM( Tuned_Gaussian_KRR_model_train,
    Matrix_covariates_target=Predictors_target )

mean((f_hat_target_tuned_Gaussian_KRR-True_value_target)^2)
cor(f_hat_target_tuned_Gaussian_KRR,True_value_target)

## End(Not run)
Index

*Topic package
  KRMM-package, 2

EM_REML_MM, 4

Kernel_Ridge_MM, 5
KRMM-package, 2

Predict_kernel_Ridge_MM, 8
Tune_kernel_Ridge_MM, 10