Package ‘KSD’

August 29, 2016

Type Package
Title Goodness-of-Fit Tests using Kernelized Stein Discrepancy
Version 1.0.0
Date 2016-07-30
Description An adaptation of Kernelized Stein Discrepancy, this package provides a goodness-of-fit test of whether a given i.i.d. sample is drawn from a given distribution. It works for any distribution once its score function (the derivative of log-density) can be provided. This method is based on "A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model Evaluation" by Liu, Lee, and Jordan, available at <http://arxiv.org/abs/1602.03253>.
License MIT + file LICENSE
LazyData TRUE
RoxygenNote 5.0.1
Imports pryr, graphics, stats
Suggests datasets, ggplot2, gridExtra, mclust, mvtnorm
NeedsCompilation no
Author Min Hyung Kang [aut, cre], Qiang Liu [aut]
Maintainer Min Hyung Kang <Minhyung.Daniel.Kang@gmail.com>
Repository CRAN
Date/Publication 2016-07-31 08:53:50

R topics documented:

 demo_gmm .. 2
demo_gmm_multi ... 2
demo_iris .. 3
demo_normal_performance 3
demo_simple_gamma 4
demo_simple_gaussian 4
gmm ... 5
demo_gmm

Tests 1-dimensional Gaussian Mixture Models.

Description

Tests 1-dimensional Gaussian Mixture Models.

Usage

demo_gmm()

demo_gmm_multi

Tests multidimensional Gaussian Mixture Models.

Description

Tests multidimensional Gaussian Mixture Models.

Usage

demo_gmm_multi()
demo_iris

Fits Gaussian Mixture model and computes the KSD value for the model

Description

We fit a Gaussian Mixture Model for a given dataset (Fisher’s Iris), and we compute the KSD P-value on the hold-out test dataset. User may tune the parameters and observe the change in results. Reports average of p-values obtained during each k-fold. It also plots the contour for each k-fold iteration if only 2 dimensions of data are used. If a vector is specified for nClust, the code tries each element as the number of clusters and reports the optimal parameter by choosing one with highest p-value.

Usage

demo_iris(cols = c(1L, 2), nClust = 3, kfold = 5)

Arguments

- **cols** : Columns of iris data set to use. If 2 dimensions, plots the contour for each k-fold.
- **nClust** : Number of clusters want to estimate with If vector, use each element as number of clusters and reports the optimal number.
- **kfold** : Number of k to use for k-fold

demo_normal_performance

Shows KSD p value change with respect variation in noise

Description

We generate a standard normal distribution, and add varying gaussian noise to this dataset and see the change in p-values.

Usage

demo_normal_performance()
demo_simple_gaussian Tests 1-dimensional Gaussian Distribution with customized parameters

Description

We generate a gamma distribution with given parameters, and add gaussian noise to this dataset. We then compute the score of each dataset for the original true distribution.

Usage

demo_simple_gaussian(truemap = 10, truescale = 3, noisemu = 5, noisesd = 2, n = 100)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>truemap</td>
<td>shape of true gamma distribution</td>
</tr>
<tr>
<td>truescale</td>
<td>scale of true gamma distribution</td>
</tr>
<tr>
<td>noisemu</td>
<td>mean of gaussian noise to add</td>
</tr>
<tr>
<td>noisesd</td>
<td>standard deviation of gaussian noise to add</td>
</tr>
<tr>
<td>n</td>
<td>number of samples to generate</td>
</tr>
</tbody>
</table>

demo_simple_gaussian Tests 1-dimensional Gamma Distribution with customized parameters

Description

We generate a gamma distribution with given parameters, and add gaussian noise to this dataset. We then compute the score of each dataset for the original true distribution.

Usage

demo_simple_gaussian(truemap = 5, truesd = 1, noisemu = 0, noisesd = 2, n = 100)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>truemap</td>
<td>mean of true distribution</td>
</tr>
<tr>
<td>truesd</td>
<td>standard deviation of true distribution</td>
</tr>
<tr>
<td>noisemu</td>
<td>mean of gaussian noise to add</td>
</tr>
<tr>
<td>noisesd</td>
<td>standard deviation of gaussian noise to add</td>
</tr>
<tr>
<td>n</td>
<td>number of samples to generate</td>
</tr>
</tbody>
</table>
gmm

Returns a Gaussian Mixture Model

Description

Returns a Gaussian Mixture Model

Usage

\texttt{gmm(ncomp = NULL, mu = NULL, sigma = NULL, weights = NULL, d = NULL)}

Arguments

- \texttt{ncomp} (scalar): number of components
- \texttt{mu} (d by k): mean of each component
- \texttt{sigma} (d by d by k): covariance of each component
- \texttt{weights} (1 by k): mixing weight of each proportion (optional)
- \texttt{d}: number of dimensions of vector (optional)

Value

\texttt{model}: A Gaussian Mixture Model generated from the given parameters

Examples

\begin{verbatim}
Default 1-d gaussian mixture model
model <- gmm()

1-d Gaussian mixture model with 3 components
model <- gmm(nComp = 3)

3-d Gaussian mixture model with 3 components, with specified mu, sigma and weights
mu <- matrix(c(1,2,3,2,3,4,5,6,7),ncol=3)
sigma <- array(diag(3),c(3,3,3))
model <- gmm(nComp = 3, mu = mu, sigma=sigma, weights = c(0.2,0.4,0.4), d = 3)
\end{verbatim}

KSD

Estimate Kernelized Stein Discrepancy (KSD)

Description

Estimate kernelized Stein discrepancy (KSD) using U-statistics, and use bootstrap to test H0: \(x_i \) is drawn from \(p(X) \) (via KSD=0).
Usage

KSD(x, score_function, kernel = "rbf", width = -1, nboot = 1000)

Arguments

x Sample of size Num_Instance x Num_Dimension
score_function \(\nabla_x \log p(x) \) Score function: takes x as input and output a column vector of size Num_Instance X Dimension. User may use pryr package to pass in a function that only takes in dataset as parameter, or user may also pass in computed score for a given dataset.
kernel Type of kernel (default = 'rbf')
width Bandwidth of the kernel (when width = -1 or 'median', set it to be the median distance between data points)
nboot Bootstrap sample size

Value

A list which includes the following variables:

• "ksd": Estimated Kernelized Stein Discrepancy (KSD)
• "p": p-Value for recting the null hypothesis that ksd = 0
• "bootstrapSamples": the bootstrap sample
• "info": other information, including : bandwidth, M, nboot, ksd_V

Examples

Pass in a dataset generated by Gaussian distribution,
use pryr package to pass in score function
model <- gmm()
X <- rgmm(model, n=100)
score_function = pryr::partial(scorefunctiongmm, model=model)
result <- KSD(X, score_function=score_function)

Pass in a dataset generated by Gaussian distribution,
pass in computed score rather than score function
model <- gmm()
X <- rgmm(model, n=100)
score_function = scorefunctiongmm(model=model, X=X)
result <- KSD(X, score_function=score_function)

Pass in a dataset generated by Gaussian distribution,
pass in computed score rather than score function
Use median_heuristic by specifying width to be -2.0
model <- gmm()
X <- rgmm(model, n=100)
score_function = pryr::partial(scorefunctiongmm, model=model)
result <- KSD(X, score_function=score_function, 'rbf',-2.0)

Pass in a dataset generated by specific Gaussian distribution,
pass in computed score rather than score function
Use median heuristic by specifying width to be -2.0
model <- gmm()
X <- rgmm(model, n=100)
score_function = pryr::partial(scorefunctiongmm, model=model)
result <- ksd(x, score_function=score_function, 'rbf', -2.0)

likelihoodgmm
Calculates the likelihood for a given dataset for a GMM

Description

Calculates the likelihood for a given dataset for a GMM

Usage

```r
likelihoodgmm(model = NULL, X = NULL)
```

Arguments

- **model**: The Gaussian Mixture Model
- **X**: (n by d): The dataset of interest, where n is the number of samples and d is the dimension

Value

- **P (n by k)**: The likelihood of each dataset belonging to each of the k component

Examples

```r
# compute likelihood for a default 1-d gaussian mixture model  
# and dataset generated from it
model <- gmm()
X <- rgmm(model)
p <- likelihoodgmm(model=model, X=X)
```

perturbgmm
Returns a perturbed model of given GMM

Description

Returns a perturbed model of given GMM

Usage

```r
perturbgmm(model = NULL)
```
plotgmm

Arguments

model : The base Gaussian Mixture Model

Value

perturbedModel : Perturbed model with added noise to the supplied GMM

Examples

Add noise to default 1-d gaussian mixture model
model <- gmm()
noisymodel <- perturbGmm(model)

plotgmm(data, mu = NULL)

Arguments

data (n by 1): The dataset of interest, where n is the number of samples.
mu : True mean of the GMM (optional)

Examples

Plot pdf histogram for a given dataset
model <- gmm()
X <- rgmm(model)
plotgmm(data=X)

Plot pdf histogram for a given dataset, with lines that indicate the mean
model <- gmm()
mu <- model$mu
X <- rgmm(model)
plotgmm(data=X, mu=mu)
posteriorgmm

Calculates the posterior probability for a given dataset for a GMM

Description

Calculates the posterior probability for a given dataset for a GMM

Usage

```
posteriorgmm(model = NULL, x = NULL)
```

Arguments

- `model` : The Gaussian Mixture Model
- `x` *(n by d)*: The dataset of interest, where n is the number of samples and d is the dimension

Value

`P (n by k)`: The posterior probability of each dataset belonging to each of the k components

Examples

```r
# compute posterior probability for a default 1-d gaussian mixture model
# and dataset generated from it
model <- gmm()
x <- rgmm(model)
p <- posteriorgmm(model=model, x=x)
```

rgmm

Generates dataset from Gaussian Mixture Model

Description

Generates dataset from Gaussian Mixture Model

Usage

```
rgmm(model = NULL, n = 100)
```

Arguments

- `model` : Gaussian Mixture Model defined by gmm()
- `n` : number of samples desired
Value

data (n by d): Random dataset generated from given the Gaussian Mixture Model

Note

Requires library mvtnorm

Examples

```r
generate 100 samples from default gaussian mixture model
model <- gmm()
x <- rgmm(model)

generate 300 samples from 3-d gaussian mixture model
model <- gmm(d=3)
x <- rgmm(model,n=300)
```

scorefunctiongmm
Score function for given GMM: calculates score function \(d\log p(x)/dx \) for a given Gaussian Mixture Model

Description

Score function for given GMM: calculates score function \(d\log p(x)/dx \) for a given Gaussian Mixture Model

Usage

```r
scorefunctiongmm(model = NULL, x = NULL)
```

Arguments

- `model`: The Gaussian Mixture Model
- `x` (n by d): The dataset of interest, where n is the number of samples and d is the dimension

Value

- `y`: The score computed by the given function

Examples

```r
# Compute score for a given gaussianmixture model and dataset
model <- gmm()
x <- rgmm(model)
score <- scorefunctiongmm(model=model, X=x)
```
Index

demo_gmm, 2
demo_gmm_multi, 2
demo_iris, 3
demo_normal_performance, 3
demo_simple_gamma, 4
demo_simple_gaussian, 4

gmm, 5
KSD, 5
likelihoodgmm, 7
perturbgmm, 7
plotgmm, 8
posteriorgmm, 9
rgmm, 9
scorefunctiongmm, 10