Package ‘KrigInv’

February 19, 2015

Type Package

Title Kriging-based Inversion for Deterministic and Noisy Computer Experiments

Version 1.3.1

Date 2014-12-22

Author Clement Chevalier, Victor Picheny and David Ginsbourger

Maintainer Clement Chevalier <clement.chevalier@math.uzh.ch>

Depends DiceKriging, pbivnorm, rgenoud, randtoolbox

Imports

Suggests

Description Criteria and algorithms for sequentially estimating level sets of a multivariate numerical function, possibly observed with noise.

URL http://www.sciencedirect.com/science/article/pii/S0167947313001060,
http://www.clementchevalier.com

License GPL-3

LazyLoad yes

Repository CRAN

Date/Publication 2014-12-23 00:30:22

NeedsCompilation no

R topics documented:

KrigInv-package .. 2
bichon_optim ... 4
computeAuxVariables_noChol ... 6
computeAuxVariables_update ... 7
computeQuickKrigcov ... 8
computeRealVolumeConstant .. 10
EGI ... 12
Kriging-based inversion of deterministic and stochastic computer codes

Description

Sequential algorithms based on Kriging for computer experiments, meant to explore the subset of input parameters corresponding to a prescribed level of the output.
Details

Package: KrigInv
Type: Package
Version: 1.3
Date: 2012-08-01
License: GPL version 3
LazyLoad: yes

Note

A first prototype of this package was originally developed by D. Ginsbourger in the frame of a collaboration with IRSN (Institut de Radioprotection et de Surete Nucleaire), acting through Yann Richet.

The three main authors thank IRSN for sponsoring open source research, and allowing them to spread the present package and publish it on CRAN.

They also would like to warmly thank Yann Richet for numerous discussions concerning this package, and more!

Package rgenoud >= 5.3.3. is recommended.

Important function (key to all proposed methods):

EGI Sequential Kriging-based inversion

Author(s)

C. Chevalier (IMSV, University of Bern, Switzerland and IRSN)
V. Picheny (Ecole Centrale Paris)
D. Ginsbourger (IMSV, University of Bern, Switzerland)
with contributions from Yann Richet (IRSN)
Maintainer: C. Chevalier (clement.chevalier@stat.unibe.ch)

References

Chevalier C., Picheny V., Ginsbourger D. (2012), The KrigInv package: An efficient and user-friendly R implementation of Kriging-based inversion algorithms, http://hal.archives-ouvertes.fr/hal-00713537/

bichon_optim

bichon_optim
Bichon et al.’s Expected Feasibility criterion

Description

Evaluation of Bichon’s Expected Feasibility criterion. To be used in optimization routines, like in max_infill_criterion.

Usage

bichon_optim(x, model, T, method.param = NULL)

Arguments

- **x**
 Input vector at which one wants to evaluate the criterion. This argument can be either a vector of size d (for an evaluation at a single point) or a p*d matrix (for p simultaneous evaluations of the criterion at p different points).

- **model**
 An object of class km (Kriging model).

- **T**
 Target value (scalar). The sampling algorithm and the underlying kriging model aim to find the points below (resp. over) T.

- **method.param**
 Scalar tolerance around the target T. If not provided, default value used is 1.

Value

Bichon EF criterion. When the argument x is a vector, the function returns a scalar. When the argument x is a p*d matrix, the function returns a vector of size p.
Author(s)

V. Picheny (CERFACS, Toulouse, France)
D. Ginsbourger (IMSV, University of Bern, Switzerland)
Clement Chevalier (IMSV, Switzerland, and IRSN, France)

References

Bect J., Ginsbourger D., Li L., Picheny V., Vazquez E. (2010), Sequential design of computer experiments for the estimation of a probability of failure, Statistics and Computing, pp.1-21, 2011,
http://arxiv.org/abs/1009.5177

See Also

EGI.max_infill_criterion

Examples

#bichon_optim

set.seed(8)
N <- 9 #number of observations
T <- 80 #threshold
testfun <- branin

design <- data.frame(matrix(runif(2*N),nrow=2))
response <- testfun(design)

#km object with matern3_2 covariance
#params estimated by ML from the observations
model <- km(formula=-., design = design,
response = response,covtype="matern3_2")

x <- c(0.5,0.4)#one evaluation of the bichon criterion
bichon_optim(x=x,T=T,model=model)

n.grid <- 20 #you can run it with 100
x.grid <- y.grid <- seq(0,1,length=n.grid)
x <- expand.grid(x.grid, y.grid)
bichon.grid <- bichon_optim(x=x,T=T,model=model)
z.grid <- matrix(bichon.grid, n.grid, n.grid)

#plots: contour of the criterion, doe points and new point
image(x=x.grid,y=y.grid,z=z.grid,col=grey.colors(10))
contour(x=x.grid,y=y.grid,z=z.grid,25,add=TRUE)
points(design, col="black", pch=17, lwd=4,cex=2)
computeAuxVariables_noChol

Auxiliary variables for kriging

Description

Computes or updates some auxiliary variables used for kriging (see below). This function is a copy of the computeAuxVariables function from the DiceKriging package, except that the calculation of the Cholesky decomposition is not performed, for cpu time savings.

Usage

computeAuxVariables_noChol(model)

Arguments

model An object of class km with missing or non updated fields.

Value

An updated km objet, where the changes concern the following field:

z Vector equal to t(T)^(-1)^(y - F*beta), where y, F and Beta are respectively the vector of response, the experimental matrix and the trend coefficients specified in model.

Author(s)

O. Roustant, D. Ginsbourger, Ecole des Mines de St-Etienne

References

See Also

c chol, backsolve.
Examples

```r
#computeAuxVariables_noChol
set.seed(8)
N <- 9  #number of observations
testfun <- branin

data <- data.frame(matrix(runif(2*N),nrow=2) )
response <- testfun(data)

#km object with matern3_2 covariance
#params estimated by ML from the observations
model <- km(formula=-., design = data,
response = response,covtype="matern3_2")

model2 <- computeAuxVariables_noChol(model)
#in this example model2 and model are the same!
```

Description

Function similar to the `computeAuxVariables` of the DiceKriging package, with a quicker implementation.

Usage

```r
computeAuxVariables_update(model)
```

Arguments

- `model` A Kriging model of `km` class.

Details

This function was introduced to optimize the calculation time of some expensive to evaluate integral criteria.

Value

An updated `km` model

Author(s)

Clement Chevalier (IMSV, Switzerland, and IRSN, France)
computeQuickKrigcov

Quick computation of kriging covariances

Description
Computes kriging covariances between one new point and many integration points, using precomputed data.

Usage
computeQuickKrigcov(model, integration.points, X.new, precalc.data, F.newdata, c.newdata)

Arguments
- **model**: A Kriging model of km class.
- **integration.points**: p*d matrix of points for numerical integration in the X space.
- **X.new**: The new point where we calculate kriging covariances. The calculated covariances are the covariances between this new point and all the integration points.
- **precalc.data**: List containing precalculated data. This list is generated using the function precomputeUpdateData
- **F.newdata**: The value of the kriging trend basis function at point X.new
- **c.newdata**: The (unconditional) covariance between X.new and the design points

See Also
computeAuxVariables

Examples
```r
#computeAuxVariables_update

set.seed(8)
N <- 9 #number of observations
testfun <- branin

design <- data.frame(matrix(runif(2*N), ncol=2))
response <- testfun(design)

design <- data.frame(matrix(runif(2*N), ncol=2))
response <- testfun(design)

#km object with matern3_2 covariance
#params estimated by ML from the observations
model <- km(formula=-., design = design,
response = response, covtype="matern3_2")

model2 <- computeAuxVariables_update(model)
#this example model2 and model are the same!
```
computeQuickKrigcov

Details

This function requires to use another function in order to generate the proper arguments. The argument precalc.data can be generated using precomputeUpdateData. The arguments F.newdata and c.newdata can be obtained using predict_nobias_km, which returns a field F.newdata and a field c.

Value

A vector containing kriging covariances

Author(s)

Clement Chevalier (IMSV, Switzerland, and IRSN, France)

References

See Also

precomputeUpdateData, predict_nobias_km, predict_update_km

Examples

#computeQuickKrigcov

set.seed(8)
N <- 9 # number of observations
testfun <- branin

data 9 points initial design
design <- data.frame(matrix(runif(2*N),ncol=2))
response <- testfun(design)

km object with matern3_2 covariance
params estimated by ML from the observations
model <- km(formula=-., design = design,
response = response,covtype="matern3_2")

the points where we want to compute prediction
if a point new.x is added to the doe
n.grid <- 20 # you can run it with 100
x.grid <- y.grid <- seq(0,1,length=n.grid)
newdata <- expand.grid(x.grid,y.grid)

precalculation
precalc.data <- precomputeUpdateData(model=model,
now we can compute very quickly kriging covariances
between these data and any other points
other.x <- matrix(c(0.6, 0.6), ncol=2)
pred <- predict_nobias_km(object=model, newdata=other.x, type="UK", se.compute=TRUE)

kn <- computeQuickKrigcov(model=model, integration.points=newdata, X.new=other.x, precalc.data=precalc.data, F.newdata=pred$f.newdata, c.newdata=pred$c)

z.grid <- matrix(kn, n.grid, n.grid)

plots: contour of the criterion, doe points and new point
image(x=x.grid, y=y.grid, z=z.grid, col=grey.colors(10))
contour(x=x.grid, y=y.grid, z=z.grid, add=TRUE)
contour(x=x.grid, y=y.grid, z=z.grid, levels=0, add=TRUE, col="blue", lwd=5)
points(design, col="black", pch=17, lwd=4, cex=2)
points(other.x, col="red", pch=17, lwd=4, cex=3)
title("Kriging covariances with the point (0.6,0.6), in red")

computeRealVolumeConstant

A constant used to calculate the expected excursion set's volume variance

Description

This function computes a constant used to calculate exactly the value of the "jn" criterion at one point. Computing this constant does NOT change the optimum of the "jn" criterion. Therefore, its calculation is indicative only and is only necessary to know exactly (in expectation) the excursion set's volume variance.

Usage

computeRealVolumeConstant(model, integration.points, integration.weights=NULL, T)

Arguments

model
A Kriging model of km class.
integration.points
p*d matrix of points for numerical integration in the X space.
injection.weights
(Optional) Vector of size p corresponding to the weights of these integration points. If not provided, all weights are set to 1.
T
the targeted (scalar) output value
Value

a scalar

Author(s)

Clement Chevalier (IMSV, Switzerland, and IRSN, France)

References

See Also

`precomputeUpdateData`, `predict_nobias_km`, `predict_update_km`

Examples

```r
#computeRealVolumeConstant

set.seed(8)
N <- 9  # number of observations
testfun <- branin
T <- 80

# a 9 points initial design
design <- data.frame(matrix(runif(2*N), ncol=2))
response <- testfun(design)

# km object with matern3_2 covariance
# params estimated by ML from the observations
model <- km(formula = ~., design = design,
             response = response, covtype = "matern3_2")

integcontrol <- list(n.points = 50, distrib = "sur", init.distrib = "MC")
obj <- integration_design(integcontrol = integcontrol,
                          lower = c(0, 0), upper = c(1, 1),
                          model = model, T = T)
integration.points <- obj$integration.points
integration.weights <- obj$integration.weights

## Not run:
computeRealVolumeConstant(model = model,
                          integration.points = integration.points,
                          integration.weights = integration.weights, T = T)

## End(Not run)
```
Description

Sequential sampling based on the optimization of a kriging-based criterion, with model update after each evaluation. Seven criteria are available for selecting experiments, three inexpensive ("bichon", "ranjan", and "tmse") and four expensive ones that require numerical integration ("imse", "timse", "sur" and "jn").

Usage

```r
EGI(T, model, method = NULL, method.param = NULL, 
  fun, iter, lower, upper, new.noise.var = 0, 
  optimcontrol = NULL, kmcontrol = NULL, integcontrol = NULL, ...)
```

Arguments

- **T**
 Target value (a real number). The sampling algorithm and the underlying kriging model aim at finding the points for which the output is close to T.

- **model**
 A Kriging model of `km` class.

- **method**
 Criterion used for choosing observations. Available criteria are "ranjan" (default), "bichon", "tmse", "timse", "imse", "sur" and "jn".

- **method.param**
 Optional tolerance value (scalar) for methods "ranjan", "bichon", "tmse" and "timse". If not provided, default value is used (1 for ranjan and bichon, 0 for tmse and timse).

- **fun**
 Objective function.

- **iter**
 Number of iterations (i.e. number of additional sampling points).

- **lower**
 Vector containing the lower bounds of the design space.

- **upper**
 Vector containing the upper bounds of the design space.

- **new.noise.var**
 Optional scalar value of the noise variance of the new observations.

- **optimcontrol**
 Optional list of control parameters for the optimization of the sampling criterion. The field method defines which optimization method is used: it can be either "genoud" (default) for an optimisation using the genoud algorithm, or "discrete" for an optimisation over a specified discrete set. If the field method is set to "genoud", one can set some parameters of this algorithm: pop.size (default : 50*d), max.generations (default : 10*d), wait.generations (2), BFGSburnin (2) and the mutations P1, P2, up to P9 (see **genoud**). Numbers into brackets are the default values. If the field method is set to "discrete", one can set the field optim.points: p * d matrix corresponding to the p points where the criterion will be evaluated. If nothing is specified, 100*d points are chosen randomly.
kmcontrol
Optional list representing the control variables for the re-estimation of the kriging model once new points are sampled. The items are the same as in km.

integcontrol
Optional list specifying the procedure to build the integration points and weights, relevant only for the sampling criteria based on numerical integration: ("imse", "timse", "sur" or "jn"). Many options are possible. A) If nothing is specified, 100*d points are chosen using the Sobol sequence. B) One can directly set the field integration.points (a p * d matrix) for prespecified integration points. In this case these integration points and the corresponding vector integration.weights will be used for all the iterations of the algorithm. C) If the field integration.points is not set then the integration points are renewed at each iteration. In that case one can control the number of integration points n.points (default: 100*d) and a specific distribution distrib. Possible values for distrib are: "sobol", "MC", "timse", "imse", "sur" and "jn" (default: "sobol"). C.1) The choice "sobol" corresponds to integration points chosen with the Sobol sequence in dimension d (uniform weight). C.2) The choice "MC" corresponds to points chosen randomly, uniformly on the domain. C.3) The choices "timse", "imse", "sur" and "jn" correspond to importance sampling distributions (unequal weights). It is strongly recommended to use the importance sampling distribution corresponding to the chosen sampling criterion. When important sampling procedures are chosen, n.points points are chosen using importance sampling among a discrete set of n.candidates points (default: n.points*10) which are distributed according to a distribution init.distrib (default: "sobol"). Possible values for init.distrib are the space filling distributions "sobol" and "MC" or an user defined distribution "spec". The "sobol" and "MC" choices correspond to quasi random and random points in the domain. If the "spec" value is chosen the user must fill in manually the field init.distrib.spec to specify himself a n.candidates * d matrix of points in dimension d.

... Other arguments of the target function fun.

Details

The function used to build the integration points and weights (based on the options specified in integcontrol) is the function integration_design

Value

A list with components:

par
The added observations (ite * d matrix)
value
The value of the function fun at the added observations (vector of size "ite")
nsteps
The number of added observations (=ite).
lastmodel
The current (last) kriging model of km class.
lastvalue
The value of the criterion at the last added point.
allvalues
If an optimization on a discrete set of points is chosen, the value of the criterion at all these points, for the last iteration.
Author(s)

Clement Chevalier (IMSV, Switzerland, and IRSN, France)
Victor Picheny (CERFACS, Toulouse, France)
David Ginsbourger (IMSV, University of Bern, Switzerland)

References

Chevalier C., Picheny V., Ginsbourger D. (2012), The KrigInv package: An efficient and user-friendly R implementation of Kriging-based inversion algorithms, http://hal.archives-ouvertes.fr/hal-00713537/

See Also

max_sur, max_timse, max_infill_criterion

Examples

#EGI

set.seed(8)
N <- 9 #number of observations
T <- 80 #threshold
testfun <- branin
lower <- c(0,0)
upper <- c(1,1)

#a 9 points initial design
design <- data.frame(matrix(runif(2*N),ncol=2))
response <- testfun(design)

#km object with matern3_2 covariance
#params estimated by ML from the observations
model <- km(formula=-., design = design,
response = response,covtype="matern3_2")

optimcontrol <- list(method="genoud",pop.size=50)
integcontrol <- list(distrib="sur",n.points=50)
iter <- 1

Not run:
obj1 <- EGI(T=T,model=model,method="sur",fun=testfun,iter=iter,
lower=lower,upper=upper,optimcontrol=optimcontrol,
integcontrol=integcontrol)
```r
ej <- EGI(T=T, model=model, method="ranjan", fun=testfun, iter=iter,
  lower=lower, upper=upper, optimcontrol=optimcontrol)

par(mfrow=c(1,3))
print_uncertainty_2d(model=model, T=T, main="probability of excursion",
  type="pn", new.points=0, cex.points=2)

print_uncertainty_2d(model=obj1$lastmodel, T=T,
  main="updated probability of excursion, sur sampling",
  type="pn", new.points=iter, col.points.end="red", cex.points=2)

print_uncertainty_2d(model=obj2$lastmodel, T=T,
  main="updated probability of excursion, ranjan sampling",
  type="pn", new.points=iter, col.points.end="red", cex.points=2)

## End(Not run)

###same example with noisy initial observations and noisy new observations

branin.noise <- function(x) return(branin(x)+rnorm(n=1, sd=30))

set.seed(8)
N <- 9; T <- 80
testfun <- branin.noise
lower <- c(0,0); upper <- c(1,1)
design <- data.frame( matrix(runif(2*N), ncol=2) )
response.noise <- apply(design, 1, testfun)
response.noise - response

model.noise <- km(formula=~., design = design, response = response.noise,
  covtype="matern3_2", noise.var=rep(30*30, times=N))

optimcontrol <- list(method="genoud", pop.size=50)
integcontrol <- list(distrib="sur", n.points=50)
iter <- 1

## Not run:

obj1 <- EGI(T=T, model=model.noise, method="sur", fun=testfun, iter=iter,
  lower=lower, upper=upper, optimcontrol=optimcontrol,
  integcontrol=integcontrol, new.noise.var=30*30)

obj2 <- EGI(T=T, model=model.noise, method="ranjan", fun=testfun, iter=iter,
  lower=lower, upper=upper, optimcontrol=optimcontrol,
  new.noise.var=30*30)

par(mfrow=c(1,3))
print_uncertainty_2d(model=model.noise, T=T,
  main="probability of excursion, noisy obs.",
  type="pn", new.points=0, cex.points=2)

print_uncertainty_2d(model=obj1$lastmodel, T=T,
  main="probability of excursion, noisy obs.",
  type="pn", new.points=0, cex.points=2)
```
Efficient Global Inversion: Parallel version.

Description

Sequential sampling based on the optimization of a kriging-based criterion, with model update after each evaluation. Similar to EGI, except that samples can be chosen in batches instead of one at a time. Three criteria are available for now.

Usage

\[
\text{egiparallel}(T, \text{model}, \text{method} = \text{NULL}, \text{method.param} = \text{NULL}, \\
\text{fun}, \text{iter}, \text{batchsize} = 1, \\
\text{lower}, \text{upper}, \text{new.noise.var} = 0, \\
\text{optimcontrol} = \text{NULL}, \text{kmcontrol} = \text{NULL}, \text{integcontrol} = \text{NULL}, \ldots)
\]

Arguments

- \(T\): Target value (scalar). The sampling algorithm and the underlying kriging model at finding the points for which the output is close to \(T\).
- \(\text{model}\): A Kriging model of \texttt{km} class.
- \(\text{method}\): Criterion used for choosing observations. The two sampling methods available in parallel version are "sur", "timse" and "vorob".
- \(\text{method.param}\): Optional tolerance value (a real number) for method "timse".
- \(\text{batchsize}\): Number of points to sample simultaneously. The sampling criterion will return \text{batchsize} points at a time for sampling.
- \(\text{new.noise.var}\): Optional scalar value of the noise variance of the new observations.
- \(\text{fun}\): Objective function.
- \(\text{iter}\): Number of iterations.
- \(\text{lower}\): Vector containing the lower bounds of the variables to be optimized over.
- \(\text{upper}\): Vector containing the upper bounds of the variables to be optimized over.
- \(\text{optimcontrol}\): Optional list of control parameters for the optimization of the sampling criterion. The field \text{method} defines which optimization method is used: it can be either "genoud" (default) for an optimisation using the genoud algorithm, or "discrete" for an optimisation over a specified discrete set. If the field \text{method} is set to "genoud", one can set some parameters of this algorithm: \text{pop.size}...
(default: 50*d), max. generations (default: 10*d),
wait.generations (2), BFGSburnin (2) and the mutations P1, P2, up to P9
(see genoud). Numbers into brackets are the default values. If the field method
is set to "discrete", one can set the field optim.points: p * d matrix cor-
responding to the p points where the criterion will be evaluated. If nothing
is specified, 100*d points are chosen randomly. Finally, one can control the
field optim.option in order to decide how to optimize the sampling criterion. If
optim.option is set to 2 (default), batchsize sequential optimizations in dimension
D are performed to find the optimum. If optim.option is set to 1, only
one optimization in dimension batchsize*d is performed. This option is only
available with "genoud". This option might provide more global and accurate
solutions, but is a lot more expensive.

kmcontrol Optional list representing the control variables for the re-estimation of the krig-
ing model once new points are sampled. The items are the same as in km.

integcontrol Optional list specifying the procedure to build the integration points and weights.
Many options are possible. A) If nothing is specified, 100*d points are chosen
using the Sobol sequence.
B) One can directly set the field integration.points (a p * d matrix) for
prespecified integration points. In this case these integration points and the cor-
responding vector integration.weights will be used for all the iterations of
the algorithm. C) If the field integration.points is not set then the integra-
tion points are renewed at each iteration. In that case one can control the num-
ber of integration points n.points (default: 100*d) and a specific distribution
distrib. Possible values for distrib are: "sobol", "MC", "timse", "imse",
"sur" and "jn" (default: "sobol"). C.1) The choice "sobol" corresponds to
integration points chosen with the Sobol sequence in dimension d (uniform
weight). C.2) The choice "MC" corresponds to points chosen randomly, uni-
formly on the domain. C.3) The choices "timse", "imse", "sur" and "jn" cor-
respond to importance sampling distributions (unequal weights). It is strongly
recommended to use the importance sampling distribution corresponding to the
chosen sampling criterion. When important sampling procedures are chosen,
n.points points are chosen using importance sampling among a discrete set of
n.candidates points (default: n.points*10) which are distributed according
to a distribution
init.distrib (default: "sobol"). Possible values for init.distrib are the
space filling distributions "sobol" and "MC" or an user defined distribution
"spec". The "sobol" and "MC" choices correspond to quasi random and random
points in the domain. If the "spec" value is chosen the user must fill in
manually the field init.distrib.spec to specify himself a n.candidates * d
matrix of points in dimension d.

... Other arguments of the target function fun.

Details

The function used to build the integration points and weights (based on the options specified in
integcontrol) is the function integration_design
Value

A list with components:

- **par** The added observations ((iter*batchsize) * d matrix)
- **value** The value of fun at the added observations (size: iter*batchsize)
- **nsteps** The number of added observations (=iter*batchsize).
- **lastmodel** The current (last) kriging model of `km` class.
- **lastvalue** The value of the criterion at the last added batch of points.
- **allvalues** If an optimization on a discrete set of points is chosen, the value of the criterion at all these points, for the last iteration, for the last point of the batch.

Author(s)

Clement Chevalier (IMSV, Switzerland, and IRSN, France)
Victor Picheny (CERFACS, Toulouse, France)

References

Chevalier C., Picheny V., Ginsbourger D. (2012), *The KrigInv package: An efficient and user-friendly R implementation of Kriging-based inversion algorithms*, http://hal.archives-ouvertes.fr/hal-00713537/

See Also

`EGI`, `max_sur_parallel`, `sur_optim_parallel`

Examples

```r
# EGIparallel

set.seed(8)
N <- 9 # number of observations
T <- 80 # threshold
testfun <- branin
lower <- c(0, 0)
upper <- c(1, 1)

# a 9 points initial design
design <- data.frame(matrix(runif(2*N), ncol=2))
response <- testfun(design)

# km object with matern3_2 covariance
```

#params estimated by ML from the observations
model <- km(formula=-., design = design,
 response = response,covtype="matern3_2")

optimcontrol <- list(method="genoud",pop.size=50)
integcontrol <- list(distrib="sur",n.points=50)
iter <- 1
batchsize <- 6

Not run:
obj <- EGIparallel(T=T,model=model,method="sur",batchsize=batchsize,
 fun=testfun,iter=iter,lower=lower,upper=upper,
 optimcontrol=optimcontrol,integcontrol=integcontrol)

par(mfrow=c(1,2))
print_uncertainty_2d(model=T,T,main="probability of excursion",
 type="pn",new.points=0,cex.points=2)

print_uncertainty_2d(model=obj$lastmodel,T=T,
 main="probability of excursion, parallel sur sampling",
 type="pn",new.points=iter*batchsize,col.points.end="red",cex.points=2)

End(Not run)

###############################
same example with noisy initial observations and noisy new observations
branin.noise <- function(x) return(branin(x)+rnorm(n=1,sd=30))

set.seed(8)
N <- 9;T <- 80

par(mfrow=c(1,2))
testfun <- branin.noise
lower <- c(0,0);upper <- c(1,1)

design <- data.frame(matrix(runif(2*N),ncol=2))
response.noise <- apply(design,1,testfun)
response.noise - response

model.noise <- km(formula=-., design = design, response = response.noise,
 covtype="matern3_2",noise.var=rep(30*30,times=N))

optimcontrol <- list(method="genoud",pop.size=50)
integcontrol <- list(distrib="sur",n.points=50)
iter <- 1
batchsize <- 6

Not run:
obj <- EGIparallel(T=T,model=model.noise,method="sur",batchsize=batchsize,
 fun=testfun,iter=iter,lower=lower,upper=upper,
 optimcontrol=optimcontrol,integcontrol=integcontrol,
 new.noise.var=30*30)

par(mfrow=c(1,2))
integration_design

Construction of a sample of integration points and weights

Description

Generic function to build integration points for some sampling criterion. Available important sampling schemes are "sur", "jn", "timse", "vorob" and "imse". Each of them corresponds to a sampling criterion.

Usage

integration_design(integcontrol = NULL, d = NULL, lower, upper, model = NULL, T = NULL, min.prob=0.001)

Arguments

integcontrol

Optional list specifying the procedure to build the integration points and weights, relevant only for the sampling criteria based on numerical integration: ("imse", "timse", "sur" or "jn"). Many options are possible. A) If nothing is specified, 100*d points are chosen using the Sobol sequence. B) One can directly set the field integration.points (a p * d matrix) for prespecified integration points. In this case these integration points and the corresponding vector integration.weights will be used for all the iterations of the algorithm. C) If the field integration.points is not set then the integration points are renewed at each iteration. In that case one can control the number of integration points n.points (default: 100*d) and a specific distribution distrib. Possible values for distrib are: "sobol", "MC", "timse", "imse", "sur" and "jn" (default: "sobol"). C.1) The choice "sobol" corresponds to integration points chosen with the Sobol sequence in dimension d (uniform weight). C.2) The choice "MC" corresponds to points chosen randomly, uniformly on the domain. C.3) The choices "timse", "imse", "sur" and "jn" correspond to importance sampling distributions (unequal weights). It is strongly recommended to use the importance sampling distribution corresponding to the chosen sampling criterion. When important sampling procedures are chosen, n.points points are chosen using importance sampling among a discrete set of n.candidates points (default: n.points*10) which are distributed according to a distribution init.distrib (default: "sobol"). Possible values for init.distrib are the space filling distributions "sobol" and "MC" or an user defined distribution.
"spec". The "sobol" and "MC" choices correspond to quasi random and random points in the domain. If the "spec" value is chosen the user must fill in manually the field init.distrib.spec to specify himself a n.candidates * d matrix of points in dimension d.

d
The dimension of the input set. If not provided d is set equal to the length of lower.

lower
Vector containing the lower bounds of the design space.

upper
Vector containing the upper bounds of the design space.

model
A Kriging model of km class.

T
Target value (scalar). The sampling algorithm and the underlying kriging model aim at finding the points for which the output is close to T.

min.prob
This argument applies only when importance sampling distributions are chosen (to compute integral criteria like "sur" or "timse"). For numerical reasons we give a minimum probability for a point to belong to the importance sample. This avoids probabilities equal to zero and importance sampling weights equal to infinity. In an importance sample of M points, the maximum weight becomes 1/min.prob * 1/M.

Details
The important sampling aims at improving the accuracy of the calculation of numerical integrals present in these criteria.

Value
A list with components:

integration.points
p x d matrix of p points used for the numerical calculation of integrals

integration.weights
a vector of size p corresponding to the weight of each point. If all the points are equally weighted, integration.weights is set to NULL

alpha
if the "vorob" important sampling schemes is chosen, the function also returns a scalar, alpha, being the calculated Vorob’ev threshold

Author(s)
Clement Chevalier (IMSV, Switzerland, and IRSN, France)

References
Chevalier C., Picheny V., Ginsbourger D. (2012), The KrigInv package: An efficient and user-friendly R implementation of Kriging-based inversion algorithms, http://hal.archives-ouvertes.fr/hal-00713537/

See Also

EGI.max_timse.max_sur

Examples

```r
#integration_design

## Not run:
set.seed(8)
# when nothing is specified: integration points
# are chosen with the sobol sequence
integ.param <- integration_design(lower=c(0,0),upper=c(1,1))
plot(integ.param$integration.points)

## End(Not run)

# an example with pure random integration points
integcontrol <- list(distrib="MC",n.points=50)
integ.param <- integration_design(integcontrol=integcontrol,
lower=c(0,0),upper=c(1,1))
plot(integ.param$integration.points)

# an example with important sampling distributions
# these distributions are used to compute integral criterion like
# "sur", "timse" or "imse"

# for these, we need a kriging model
N <- 14; testfun <- branin; T <- 80
lower <- c(0,0); upper <- c(1,1)
design <- data.frame( matrix(runif(2*N),ncol=2) )
response <- testfun(design)
model <- km(formula=-., design = design,
response = response, covtype="matern3_2")

integcontrol <- list(distrib="timse",n.points=200,n.candidates=5000,init.distrib="MC")
integ.param <- integration_design(integcontrol=integcontrol,
lower=c(0,0),upper=c(1,1), model=model,T=T)

print_uncertainty_2d(model=model,T=T,type="timse",
col.points.init="red",cex.points=2,
main="timse uncertainty and one sample of integration points")
points(integ.param$integration.points,pch=17,cex=1)
```
jn_optim

jn criterion optimization

Description

Evaluation of the "jn" criterion for a candidate point. To be used in the optimization routines max_sur with the argument real.volume.variance=TRUE. To avoid numerical instabilities, a new point is added to the design of experiments only if it is not too close to an existing observation, or if there is some observation noise. The criterion is the integral of the posterior expected jn uncertainty, which is the posterior expected variance of the excursion set’s volume.

Usage

jn_optim(x, integration.points, integration.weights = NULL,
 intpoints.oldmean, intpoints.oldsd,
 precalc.data, model, T, new.noise.var = NULL, current.sur=0)

Arguments

x
 Input vector of size d at which the criterion is evaluated.

integration.points
 p*d matrix of points for numerical integration in the X space.

integration.weights
 Vector of size p corresponding to the weights of these integration points. If not
 provided, uniform weight is used.

intpoints.oldmean
 Vector of size p corresponding to the kriging mean at the integration points be-
 fore adding x to the design of experiments.

intpoints.oldsd
 Vector of size p corresponding to the kriging standard deviation at the integration
 points before adding x to the design of experiments.

precalc.data
 List containing useful data to compute quickly the updated kriging variance.
 This list can be generated using the precomputeUpdateData function.

model
 Object of class km (Kriging model).

T
 Target value (scalar).

ten.noise.var
 Optional scalar value of the noise variance for the new observations.

current.sur
 Arbitrary value given to the "jn" criterion for candidate points that are too close
to existing observations. This argument applies only if the noise variance is zero.

Value

jn value

Author(s)

Clement Chevalier (IMSV, Switzerland, and IRSN, France)
References

See Also

EGI.max_sur, sur_optim

Examples

```r
#jn_optim

set.seed(8)
N <- 9 #number of observations
T <- 80 #threshold
testfun <- branin

#a 9 points initial design
design <- data.frame(matrix(runif(2*N),ncol=2))
response <- testfun(design)

#km object with matern3_2 covariance
#params estimated by ML from the observations
model <- km(formula=~., design = design,
response = response,covtype="matern3_2")

###we need to compute some additional arguments:
#integration points, and current kriging means and variances at these points
integcontrol <- list(n.points=50,distrib="jn",init.distrib="MC")
obj <- integration_design(integcontrol=integcontrol,lower=c(0,0),upper=c(1,1),
model=model,T=T)
integration.points <- obj$integration.points
integration.weights <- obj$integration.weights
pred <- predict_nobias_km(object=model,newdata=integration.points,
type="UK",se.compute=TRUE)
intpoints.oldmean <- pred$mean ; intpoints.oldsd<-pred$sd

#another precomputation
precalc.data <- precomputeUpdateData(model,integration.points)

x <- c(0.5,0.4)#one evaluation of the jn criterion
jn_optim(x=x,integration.points=integration.points,
integration.weights=integration.weights,
intpoints.oldmean=intpoints.oldmean,intpoints.oldsd=intpoints.oldsd,
precalc.data=precalc.data,T=T,model=model)
#returns a negative value
```
max_infill_criterion

Optimizer for the infill criteria

Description

Global optimization, based on the package rgenoud (or on exhaustive search on a discrete set), of
the chosen infill criterion (maximization or minimization, depending on the case)

Usage

max_infill_criterion(lower, upper, optimcontrol = NULL,
method, T, model, method.param = NULL)

Arguments

lower Vector containing the lower bounds of the design space.
upper Vector containing the upper bounds of the design space.
optimcontrol Optional list of control parameters for the optimization of the sampling cri-
terion. The field method defines which optimization method is used: it can be either "genoud" (default) for an optimisation using the genoud algorithm, or "discrete" for an optimisation over a specified discrete set. If the field method is set to "genoud", one can set some parameters of this algorithm:
pop.size (default: 50*d), max.generations (10*d), wait.generations (2), BFGSburnin (2) and the mutations P1, P2, up to P9 (see genoud). Numbers into brackets are the default values. If the field method is set to "discrete", one can set the field optim.points: p * d matrix corresponding to the p points where the criterion will be evaluated. If nothing is specified, 100*d points are chosen randomly.

method Criterion used for choosing observations: "ranjan" (default), "bichon", or "tmse".

T Target value (scalar).

model A Kriging model of km class.

method.param Optional tolerance value (scalar). Default value is 1 for "ranjan" and "bichon", and 0 for "tmse".

Value

A list with components:

par The best set of parameters found.

value The value of the chosen criterion at par.

allvalues If an optimization on a discrete set of points is chosen, the value of the criterion at all these points.

Author(s)

Victor Picheny (CERFACS, Toulouse, France)

David Ginsbourger (IMSV, University of Bern, Switzerland)

References

See Also

EGI.ranjan_optim,tmse_optim,bichon_optim
Examples

```r
#max_infill_criterion

set.seed(8)
N <- 9 # number of observations
T <- 80 # threshold
testfun <- branin
lower <- c(0,0)
upper <- c(1,1)

# a 9 points initial design
design <- data.frame(matrix(runif(2*N),nrow=2))
response <- testfun(design)

# km object with matern3_2 covariance
# params estimated by ML from the observations
model <- km(formula=-., design = design,
            response = response,covtype="matern3_2")

optimcontrol <- list(method="genoud",pop.size=50)

obj <- max_infill_criterion(lower=lower,upper=upper,optimcontrol=optimcontrol,
                            method="bichon",T=T,model=model)

obj$par;obj$value
new.model <- update_km(model=new.model,NewX=obj$par,testfun(obj$par),CovReEstimate=TRUE)

## Not run:
par(mfrow=c(1,2))
print_uncertainty(model=model,T=T,type="pn",lower=lower,upper=upper,
cex.points=2.5,main="probability of excursion")

print_uncertainty(model=new.model,T=T,type="pn",lower=lower,upper=upper,
new.points=1,col.points.end="red",cex.points=2.5,main="updated probability of excursion")
## End(Not run)
```

max_sur

Minimizer of the sur criterion

Description

Minimization, based on the package rgenoud (or on exhaustive search on a discrete set), of the sur criterion.

Usage

```r
max_sur(lower, upper, optimcontrol = NULL,
        integration.param = NULL, T, model,
        new.noise.var = 0, real.volume.variance = FALSE, real.volume.constant = FALSE)
```
Arguments

lower Vector containing the lower bounds of the design space.
upper Vector containing the upper bounds of the design space.
optimcontrol Optional list of control parameters for the optimization of the sampling criterion. The field method defines which optimization method is used: it can be either "genoud" (default) for an optimization using the genoud algorithm, or "discrete" for an optimization over a specified discrete set. If the field method is set to "genoud", one can set some parameters of this algorithm: pop.size (default: 50*d), max.generations (10*d), wait.generations (2), BFGSburnin (2) and the mutations P1, P2, up to P9 (see genoud). Numbers into brackets are the default values. If the field method is set to "discrete", one can set the field optim.points: p * d matrix corresponding to the p points where the criterion will be evaluated. If nothing is specified, 100*d points are chosen randomly.

integration.param Optional list of control parameter for the computation of integrals, containing the fields integration.points: a p*d matrix corresponding to p integration points and integration.weights: a vector of size p corresponding to the weights of these integration points. If nothing is specified, default values are used (see: function integration_design for more details).

T Target value (scalar).
model A Kriging model of km class.
new.noise.var Optional scalar value of the noise variance at the new observation.
real.volume.variance Boolean to decide if the "jn" sampling criterion should be used instead of the "sur" criterion. When it is equal to FALSE (default), the "sur" criterion is used (faster computation).
real.volume.constant When the "jn" criterion is chosen, this argument decides whether a constant part of the "jn" criterion should be computed or not. Computing this constant does NOT change the optimum of the "jn" criterion. Default value: FALSE. This argument is ignored if the argument real.volume.variance is set to FALSE.

Value

A list with components:

par Best set of parameters found.
value Value of the criterion at par.
allvalues If an optimization on a discrete set of points is chosen, the value of the criterion at all these points
variance.volume If the arguments real.volume.variance and real.volume.constant are both set to TRUE, the value of the computed constant
Author(s)

Victor Picheny (CERFACS, Toulouse, France)
David Ginsbourger (IMSV, University of Bern, Switzerland)
Clement Chevalier (IMSV, Switzerland, and IRSN, France)

References

See Also

Egi, sur_optim

Examples

```r
#max_sur

set.seed(8)
N <- 9  # number of observations
T <- 80  # threshold
testfun <- branin
lower <- c(0, 0)
upper <- c(1, 1)

# a 9 points initial design
design <- data.frame(matrix(runif(2*N), ncol=2))
response <- testfun(design)

# km object with matern3_2 covariance
# params estimated by ML from the observations
model <- km(formula=~., design=design,
            response=response,
covtype="matern3_2")

optimcontrol <- list(method="genoud", pop.size=50)
integcontrol <- list(distrib="sur", n.points=50, init.distrib="MC")
integration.param <- integration_design(integcontrol=integcontrol, d=2,
                        lower=lower, upper=upper, model=model,
                        T=T)

## Not run:
obj <- max_sur(lower=lower, upper=upper, optimcontrol=optimcontrol, T=T,
               model=model, integration.param=integration.param)
```
max_sur_parallel

Minimizer of the parallel sur criterion

Description

Minimization, based on the package rgenoud (or on exhaustive search on a discrete set), of the sur criterion for a batch of candidate sampling points.

Usage

max_sur_parallel(lower, upper, optimcontrol = NULL, batchsize, integration.param, T, model, new.noise.var = 0)

Arguments

lower Vector containing the lower bounds of the design space.
upper Vector containing the upper bounds of the design space.
optimcontrol Optional list of control parameters for the optimization of the sampling criterion. The field method defines which optimization method is used: it can be either "genoud" (default) for an optimisation using the genoud algorithm, or "discrete" for an optimisation over a specified discrete set. If the field method is set to "genoud", one can set some parameters of this algorithm: pop.size (default: 50*d), max.generations (10*d), wait.generations (2), BFGSburnin (2) and the mutations P1, P2, up to P9 (see genoud). Numbers into brackets are the default values. If the field method is set to "discrete", one can set the field optim.points: p * d matrix corresponding to the p points where the criterion will be evaluated. If nothing is specified, 100*d points are chosen randomly. Finally, one can control the field optim.option in order to decide how to optimize the sampling criterion. If optim.option is set to 2 (default), batch-size sequential optimizations in dimension d are performed to find the optimum. If optim.option is set to 1, only one optimization in dimension batchsize*d is performed. This option is only available with "genoud". This option might provide more global and accurate solutions, but is a lot more expensive.
max_sur_parallel

batchsize Number of points to sample simultaneously. The sampling criterion will return batchsize points at a time for sampling.

integration.param Optional list of control parameter for the computation of integrals, containing the fields integration.points: a p*d matrix corresponding to p integrations points and integration.weights: a vector of size p corresponding to the weights of these integration points. If nothing is specified, default values are used (see: function integration_design for more details).

T Target value (scalar).

model A Kriging model of km class.

new.noise.var Optional scalar value of the noise variance of the new observations.

Value

A list with components:

par the best set of points found.

value the value of the sur criterion at par.

allvalues If an optimization on a discrete set of points is chosen, the value of the criterion at all these points.

Author(s)

Clement Chevalier (IMSV, Switzerland, and IRSN, France)

References

See Also

EGIparallel, sur_optim_parallel

Examples

#max_sur_parallel

set.seed(8)
N <- 9 #number of observations
T <- 80 #threshold
testfun <- branin
lower <- c(0,0)
upper <- c(1,1)
a 9 points initial design
design <- data.frame(matrix(runif(2*N), ncol=2))
response <- testfun(design)

km object with matern3.2 covariance
params estimated by ML from the observations
model <- km(formula=-, design = design,
 response = response, covtype="matern3_2")

optimcontrol <- list(method="genoud", pop.size=50, optim.option=1)
integcontrol <- list(distrib="sur", n.points=50, init.distrib="MC")
integration.param <- integration_design(integcontrol=integcontrol, d=2,
 lower=lower, upper=upper, model=model, T=T)

batchsize <- 5 # number of new points

Not run:
obj <- max_sur_parallel(lower=lower, upper=upper, optimcontrol=optimcontrol,
 batchsize=batchsize, T=T, model=model,
 integration.param=integration.param)
one optim in dimension 5*2 !

obj$par; obj$value # optimum in 5 new points
new.model <- update_km(model=model, NewX=obj$par, NewY=apply(obj$par,1,testfun),
 CovReEstimate=TRUE)

par(mfrow=c(1,2))
print_uncertainty(model=model, T=T, type="pn", lower=lower, upper=upper,
 cex.points=2.5, main="probability of excursion")

print_uncertainty(model=new.model, T=T, type="pn", lower=lower, upper=upper,
 new.points=batchsize, col.points.end="red", cex.points=2.5,
 main="updated probability of excursion")

End(Not run)

max_timse

Minimizer of the IMSE or targeted IMSE criterion

Description
Minimization, based on the package rgenoud (or on exhaustive search on a discrete set), of the targeted imse (or imse) criterion.

Usage
max_timse(lower, upper, optimcontrol = NULL,
 integration.param = NULL, T, model,
 new.noise.var = 0, epsilon = 0, imse = FALSE)
Arguments

lower Vector containing the lower bounds of the design space.
upper Vector containing the upper bounds of the design space.
optimcontrol Optional list of control parameters for the optimization of the sampling criterion. The field method defines which optimization method is used: it can be either "genoud" (default) for an optimisation using the genoud algorithm, or "discrete" for an optimisation over a specified discrete set. If the field method is set to "genoud", one can set some parameters of this algorithm: pop.size (default: 50*d), max.generations (10*d), wait.generations (2), BFGSburnin (2) and the mutations P1, P2, up to P9 (see genoud). Numbers into brackets are the default values. If the field method is set to "discrete", one can set the field optim.points: p * d matrix corresponding to the p points where the criterion will be evaluated. If nothing is specified, 100*d points are chosen randomly.

integration.param Optional list of control parameter for the computation of integrals, containing the fields integration.points: a p*d matrix corresponding to p integrations points and integration.weights: a vector of size p corresponding to the weights of these integration points. If nothing is specified, default values are used (see: function integration_design for more details).

T Target value (scalar).
model A Kriging model of km class.
new.noise.var Optional scalar value of the noise variance of the new observation.
epsilon Optional tolerance value (a real positive number). Default value is 0.
imse Optional boolean to decide if the "imse" criterion should be used instead of "timse". Default: FALSE.

Value

A list with components:

par the best set of parameters found.
value the value of the criterion at par.
allvalues if an optimization on a discrete set of points is chosen, the value of the criterion at all these points

Author(s)

Victor Picheny (CERFACS, Toulouse, France)
David Ginsbourger (IMSV, University of Bern, Switzerland)
Clement Chevalier (IMSV, Switzerland, and IRSN, France)
References

See Also

EGI.timse_optim

Examples

#max_timse

set.seed(8)
N <- 9 #number of observations
T <- 80 #threshold
testfun <- branin
lower <- c(0,0)
upper <- c(1,1)

#a 9 points initial design
design <- data.frame(matrix(runif(2*N),ncol=2))
response <- testfun(design)

#km object with matern3_2 covariance
#params estimated by ML from the observations
model <- km(formula=~., design = design,
response = response,covtype="matern3_2")

optimcontrol <- list(method="genoud",pop.size=50)
integcontrol <- list(distrib="timse",n.points=50,init.distrib="MC")
integration.param <- integration_design(integrationcontrol=integcontrol,d=2,
lower=lower,upper=upper,model=model,
T=T)

Not run:
obj <- max_timse(lower=lower,upper=upper,optimcontrol=optimcontrol,T=T,
model=model,integration.param=integration.param)

obj$par;obj$value
new.model <- update_km(model=model,NewX=obj$par,NewY=testfun(obj$par),
CovReEstimate=TRUE)

par(mfrow=c(1,2))
print_uncertainty(model=model,T=T,type="pn",lower=lower,upper=upper,
cex.points=2.5,main="probability of excursion")
Description

Minimization, based on the package rgenoud (or on exhaustive search on a discrete set), of the timse criterion for a batch of candidate sampling points.

Usage

\[
\text{max_timse_parallel}(\text{lower}, \text{upper}, \text{optimcontrol} = \text{NULL}, \\
\text{batchsize}, \text{integration.param}, \text{T}, \\
\text{model}, \text{new.noise.var} = \text{0}, \\
\text{epsilon} = \text{0}, \text{imse} = \text{FALSE})
\]

Arguments

- **lower**: Vector containing the lower bounds of the design space.
- **upper**: Vector containing the upper bounds of the design space.
- **optimcontrol**: Optional list of control parameters for the optimization of the sampling criterion. The field method defines which optimization method is used: it can be either "genoud" (default) for an optimisation using the genoud algorithm, or "discrete" for an optimisation over a specified discrete set. If the field method is set to "genoud", one can set some parameters of this algorithm: pop.size (default : 50*d), max.generations (10*d), wait.generations (2), BFGSburnin (2) and the mutations P1, P2, up to P9 (see genoud). Numbers into brackets are the default values. If the field method is set to "discrete", one can set the field optim.points: p * d matrix corresponding to the p points where the criterion will be evaluated. If nothing is specified, 100*d points are chosen randomly. Finally, one can control the field optim.option in order to decide how to optimize the sampling criterion. If optim.option is set to 2 (default), batch-size sequential optimizations in dimension d are performed to find the optimum. If optim.option is set to 1, only one optimization in dimension batchsize*d is performed. This option is only available with "genoud". This option might provide more global and accurate solutions, but is a lot more expensive.
- **batchsize**: Number of points to sample simultaneously. The sampling criterion will return batchsize points at a time for sampling.
Optional list of control parameter for the computation of integrals, containing the fields integration.points: a p*d matrix corresponding to p integrations points and integration.weights: a vector of size p corresponding to the weights of these integration points. If nothing is specified, default values are used (see: function integration_design for more details).

Target value (scalar).

A Kriging model of km class.

Optional scalar value of the noise variance of the new observations.

Optional tolerance value (a real positive number). Default value is 0.

Optional boolean to decide if the "imse" criterion should be used instead of "timse". default: FALSE.

A list with components:

the best set of parameters found.

the value of the sur criterion at par.

If an optimization on a discrete set of points is chosen, the value of the criterion at all these points.

Victor Picheny (CERFACS, Toulouse, France) Clement Chevalier (IMSV, Switzerland, and IRSN, France)

See Also

EGIparallel.max_sur_parallel
Examples

```r
#max_timse_parallel

set.seed(8)
N <- 9 #number of observations
T <- 80 #threshold
testfun <- branin
lower <- c(0,0)
upper <- c(1,1)

# a 9 points initial design
design <- data.frame( matrix(runif(2*N),ncol=2) )
response <- testfun(design)

#km object with matern3_2 covariance
#params estimated by ML from the observations
model <- km(formula=~., design = design,
response = response,covtype="matern3_2")

optimcontrol <- list(method="genoud",pop.size=200,optim.option=2)
integcontrol <- list(distrib="timse",n.points=400,init.distrib="MC")
integration.param <- integration_design(integcontrol,integcontrol,d=2,
lower=lower,upper=upper,model=model,T=T)

batchsize <- 5 #number of new points

## Not run:
obj <- max_timse_parallel(lower=lower,upper=upper,optimcontrol=optimcontrol,
batchsize=batchsize,T=T,model=model,
integration.param=integration.param,epsilon=0,imse=FALSE)
#5 opts in dimension 2 !

obj$par;obj$value #optim in 5 new points
new.model <- update_km(model=model,NewX=obj$par,NewY=apply(obj$par,1,testfun),
CovReEstimate=TRUE)

par(mfrow=c(1,2))
print_uncertainty(model=model,T=T,type="pn",lower=lower,upper=upper,
cex.points=2.5,main="probability of excursion")

print_uncertainty(model=new.model,T=T,type="pn",lower=lower,upper=upper,
new.points=batchsize,col.points.end="red",cex.points=2.5,
main="updated probability of excursion")

## End(Not run)
```
max_vorob_parallel

Description

Minimization, based on the package rgenoud (or on exhaustive search on a discrete set), of the Vorob’ev criterion for a batch of candidate sampling points.

Usage

max_vorob_parallel(lower, upper, optimcontrol = NULL,
batchsize, integration.param, T,
model, new.noise.var = 0)

Arguments

lower Vector containing the lower bounds of the design space.
upper Vector containing the upper bounds of the design space.
optimcontrol Optional list of control parameters for the optimization of the sampling criterion. The field method defines which optimization method is used: it can be either "genoud" (default) for an optimisation using the genoud algorithm, or "discrete" for an optimisation over a specified discrete set. If the field method is set to "genoud", one can set some parameters of this algorithm: pop.size (default : 50*d), max.generations (10*d), wait.generations (2), BFGSburnin (2) and the mutations P1, P2, up to P9 (see genoud). Numbers into brackets are the default values. If the field method is set to "discrete", one can set the field optim.points: p * d matrix corresponding to the p points where the criterion will be evaluated. If nothing is specified, 100*d points are chosen randomly. Finally, one can control the field optim.option in order to decide how to optimize the sampling criterion. If optim.option is set to 2 (default), batch-size sequential optimizations in dimension d are performed to find the optimum. If optim.option is set to 1, only one optimization in dimension batchsize*d is performed. This option is only available with "genoud". This option might provide more global and accurate solutions, but is a lot more expensive.
batchsize Number of points to sample simultaneously. The sampling criterion will return batchsize points at a time for sampling.
integration.param Optional list of control parameter for the computation of integrals, containing the fields integration.points: a p*d matrix corresponding to p integrations points and integration.weights: a vector of size p corresponding to the weights of these integration points. If nothing is specified, default values are used (see: function integration_design for more details).
T Target value (scalar).
model A Kriging model of km class.
new.noise.var Optional scalar value of the noise variance of the new observations.

Value

A list with components:

par the best set of parameters found.
value the value of the Vorob’ev criterion at par.
allvalues If an optimization on a discrete set of points is chosen, the value of the criterion at all these points.

Author(s)
Clement Chevalier (IMSV, Switzerland, and IRSN, France)

References

See Also
EGIparallel,max_sur_parallel

Examples

#max_vorob_parallel

set.seed(8)
N <- 9 #number of observations
T <- 80 #threshold
testfun <- branin
lower <- c(0,0)
upper <- c(1,1)

a 9 points initial design
design <- data.frame(matrix(runif(2*N),ncol=2))
response <- testfun(design)

#km object with matern3_2 covariance
#params estimated by ML from the observations
model <- km(formula=-., design = design,
 response = response,covtype="matern3_2")

optimcontrol <- list(method="genoud",pop.size=200,optim.option=2)
integcontrol <- list(distrib="timse",n.points=400)init.distrib="MC")
integration.param <- integration_design(integcontrol=integcontrol,d=2,
 lower=lower,upper=upper,model=model,
 T=T)

batchsize <- 5 #number of new points

Not run:
obj <- max_vorob_parallel(lower=lower,upper=upper,optimcontrol=optimcontrol,
 batchsize=batchsize,T=T,model=model,
precomputeUpdateData

Useful data to quickly update kriging mean and variance

Description

This function is used in combination with computeQuickKrigcov and computes an output list that serves as input in that function.

Usage

precomputeUpdateData(model, integration.points)

Arguments

model A Kriging model of km class.
integration.points p*d matrix of points for numerical integration in the X space.

Value

A list with components:

Kinv.c.olddata Matrix equal to K^(-1)*c where K is the non conditional covariance matrix at the design points and c is the non conditional covariances between the design points and the integration points.

Kinv.F Matrix equal to K^(-1)*F where F is a matrix with the values of the trend functions at the design points.

first.member Matrix with a complicated expression.
Author(s)

Clement Chevalier (IMSV, Switzerland, and IRSN, France)

References

See Also

`computeQuickKrigcov`, `predict_nobias_km`, `predict_update_km`

Examples

```r
# precomputeUpdateData

set.seed(8)
N <- 9 # number of observations
testfun <- branin

# a 9 points initial design
design <- data.frame( matrix(runif(2*N),ncol=2) )
response <- testfun(design)

# km object with matern3_2 covariance
# params estimated by ML from the observations
model <- km(formula=-., design = design,
            response = response,covtype="matern3_2")

# the points where we want to compute prediction (if a point new.x is added to the doe)
n.grid <- 20 # you can run it with 100
x.grid <- y.grid <- seq(0,1,length=n.grid)
newdata <- expand.grid(x.grid,y.grid)
precalc.data <- precomputeUpdateData(model=model,integration.points=newdata)

# now we can compute very quickly kriging covariances
# between these data and any other points
other.x <- matrix(c(0.6,0.6),ncol=2)
pred <- predict_nobias_km(object=model,newdata=other.x,type="UK",se.compute=TRUE)

kn <- computeQuickKrigcov(model=model,integration.points=newdata,X.new=other.x,
                           precalc.data=precalc.data,F.newdata=pred$F.newdata,
                           c.newdata=pred$c)

z.grid <- matrix(kn, n.grid, n.grid)

# plots: contour of the criterion, doe points and new point
image(x=x.grid,y=y.grid,z=z.grid,col=grey.colors(10))
```
predict_nobias_km

Kriging predictions without any adjustment factor for the kriging variances

Description

This function is a simple modification of the predict.km function from the DiceKriging package. The only change lies in the adjustment factor for the kriging variances when universal kriging is used. Here this adjustment factor is simply removed. The rest of the function remains exactly as in the function predict.km of the DiceKriging package.

Usage

predict_nobias_km(object, newdata, type = "UK",
se.compute = TRUE, cov.compute = FALSE, low.memory=FALSE,...)

Arguments

object A Kriging model of km class.
newdata Vector, matrix or data frame containing the points where to perform predictions.
type Character string corresponding to the kriging family, to be chosen between simple kriging ("SK"), or universal kriging ("UK").
se.compute Optional boolean. If FALSE, only the kriging mean is computed. If TRUE, the kriging standard deviation and confidence intervals are computed too.
cov.compute Optional boolean. If TRUE the conditional covariance matrix is computed.
low.memory Optional boolean. If set to TRUE the function will only return kriging means and standard deviations.
... No other arguments.

Details

When type = "UK", the estimated variance and covariance are no longer multiplied by n/(n-p), where n and p are respectively the number of rows and the number of columns of the design matrix F.
Value

- **mean**: kriging mean (including the trend) computed at `newdata`.
- **sd**: kriging standard deviation computed at `newdata`. Not computed if `se.compute=FALSE`.
- **cov**: kriging conditional covariance matrix. Not computed if `cov.compute=FALSE` (default).
- **lower95**, **upper95**: bounds of the 95% confidence interval computed at `newdata` (to be interpreted with special care when parameters are estimated, see description above). Not computed if `se.compute=FALSE`.
- **c**: an auxiliary matrix, containing all the covariances between `newdata` and the initial design points.
- **Tinv.c**: an auxiliary vector, equal to $T^{(-1)}*c$.
- **F.newdata**: value of the trend function at `newdata`.

Warning

Beware that the only consistency check between `newdata` and the experimental design is to test whether they have same number of columns. In that case, the columns of `newdata` are interpreted in the same order as the initial design.

Author(s)

References

- D.G. Krige (1951), A statistical approach to some basic mine valuation problems on the witwatersrand, *J. of the Chem., Metal. and Mining Soc. of South Africa*, 52 no. 6, 119-139.
predict_update_km

Quick computation of updated kriging means and variances.

Description

This function uses kriging update formula to quickly compute kriging mean and variances at points newdata, when a point newX is added. The required additional informations are the old kriging
predict_update_km

mean and variance at point new\(X \), the output value \(f(newX) \), the old kriging mean and variances at points new\(data \) and the kriging covariance between new\(X \) and new\(data \).

Usage

```r
predict_update_km(newXmean, newXvar, newXvalue,
newdata.oldmean, newdata.oldsd, kn)
```

Arguments

- **newXmean**: Scalar: old kriging mean at new\(X \) (before adding new\(X \) to the design).
- **newXvar**: Scalar: old kriging variance at new\(X \) (before adding new\(X \) to the design).
- **newXvalue**: Scalar: value of the objective function at new\(X \), \(f(newX) \).
- **newdata.oldmean**: Vector: old kriging mean at the points new\(data \) (before adding new\(X \) to the design)
- **newdata.oldsd**: Vector: old kriging standard deviations at the points new\(data \) (before adding new\(X \) to the design)
- **kn**: Kriging covariances between the points new\(data \) and new\(X \). These covariances can be computed using the function `computeQuickKrigcov`

Value

A list with the following fields:

- **mean**: Updated kriging mean at points new\(data \)
- **sd**: Updated kriging standard deviation at points new\(data \)
- **lambda**: New kriging weight of new\(X \) for the prediction at points new\(data \)

Author(s)

Clement Chevalier (IMSV, Switzerland, and IRSN, France)

References

See Also

`precomputeUpdateData`, `predict_nobias_km`, `computeQuickKrigcov`
Examples

```r
#predict_update_km

set.seed(8)
N <- 9  # number of observations
testfun <- branin

# a 9 points initial design
design <- data.frame(matrix(runif(2*N),nrow=2))
response <- testfun(design)

# km object with matern3_2 covariance
params estimated by ML from the observations
model <- km(formula=-., design = design,
             response = response,covtype="matern3_2")

# points where we want to compute prediction (if a point new.x is added to the doe)
n.grid <- 20  # you can run it with 100
x.grid <- y.grid <- seq(0,1,length=n.grid)
newdata <- expand.grid(x.grid,y.grid)
precalc.data <- precomputeUpdateData(model=model,integration.points=newdata)
pred2 <- predict_nobias_km(object=model,newdata=newdata,type="UK",se.compute=TRUE)
newdata.oldmean <- pred2$mean; newdata.oldsd <- pred2$sd

new.x <- matrix(c(0.6,0.6),ncol=2)  # the point that we are going to add
pred1 <- predict_nobias_km(object=model,newdata=new.x,type="UK",se.compute=TRUE)
newxmean <- pred1$mean; newxvar <- pred1$sd^2; newxvalue <- pred1$mean + 2*pred1$sd

kn <- computeQuickKrigcov(model=model,integration.points=newdata,X.new=new.x,
                          precalc.data=precalc.data,F.newdata=pred1$F,newdata,
                          c.newdata=pred1$c)

updated.predictions <- predict_update_km(newXmean=newxmean,newXvar=newxvar,
                                          newXvalue=newxvalue,newdata.oldmean=newdata.oldmean,
                                          newdata.oldsd=newdata.oldsd,kn=kn)

# the new kriging variance is usually lower than the old one
updated.predictions$sd - newdata.oldsd

z.grid1 <- matrix(newdata.oldsd, n.grid, n.grid)
z.grid2 <- matrix(updated.predictions$sd, n.grid, n.grid)

par(mfrow=c(1,2))

# plots: contour of the criterion, doe points and new point
image(x=x.grid,y=y.grid,z=z.grid1,col=grey.colors(10))
contour(x=x.grid,y=y.grid,z=z.grid1,15,add=TRUE)
points(design, col="black", pch=17, lwd=4,cex=2)
title("Kriging standard deviation")

image(x=x.grid,y=y.grid,z=z.grid2,col=grey.colors(10))
contour(x=x.grid,y=y.grid,z=z.grid2,15,add=TRUE)
```
predict_update_km_parallel

Quick update of kriging means and variances when many new points are added.

Description

This function is the parallel version of the function predict_update_km. It uses kriging update formula to quickly compute kriging mean and variances at points newdata, when \(r \) new points \(\text{newX} \) are added.

Usage

```r
predict_update_km_parallel(newXmean, newXvar, newXvalue, Sigma.r, newdata.oldmean, newdata.oldsd, kn)
```

Arguments

- `newXmean`: Vector of size \(r \): old kriging mean at points \(x_{(n+1)}, \ldots, x_{(n+r)} \).
- `newXvar`: Vector of size \(r \): kriging variance at points \(x_{(n+1)}, \ldots, x_{(n+r)} \).
- `newXvalue`: Vector of size \(r \): value of the objective function at \(x_{(n+1)}, \ldots, x_{(n+r)} \).
- `Sigma.r`: An \(r \times r \) matrix: kriging covariances between the points \(x_{(n+1)}, \ldots, x_{(n+r)} \).
- `newdata.oldmean`: Vector: old kriging mean at the points newdata (before adding \(x_{(n+1)}, \ldots, x_{(n+r)} \)).
- `newdata.oldsd`: Vector: old kriging standard deviations at the points newdata (before adding \(x_{(n+1)}, \ldots, x_{(n+r)} \)).
- `kn`: Kriging covariances between the points newdata and the \(r \) points newX. These covariances can be computed using the function `computeQuickKrigcov`.

Value

A list with the following fields:

- `mean`: Updated kriging mean at points newdata
- `sd`: Updated kriging standard deviation at points newdata
- `lambda`: New kriging weight of \(x_{(n+1)}, \ldots, x_{(n+r)} \) for the prediction at points newdata

Author(s)

Clement Chevalier (IMSV, Switzerland, and IRSN, France)
References

See Also

EGI_parallel, max_sur_parallel, sur_optim_parallel

Examples

```r
#predict_update_km_parallel

set.seed(8)
N <- 9  # number of observations
testfun <- bracin

# a 9 points initial design
design <- data.frame( matrix(runif(2*N),ncol=2) )
response <- testfun(design)

# km object with matern3_2 covariance
params estimated by ML from the observations
model <- km(formula=., design = design,
    response = response, covtype="matern3_2")

# points where we want to compute prediction (if a point new.x is added to the doe)
n.grid <- 20  # you can run it with 100
x.grid <- y.grid <- seq(0,1,length=n.grid)
newdata <- expand.grid(x.grid,y.grid)
precalc.data <- precomputeUpdateData(model=model,integration.points=newdata)
pred2 <- predict_nobias_km(object=model,newdata=newdata,type="UK",se.compute=TRUE)
newdata.oldmean <- pred2$mean; newdata.oldsd <- pred2$sd

# the point that we are going to add
new.x <- matrix(c(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8),ncol=2,byrow=TRUE)
pred1 <- predict_nobias_km(object=model,newdata=new.x,type="UK",
    se.compute=TRUE,cov.compute=TRUE)
newxmean <- pred1$mean; newxvar <- pred1$sd^2; newxvalue <- pred1$mean + 2*pred1$sd
Sigma.r <- pred1$cov

kn <- computeQuickKrigcov(model=model,integration.points=newdata,X.new=new.x,
    precalc.data=precalc.data,F.newdata=pred1$F.newdata,
    c.newdata=pred1$c)

updated.predictions <- predict_update_km_parallel(newxmean=newxmean,newxvar=newxvar,
    newxvalue=newxvalue,Sigma.r=Sigma.r,
    newdata.oldmean=newdata.oldmean,
    newdata.oldsd=newdata.oldsd,kn=kn)
```
the new kriging variance is usually lower than the old one
updated.predictions$sd - newdata.oldsd

z.grid1 <- matrix(newdata.oldsd, n.grid, n.grid)
z.grid2 <- matrix(updated.predictions$sd, n.grid, n.grid)

par(mfrow=c(1,2))

plots: contour of the criterion, doe points and new point
image(x=x.grid, y=y.grid, z=z.grid1, col=grey.colors(10))
contour(x=x.grid, y=y.grid, z=z.grid1, add=TRUE)
points(design, col="black", pch=17, lwd=4, cex=2)
title("Kriging standard deviation")

image(x=x.grid, y=y.grid, z=z.grid2, col=grey.colors(10))
contour(x=x.grid, y=y.grid, z=z.grid2, add=TRUE)
points(design, col="black", pch=17, lwd=4, cex=2)
points(new.x, col="red", pch=17, lwd=4, cex=2)
title("updated Kriging standard deviation")

print_uncertainty
Prints a measure of uncertainty for a function of any dimension.

Description

This function prints in the whole input domain the value of a given measure of uncertainty. Possible measures are "pn" (the probability of excursion) and measures specific to a sampling criterion: "sur", "imse" and "timse". This function can be used to print relevant outputs after having used the function EGI.

Usage

print_uncertainty(model, T, type = "pn", ...)

Arguments

model
Kriging model of km class.
T
Target value (scalar).
type
Type of uncertainty that the user wants to print. Possible values are "pn" (probability of excursion), or "sur", "imse", "timse", "vorob" if we print a measure of uncertainty corresponding to one criterion.
...
Other arguments of the function print_uncertainty_1d, 2d or nd.

Value

the integrated uncertainty
print_uncertainty_1d

Author(s)

Clement Chevalier (IMSV, Switzerland, and IRSN, France)

References

See Also

EGI

Examples

print_uncertainty

set.seed(8)
N <- 9 # number of observations
T <- 80 # threshold
testfun <- branin
lower <- c(0,0)
upper <- c(1,1)

a 9 points initial design
design <- data.frame(matrix(runif(2*N),nrow=2)
response <- testfun(design)

km object with matern3_2 covariance
params estimated by ML from the observations
model <- km(formula=-., design = design,
response = response,covtype="matern3_2")

you could do many plots, but only one is run here
print_uncertainty(model=model,T=T,main="probability of excursion",type="pn")
print_uncertainty(model=model,T=T,main="Vorob'ev uncertainty",type="vorob")
print_uncertainty(model=model,T=T,main="imse uncertainty",type="imse")
print_uncertainty(model=model,T=T,main="timse uncertainty",type="timse")
print_uncertainty(model=model,T=T,main="sur uncertainty",type="sur")
print_uncertainty(model=model,T=T,main="probability of excursion",type="pn",
vorobmean=TRUE)

print_uncertainty_1d Prints a measure of uncertainty for 1d function.
Description

This function draws the value of a given measure of uncertainty over the whole input domain (1D). Possible measures are "pn" (being the probability of excursion) and measures specific to a sampling criterion: "sur", "imse" and "imse". This function can be used to print relevant outputs after having used the function EGI.

Usage

```r
print_uncertainty_1d(model, T, type = "pn",
lower = 0, upper = 1, resolution = 500,
new.points = 0, xlab = "", ylab = "", main = "",
yscale = c(0, 1), show.points = TRUE, cex.main = 1, cex.lab = 1,
cex.points = 1, cex.axis = 1, pch.points.init = 17, pch.points.end = 17,
col.points.init = "black", col.points.end = "red", xaxislab = NULL,
yaxislab = NULL, xaxispoint = NULL, yaxispoint = NULL,
xdecal = 3, ydecal = 3,DiceViewplot=FALSE,vorobmean=FALSE)
```

Arguments

- `model` Kriging model of `km` class.
- `T` Target value (scalar).
- `type` Type of uncertainty that the user wants to print. Possible values are "pn" (probability of excursion), or "sur", "imse", "timse", "vorob" if we print a measure of uncertainty corresponding to one criterion.
- `lower` Lower bound for the input domain.
- `upper` Upper bound for the input domain.
- `resolution` Number of points to discretize the interval (lower,upper).
- `new.points` Number of new observations. These observations are the last new.points observations and can be printed in another color and the initial observations (see argument: col.points.end).
- `xlab` Label for the x axis.
- `ylab` Label for the y axis.
- `main` Title of the graph.
- `yscale` If one wants to rescale the input domain on another interval it is possible to set this vector of size 2. The new interval will be translated by `yscale[1]` and expanded by a factor `yscale[2] - yscale[1].`
- `show.points` Boolean: should we show the observations on the graph?
- `cex.main` Multiplicative factor for the size of the title.
- `cex.lab` Multiplicative factor for the size of titles of the axis.
- `cex.points` Multiplicative factor for the size of the points.
- `cex.axis` Multiplicative factor for the size of the axis graduations.
- `pch.points.init` Symbol for the n-new.points first observations.
pch.points.end Symbol for the new.points last observations.
col.points.init Color for the n-new.points first observations.
col.points.end Color for the new.points last observations.
xaxislab Optional new labels that will replace the normal levels on x axis.
yaxislab Optional new labels that will replace the normal levels on y axis.
xaxispoint Position of these new labels on x axis.
yaxispoint Position of these new labels on y axis.
xdecal Optional position shifting of the titles of the x axis.
ydecal Optional position shifting of the titles of the y axis.
DiceViewplot Optional boolean. When it is set to TRUE (default) a second plot is added, generated with the DiceView package. This plot shows the kriging mean and confidence intervals on the whole input domain.
vorobmean Optional boolean. When it is set to TRUE the Vorob’ev expectation is plotted. It corresponds to the averaged excursion set, using the definition of Vorob’ev. Here, the estimated set is the set above the Vorob’ev threshold (plotted in blue).

Value
the integrated uncertainty

Author(s)
Clement Chevalier (IMSV, Switzerland, and IRSN, France)

References

See Also
EGI

Examples

```r
# print_uncertainty_1d

set.seed(8)
N <- 9  # number of observations
T <- 1  # threshold
testfun <- fundet
lower <- c(0)
upper <- c(1)

# a 9 points initial design
print_uncertainty_2d

```r

define the design and response

design <- data.frame(matrix(runif(N), ncol=1))
response <- testfun(design)

kriging model with matern3_2 covariance
params estimated by ML from the observations

model <- km(formula=-., design=design, response=response, covtype="matern3_2")

print_uncertainty_2d(DiceViewplot=FALSE, model=model, T=T,
main="probability of excursion", cex.points=1.5, col.points.init="red", vorobmean=TRUE)
```

---

**print_uncertainty_2d**  
Prints a measure of uncertainty for 2d function.

---

**Description**

This function draws the value of a given measure of uncertainty over the whole input domain (2D). Possible measures are "pn" (probability of excursion) and measures specific to a sampling criterion: "sur", "imse" and "imse". This function can be used to print relevant outputs after having used the function **EGI**.

---

**Usage**

```r

print_uncertainty_2d(model, T, type = "pn",
lower = c(0, 0), upper = c(1, 1), resolution = 200,
new.points = 0, xlab = "", ylab = "", main = "",
xscale = c(0, 1), yscale = c(0, 1), show.points = TRUE,
cex.main = 1, cex.lab = 1, cex.contourlab = 1, cex.points = 1,
cex.axis = 1, pch.points.init = 17, pch.points.end = 17,
col.points.init = "black", col.points.end = "red", nlevels = 10,
levels = NULL, xaxislab = NULL, yaxislab = NULL,
xaxispoint = NULL, yaxispoint = NULL, xdecal = 3, ydecal = 3,
krigmeanplot=FALSE, vorobmean=FALSE)
```

---

**Arguments**

- **model**: Kriging model of `km` class.
- **T**: Target value (scalar).
- **type**: Type of uncertainty that the user wants to print. Possible values are "pn" (probability of excursion), or "sur", "imse", "imse", "vorob" if we print a measure of uncertainty corresponding to one criterion.
- **lower**: Vector containing the lower bounds of the input domain.
- **upper**: Vector containing the upper bounds of the input domain.
- **resolution**: Number of points to discretize the domain. This discretization is used in each dimension, so that the total number of points is `resolution^2`. 
new.points  Number of new observations. These observations are the last new.points observations and can be printed in another color and the initial observations (see argument: col.points.end).

xlab  Label for the x axis.

ylab  Label for the y axis.

main  Title of the graph.

xscale  If one wants to rescale the input domain on another interval it is possible to set this vector of size 2. The new interval will be translated by xscale[1] and expanded by a factor xscale[2] - xscale[1].

yscale  see: xscale.

show.points  Boolean: should we show the observations on the graph?

cex.main  Multiplicative factor for the size of the title.

cex.lab  Multiplicative factor for the size of titles of the axis.

cex.contourlab  Multiplicative factor for the size of labels of the contour plot.

cex.points  Multiplicative factor for the size of the points.

cex.axis  Multiplicative factor for the size of the axis graduations.

pch.points.init  Symbol for the n.new.points first observations.

pch.points.end  Symbol for the new.points last observations.

col.points.init  Color for the n.new.points first observations.

col.points.end  Color for the new.points last observations.

nlevels  Integer corresponding to the number of levels of the contour plot.

levels  Array: one can directly set the levels of the contour plot.

xaxislab  Optional new labels that will replace the normal levels on x axis.

yaxislab  Optional new labels that will replace the normal levels on y axis.

xaxispoint  Position of these new labels on x axis.

yaxispoint  Position of these new labels on y axis.

xdecal  Optional position shifting of the titles of the x axis.

ydecal  Optional position shifting of the titles of the y axis.

krigmeanplot  Optional boolean. When it is set to FALSE (default) the contour plot corresponds to the uncertainty selected. When it is set to TRUE the contour plot gives the kriging mean.

vorobmean  Optional boolean. When it is set to TRUE the Vorob’ev expectation is plotted. It corresponds to the averaged excursion set, using the definition of Vorob’ev.

Value

the integrated uncertainty
print_uncertainty_2d

Author(s)
Clement Chevalier (IMSV, Switzerland, and IRSN, France)

References

See Also
EGI

Examples

# print_uncertainty_2d

set.seed(8)
N <- 9 # number of observations
T <- 80 # threshold
testfun <- branin
lower <- c(0, 0)
upper <- c(1, 1)

# a 9 points initial design
design <- data.frame(matrix(runif(2*N),ncol=2))
response <- testfun(design)

# km object with matern3_2 covariance
# params estimated by ML from the observations
model <- km(formula=~., design = design,
response = response,covtype="matern3_2")

print_uncertainty_2d(model=model,T=T,main="probability of excursion", type="pn", krigmeanplot=TRUE)

# print_uncertainty_2d(model=model,T=T,main="vorob uncertainty", type="vorob", krigmeanplot=FALSE)

# print_uncertainty_2d(model=model,T=T,main="imse uncertainty", type="imse", krigmeanplot=FALSE)

# print_uncertainty_2d(model=model,T=T,main="timse uncertainty", type="timse", krigmeanplot=FALSE)

# print_uncertainty_2d(model=model,T=T,main="sur uncertainty", type="sur", krigmeanplot=FALSE)

# print_uncertainty_2d(model=model,T=T,main="probability of excursion", type="pn", krigmeanplot=TRUE, vorobmean=TRUE)
print_uncertainty_nd

Print a measure of uncertainty for functions with dimension $d$ strictly higher than 2.

Description

This function draws projections on various plans of a given measure of uncertainty. Possible measures are "pn" (probability of excursion) and measures specific to a sampling criterion: "sur", "timse" and "imse". This function can be used to print relevant outputs after having used the function EGI.

Usage

```r
print_uncertainty_nd(model,T,type="pn",lower=NULL,upper=NULL,
 resolution=20, nintegpoints=400,main="",
 cex.main=1,cex.lab=1,cex.contourlab=1,cex.axis=1,
 nlevels=10,levels=NULL,
 xdecal=3,ydecal=3, option="mean")
```

Arguments

- **model**: Kriging model of `km` class.
- **T**: Target value (a real number). The sampling algorithm and the underlying kriging model aim to find the points below (resp. over) $T$.
- **type**: Type of uncertainty that the user wants to print. Possible values are "pn" (probability of excursion), or "sur", "imse", "timse" if we print a measure of uncertainty corresponding to one criterion.
- **lower**: Vector containing the lower bounds of the input domain. If nothing is set we use a vector of 0.
- **upper**: Vector containing the upper bounds of the input domain. If nothing is set we use a vector of 1.
- **resolution**: Number of points to discretize a plan included in the domain. For the moment, we cannot use values higher than 40.
- **nintegpoints**: to do
- **main**: Title of the graph.
- **cex.main**: Multiplicative factor for the size of the title.
- **cex.lab**: Multiplicative factor for the size of titles of the axis.
- **cex.contourlab**: Multiplicative factor for the size of labels of the contour plot.
- **cex.axis**: Multiplicative factor for the size of the axis graduations.
- **nlevels**: Integer corresponding to the number of levels of the contour plot.
- **levels**: Array: one can directly set the levels of the contour plot.
- **xdecal** and **ydecal**: Optional position shifting of the titles of the x axis and y axis.
- **option**: Optional argument (a string). The 3 possible values are "mean" (default), "max" and "min".
Value

the integrated uncertainty

Author(s)

Clement Chevalier (IMSV, Switzerland, and IRSN, France)

References


See Also

EGI

Examples

```r
print_uncertainty_nd

set.seed(8)
N <- 25 # number of observations
T <- -1 # threshold
testfun <- hartman3
The hartman3 function is defined over the domain [0,1]^3.
hartman3(runif(3))

lower <- rep(0, times=3)
upper <- rep(1, times=3)

a 9 points initial design (LHS in 3 dimensions)
design <- data.frame(matrix(runif(3*N), ncol=3))
response <- apply(design, 1, testfun)

km object with matern3_2 covariance
params estimated by ML from the observations
model <- km(formula=-., design = design,
response = response, covtype="matern3_2")

Not run:
print_uncertainty_nd(model=model, T=T, main="average probability of excursion", type="pn",
option="mean")

print_uncertainty_nd(model=model, T=T, main="maximum probability of excursion", type="pn",
option="max")

End(Not run)
```
Description

Evaluation of Ranjan’s Expected Feasibility criterion. To be used in optimization routines, like in *max_infill_criterion*.

Usage

```
ranjan_optim(x, model, T, method.param = NULL)
```

Arguments

- **x**: Input vector at which one wants to evaluate the criterion. This argument can be either a vector of size d (for an evaluation at a single point) or a p*d matrix (for p simultaneous evaluations of the criterion at p different points).
- **model**: An object of class *km* (Kriging model).
- **T**: Target value (scalar).
- **method.param**: Scalar tolerance around the target T (default value is 1).

Value

Ranjan EI criterion. When the argument *x* is a vector the function returns a scalar. When the argument *x* is a p*d matrix the function returns a vector of size p.

Author(s)

V. Picheny (CERFACS, Toulouse, France)
D. Ginsbourger (IMSV, University of Bern, Switzerland)
Clement Chevalier (IMSV, Switzerland, and IRSN, France)

References


See Also

*EGI, max_infill_criterion*
**Examples**

```r
#ranjan_optim

set.seed(8)
N <- 9 # number of observations
T <- 80 # threshold
testfun <- branin

data <- data.frame(matrix(runif(2*N),nrow = 2))
response <- testfun(data)

covariance <- matern_2
params <- estimated by ml from the observations
model <- km(formula = ..., design = data, response = response, covtype = "matern_2")

data <- c(0, 5, 0.4) # one evaluation of the ranjan criterion
ranjan_optim(data, x = T, model = model)

n.grid <- 20 # you can run it with 100
x.grid <- y.grid <- seq(0, 1, length = n.grid)
x <- expand.grid(x.grid, y.grid)
ranjan.grid <- ranjan_optim(data, x = T, model = model)

plots: contour of the criterion, doe points and new point
image(x = x.grid, y = y.grid, z = z.grid, col = grey.colors(10))
contour(x = x.grid, y = y.grid, z = z.grid, levels = 25, add = TRUE)
points(data, col = "black", pch = 17, lwd = 4, cex = 2)
i.best <- which.max(ranjan.grid)
points(data[i.best,], col = "blue", pch = 17, lwd = 4, cex = 3)

plots the real (unknown in practice) curve f(x) = T
apply(x, 1, testfun)
z.grid.2 <- matrix(testfun.grid, n.grid, n.grid)
contour(x.grid, y.grid, z.grid, levels = T, col = "blue", add = TRUE, lwd = 5)
title("Contour lines of Ranjan criterion (black) and of f(x) = T (blue)")
```

**Description**

Evaluation of the "sur" criterion for a candidate point. To be used in optimization routines, like in `max_sur`. To avoid numerical instabilities, the new point is evaluated only if it is not too close to an existing observation, or if there is some observation noise. The criterion is the integral of the posterior sur uncertainty.
Usage

```
sur_optim(x, integration.points, integration.weights = NULL, interpoints.oldmean, interpoints.oldsd, precalc.data, model, T, new.noise.var = NULL, current.sur=1e6)
```

Arguments

- **x**: Input vector of size \( d \) at which one wants to evaluate the criterion.
- **integration.points**: \( p \times d \) matrix of points for numerical integration in the X space.
- **integration.weights**: Vector of size \( p \) corresponding to the weights of these integration points.
- **interpoints.oldmean**: Vector of size \( p \) corresponding to the kriging mean at the integration points before adding \( x \) to the design of experiments.
- **interpoints.oldsd**: Vector of size \( p \) corresponding to the kriging standard deviation at the integration points before adding \( x \) to the design of experiments.
- **precalc.data**: List containing useful data to compute quickly the updated kriging variance. This list can be generated using the `precomputeUpdateData` function.
- **model**: Object of class `km` (Kriging model).
- **T**: Target value (scalar)
- **new.noise.var**: Optional scalar value of the noise variance for the new observations.
- **current.sur**: Arbitrary value given to the "sur" criterion for candidate points that are too close to existing observations. This argument applies only if the noise variance is zero.

Value

```
sur value
```

Author(s)

- Clement Chevalier (IMSV, Switzerland, and IRSN, France)
- Victor Picheny (CERFACS, Toulouse, France)
- David Ginsbourger (IMSV, University of Bern, Switzerland)

References


See Also

EGI, max_sur

Examples

```r
#sur_optim

set.seed(8)
N <- 9 # number of observations
t <- 80 # threshold
testfun <- branin

a 9 points initial design
design <- data.frame(matrix(runif(2*N), ncol=2))
response <- testfun(design)

km object with matern3_2 covariance
params estimated by ML from the observations
model <- km(formula=~ ., design = design,
response = response, covtype="matern3_2")

we need to compute some additional arguments:
integration points, and current kriging means and variances at these points
integcontrol <- list(n.points=50,distrib="sur",init.distrib="MC")
obj <- integration_design(integcontrol=integcontrol,lower=c(0,0),upper=c(1,1),
model=model,T=T)

integration.points <- obj$integration.points
integration.weights <- obj$integration.weights
pred <- predict_nobias_km(object=model,newdata=integration.points,
type="UK",se.compute=TRUE)

intpoints.oldmean <- pred$mean; intpoints.oldsd <- pred$sd

another precomputation
precalc.data <- precompute_updatedata(model,integration.points)

x <- c(0.5,0.4) # one evaluation of the sur criterion
sur_optim(x=x,integration.points=integration.points,
integration.weights=integration.weights,
intpoints.oldmean=intpoints.oldmean,intpoints.oldsd=intpoints.oldsd,
precalc.data=precalc.data,T=T,model=model)

n.grid <- 20 # you can run it with 100
x.grid <- y.grid <- seq(0,1,length=n.grid)
x <- expand.grid(x.grid, y.grid)
sur.grid <- apply(X=x, FUN=sur_optim, MARGIN=1,integration.points=integration.points,
iintegration.weights=integration.weights,
intpoints.oldmean=intpoints.oldmean,intpoints.oldsd=intpoints.oldsd,
precalc.data=precalc.data,T=T,model=model)# takes ~15 seconds to run
z.grid <- matrix(sur.grid, n.grid, n.grid)
```
sur_optim_parallel

Parallel sur criterion

Description

Evaluation of the parallel sur criterion for some candidate points. To be used in optimization routines, like in max_sur_parallel. To avoid numerical instabilities, the new points are evaluated only if they are not too close to an existing observation, or if there is some observation noise. The criterion is the integral of the posterior sur uncertainty.

Usage

```
sur_optim_parallel(x, integration.points, integration.weights = NULL,
intpoints.oldmean, intpoints.oldsd,
precalc.data, model, T,
new.noise.var = NULL, batchsize, current.sur)
```

Arguments

- `x` Input vector of size batchsize*d at which one wants to evaluate the criterion. This argument is NOT a matrix.
- `integration.points` p*d matrix of points for numerical integration in the X space.
- `integration.weights` Vector of size p corresponding to the weights of these integration points.
- `intpoints.oldmean` Vector of size p corresponding to the kriging mean at the integration points before adding the batchsize points x to the design of experiments.
- `intpoints.oldsd` Vector of size p corresponding to the kriging standard deviation at the integration points before adding the batchsize points x to the design of experiments.
- `precalc.data` List containing useful data to compute quickly the updated kriging variance. This list can be generated using the precomputeUpdateData function.
The first argument \( x \) has been chosen to be a vector of size \( \text{batchsize} \times d \) (and not a matrix with \( \text{batchsize} \) rows and \( d \) columns) so that an optimizer like genoud can optimize it easily. For example if \( d=2 \), \( \text{batchsize}=3 \) and \( x=c(0.1,0.2,0.3,0.4,0.5,0.6) \), we will evaluate the parallel criterion at the three points \((0.1,0.2),(0.3,0.4)\) and \((0.5,0.6)\). The last argument \( \text{current.sur} \) is used as a default value for the sur criterion when the new points \( x \) are too close to existing observations.

Value

Parallel sur value

Author(s)

Clement Chevalier (IMSV, Switzerland, and IRSN, France)

References


See Also

EGIparallel, max_sur_parallel

Examples

```r
#sur_optim_parallel

set.seed(8)
N <- 9 #number of observations
T <- 80 #threshold
testfun <- bracin

#a 9 points initial design
design <- data.frame(matrix(runif(2*N),ncol=2))
response <- testfun(design)

#km object with matern3_2 covariance
```
# params estimated by ML from the observations
model <- km(formula = ~ ., design = design,
response = response, covtype = "matern_2.2")

### we need to compute some additional arguments:
# integration points, and current kriging means and variances at these points
integcontrol <- list(n.points = 50, init.distrib = "sur", init.distrib = "MC")
obj <- integration_design(integcontrol = integcontrol,
lower = c(0, 0), upper = c(1, 1), model = model, T = T)
integration.points <- obj$integration.points
integration.weights <- obj$integration.weights
pred <- predict.nobias_km(object = model, newdata = integration.points,
type = "UK", se.compute = TRUE)
intpoints.oldmean <- pred$mean; intpoints.oldsd <- pred$sd

# another precomputation
precalc.data <- precomputeUpdateData(model, integration.points)

batchsize <- 4
x <- c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8)
# one evaluation of the sur_optim_parallel criterion
# we calculate the expectation of the future "sur" uncertainty
# when 4 points are added to the doe
# the 4 points are (0.1, 0.2), (0.3, 0.4), (0.5, 0.6), (0.7, 0.8)
sur_optim_parallel(x = x, integration.points = integration.points,
integration.weights = integration.weights,
intpoints.oldmean = intpoints.oldmean, intpoints.oldsd = intpoints.oldsd,
precalc.data = precalc.data, T = T, model = model,
batchsize = batchsize, current.sur = Inf)

# the function max_sur_parallel will help to find the optimum:
# ie: the batch of 4 minimizing the expectation of the future uncertainty

---

**sur_optim_parallel2**  
**Parallel sur criterion**

**Description**

Evaluation of the parallel sur criterion for some candidate points, assuming that some other points are also going to be evaluated. To be used in optimization routines, like in `max_sur_parallel`. To avoid numerical instabilities, the new points are evaluated only if they are not too close to an existing observation, or if there is some observation noise. The criterion is the integral of the posterior sur uncertainty.

**Usage**

```r
sur_optim_parallel2(x, other.points,
integration.points, integration.weights = NULL,
```
sur_optim_parallel2

intpoints.oldmean, intpoints.oldsd, precalc.data, model, T, new.noise.var = NULL, batchsize, current.sur)

Arguments

x          Input vector of size d at which one wants to evaluate the criterion. This argument corresponds to only ONE point.
other.points Vector giving the other batchsize-1 points at which one wants to evaluate the criterion
integration.points p*d matrix of points for numerical integration in the X space.
integration.weights Vector of size p corresponding to the weights of these integration points.
intpoints.oldmean Vector of size p corresponding to the kriging mean at the integration points before adding x to the design of experiments.
intpoints.oldsd Vector of size p corresponding to the kriging standard deviation at the integration points before adding x to the design of experiments.
precalc.data List containing useful data to compute quickly the updated kriging variance. This list can be generated using the precomputeupdatedata function.
model        Object of class km (Kriging model).
T             Target value (scalar).
new.noise.var Optional scalar value of the noise variance of the new observations.
batchsize    Number of points to sample simultaneously. The sampling criterion will return batchsize points at a time for sampling.
current.sur  Current value of the sur criterion (before adding new observations)

Details

The first argument x has been chosen to be a vector of size d so that an optimizer like genoud can optimize it easily. The second argument other.points is a vector of size (batchsize-1)*d corresponding to the batchsize-1 other points. The last argument current.sur is used as a default value for the sur criterion when the new points x are too close to existing observations.

Value

Parallel sur value

Author(s)

Clement Chevalier (IMSV, Switzerland, and IRSN, France)
References


See Also

EGIparallel, max_sur_parallel

Examples

```r
#sur_optim_parallel2

set.seed(8)
N <- 9 #number of observations
T <- 80 #threshold
testfun <- branin

da <- 9 points initial design
design <- data.frame(matrix(runif(2*N),nrow=2))
response <- testfun(design)

#km object with matern3_2 covariance
#params estimated by ML from the observations
model <- km(formula=-., design = design,
response = response,covtype="matern3_2")

###we need to compute some additional arguments:
#integration points, and current kriging means and variances at these points
integcontrol <- list(n.points=50,distrib="sur",init.distrib="MC")
obj <- integration_design(integcontrol=integcontrol,lower=c(0,0),upper=c(1,1),
model=model,T=T)

integration.points <- obj$integration.points
integration.weights <- obj$integration.weights
pred <- predict_nobias_km(object=model,newdata=integration.points,
type="UK",se.compute=TRUE)
intpoints.oldmean <- pred$mean ; intpoints.oldsd<-pred$sd

#another precomputation
precalc.data <- precomputeUpdateData(model,integration.points)

batchsize <- 4
other.points <- c(0.7,0.5,0.5,0.9,0.9,0.8)
x <- c(0.1,0.2)
#one evaluation of the sur_optim_parallel criterion2
#we calculate the expectation of the future "sur" uncertainty when
#1+3 points are added to the doe
#the 1+3 points are (0.1,0.2) and (0.7,0.5), (0.5,0.9), (0.9,0.8)
```
timse_optim

**Targeted IMSE criterion**

**Description**

Evaluation of the "timse" criterion for a candidate point. To be used in optimization routines, like in `max_timse`. To avoid numerical instabilities, the new point is evaluated only if it is not too close to an existing observation, or if there is some observation noise. The criterion is the integral of the posterior timse uncertainty.

**Usage**

```r
timse_optim(x, integration.points, integration.weights = NULL,
 intpoints.oldmean = NULL, intpoints.oldsd = NULL,
 precalc.data, model, T, new.noise.var = 0, weight = NULL)
```

Arguments

- **x**: Input vector of size d at which one wants to evaluate the criterion.
- **integration.points**: \( p \times d \) matrix of points for numerical integration in the X space.
- **integration.weights**: Vector of size p corresponding to the weights of these integration points.
- **intpoints.oldmean**: Vector of size p corresponding to the kriging mean at the integration points before adding \( x \) to the design of experiments.
- **intpoints.olddsd**: Vector of size p corresponding to the kriging standard deviation at the integration points before adding \( x \) to the design of experiments.
- **precalc.data**: List containing useful data to compute quickly the updated kriging variance. This list can be generated using the `precomputeupdatedata` function.
- **model**: Object of class `km` (Kriging model).
- **T**: Target value (scalar)
- **new.noise.var**: Optional scalar value of the noise variance for the new observations.
- **weight**: Vector of weight function (length must be equal to the number of lines of the matrix `integration.points`). If nothing is set, the imse criterion is used instead if `timse`. It corresponds to equal weights.

Value

targeted imse value

Author(s)

Victor Picheny (CERFACS, Toulouse, France)
David Ginsbourger (IMSV, University of Bern, Switzerland)
Clement Chevalier (IMSV, Switzerland, and IRSN, France)

References


See Also

EGI.max_timse
Examples

```r
timse_optim

set.seed(8)
N <- 9 # number of observations
T <- 80 # threshold
testfun <- branin

da 9 points initial design
design <- data.frame(matrix(runif(2*N), ncol=2))
response <- testfun(design)

km object with matern3_2 covariance
params estimated by ML from the observations
model <- km(formula=~., design = design,
response = response, covtype="matern3_2")

we need to compute some additional arguments:
integration points, and current kriging means and variances at these points
integcontrol <- list(n.points=50, distrib="timse", init.distrib="MC")
obj <- integration_design(integcontrol=integcontrol, lower=c(0,0),
upper=c(1,1), model=model, T=T)

integration.points <- obj$integration.points
integration.weights <- obj$integration.weights
pred <- predict_nobias_km(object=model, newdata=integration.points,
type="UK", se.compute=TRUE)
intpoints.oldmean <- pred$mean; intpoints.oldsd<-pred$sd

another precomputation
precalc.data <- precomputeUpdateData(model,integration.points)

we also need to compute weights. Otherwise the (more simple)
imse criterion will be evaluated
weight <- 1/sqrt(2*pi*intpoints.oldsd^2) *
exp(-0.5*((intpoints.oldmean-T)/sqrt(intpoints.oldsd^2))^2)
weight[is.na(weight)] <- 0

x <- c(0.5,0.4)# one evaluation of the timse criterion
timse_optim(x=x, integration.points=integration.points,
integration.weights=integration.weights,
intpoints.oldmean=intpoints.oldmean, intpoints.oldsd=intpoints.oldsd,
precalc.data=precalc.data, T=T, model=model, weight=weight)

n.grid <- 20 # you can run it with 100
x.grid <- y.grid <- seq(0,1,length=n.grid)
x <- expand.grid(x.grid, y.grid)
timse.grid <- apply(X=x, FUN=timse_optim, MARGIN=1, integration.points=integration.points,
inTEGRATION.weights=integration.weights,
intpoints.oldmean=intpoints.oldmean, intpoints.oldsd=intpoints.oldsd,
precalc.data=precalc.data, T=T, model=model, weight=weight)
```
Description

Evaluation of the "timse" criterion for some candidate points. To be used in optimization routines, like in `max_timse_parallel`. To avoid numerical instabilities, the new points are evaluated only if they are not too close to an existing observation, or if there is some observation noise. The criterion is the integral of the posterior timse uncertainty.

Usage

```r
timse_optim_parallel(x, integration.points, integration.weights = NULL,
intpoints.oldmean = NULL, intpoints.oldsd = NULL,
precalc.data, model, T, new.noise.var = 0, weight = NULL,
batchsize, current.timse)
```

Arguments

- `x` Input vector of size d at which one wants to evaluate the criterion.
- `integration.points` \(p \times d\) matrix of points for numerical integration in the X space.
- `integration.weights` Vector of size p corresponding to the weights of these integration points.
- `intpoints.oldmean` Vector of size p corresponding to the kriging mean at the integration points before adding \(x\) to the design of experiments.
- `intpoints.oldsd` Vector of size p corresponding to the kriging standard deviation at the integration points before adding \(x\) to the design of experiments.
- `precalc.data` List containing useful data to compute quickly the updated kriging variance. This list can be generated using the `precomputeUpdateData` function.
timse_optim_parallel

model Object of class \texttt{km} (Kriging model).

T Target value (scalar).

new.noise.var Optional scalar value of the noise variance of the new observations.

weight Vector of weight function (length must be equal to the number of lines of the matrix integration.points). If nothing is set, the imse criterion is used instead of timse. It corresponds to equal weights.

batchsize Number of points to sample simultaneously. The sampling criterion will return batchsize points at a time for sampling.

current.timse Current value of the timse criterion (before adding new observations)

Value

targeted imse value

Author(s)

Victor Picheny (CERFACS, Toulouse, France)

Clement Chevalier (IMSV, Switzerland, and IRSN, France)

References


See Also

\texttt{EGIparallel, max\_timse\_parallel}

Examples

```r
#timse_optim_parallel

set.seed(8)
N <- 9 #number of observations
T <- 80 #threshold
testfun <- branin

#a 9 points initial design
design <- data.frame(matrix(runif(2*N),ncol=2))
response <- testfun(design)

#km object with matern3_2 covariance
```
#params estimated by ML from the observations
model <- km(formula=~., design = design,
       response = response,covtype="matern3_2")

### We need to compute some additional arguments:
### Integration points, and current kriging means and variances at these points
integcontrol <- list(n.points=1000,distrib="timse",init.distrib="MC")
obj <- integration_design(integcontrol=integcontrol,lower=c(0,0),
      upper=c(1,1),model=model,T=T)

integration.points <- obj$integration.points
integration.weights <- obj$integration.weights
pred <- predict_nobias_km(object=model,newdata=integration.points,
      type="UK",se.compute=TRUE)
intpoints.oldmean <- pred$mean ; intpoints.oldsd<-pred$sd

# Another precomputation
precalc.data <- precomputeUpdatedata(model,integration.points)

# We also need to compute weights. Otherwise the (more simple)
# timse criterion will be evaluated
weight <- 1/sqrt(2*pi*intpoints.oldsd^2) * 
exp(-0.5*((intpoints.oldmean-T)/sqrt(intpoints.oldsd^2))^2)
weight[is.nan(weight)] <- 0

batchsize <- 4
x <- c(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8)
# One evaluation of the time_optim_parallel criterion
# We calculate the expectation of the future "time"
# Uncertainty when 4 points are added to the doe
# The 4 points are (0.1,0.2), (0.3,0.4), (0.5,0.6), (0.7,0.8)
timse_optim_parallel(x=x,integration.points=integration.points,
      integration.weights=integration.weights,
      intpoints.oldmean=intpoints.oldmean,intpoints.oldsd=intpoints.oldsd,
      precalc.data=precalc.data,T=T,model=model,weight=weight,
      batchsize=batchsize,current.time=Inf)

# The function max_time_parallel will help to find the optimum:
# I.e. the batch of 4 minimizing the expectation of the future uncertainty

---

**timse_optim_parallel2  Parallel time criterion**

### Description

Evaluation of the parallel timse criterion for some candidate points, assuming that some other points are also going to be evaluated. To be used in optimization routines, like in max_time_parallel. To avoid numerical instabilities, the new points are evaluated only if they are not too close to an existing observation, or if there is some observation noise. The criterion is the integral of the posterior timse uncertainty.
Usage

timse_optim_parallel2(x, other.points, integration.points, integration.weights = NULL, intpoints.oldmean, intpoints.oldsd, precalc.data, model, T, new.noise.var = NULL, weight = NULL, batchsize, current.timse)

Arguments

x Input vector of size d at which one wants to evaluate the criterion. This argument corresponds to only ONE point.
other.points Vector giving the other batchsize-1 points at which one wants to evaluate the criterion
integration.points p*d matrix of points for numerical integration in the X space.
integration.weights Vector of size p corresponding to the weights of these integration points.
intpoints.oldmean Vector of size p corresponding to the kriging mean at the integration points before adding x to the design of experiments.
intpoints.oldsd Vector of size p corresponding to the kriging standard deviation at the integration points before adding x to the design of experiments.
precalc.data List containing useful data to compute quickly the updated kriging variance. This list can be generated using the precomputeupdatedata function.
model Object of class km (Kriging model).
T Target value (scalar).
new.noise.var Optional scalar value of the noise variance for the new observations.
weight Vector of weight function (length must be equal to the number of lines of the matrix integration.points). If nothing is set, the imse criterion is used instead of timse. It corresponds to equal weights.
batchsize Number of points to sample simultaneously. The sampling criterion will return batchsize points at a time for sampling.
current.timse Current value of the timse criterion (before adding new observations)

Details

The first argument x has been chosen to be a vector of size d so that an optimizer like genoud can optimize it easily. The second argument other.points is a vector of size (batchsize-1)*d corresponding to the batchsize-1 other points. The last argument current.timse is used as a default value for the timse criterion when the new points x are too close to existing observations.

Value

Parallel timse value
Author(s)

Victor Picheny (CERFACS, Toulouse, France)
Clement Chevalier (IMSV, Switzerland, and IRSN, France)

References


See Also

EGIparallel, max_timse_parallel

Examples

```r
#timse_optim_parallel2

set.seed(8)
N <- 9 #number of observations
T <- 80 #threshold
testfun <- branin

#a 9 points initial design
design <- data.frame(matrix(runif(2*N),nrow=2))
response <- testfun(design)

#km object with matern3_2 covariance
#params estimated by ML from the observations
model <- km(formula=-., dofit=T, design=design, response=response,
covtype="matern3_2")

###we need to compute some additional arguments:
#integration points, and current kriging means and variances at these points
integcontrol <- list(n.points=1000,distrib="time",init.distrib="MC")
obj <- integration_design(integcontrol=integcontrol,lower=c(0,0),upper=c(1,1),
model=model,T=T)

integration.points <- obj$integration.points
integration.weights <- obj$integration.weights
pred <- predict_nobias_km(object=model,newdata=integration.points_km,
type="UK",se.compute=TRUE)
intpoints.oldmean <- pred$mean ; intpoints.oldsd<-pred$sd

#another precomputation
```
tmse_optim

precalc.data <- precomputeUpdateData(model,integration.points)

# we also need to compute weights. Otherwise the (more simple)
# imse criterion will be evaluated
weight <- 1/sqrt(2*pi*intpoints.oldsd^2) *
exp(-0.5*((intpoints.oldmean-T)/sqrt(intpoints.oldsd^2))^2)
weight[is.nan(weight)] <- 0

batchsize <- 4
other.points <- c(0.7,0.5,0.9,0.9,0.8)
x <- c(0.1,0.2)
# one evaluation of the tmse_optim_parallel criterion
# we calculate the expectation of the future "tmse" uncertainty
# when 1+3 points are added to the doe
# the 1+3 points are (0.1,0.2) and (0.7,0.5), (0.5,0.9), (0.9,0.8)
tmse_optim_parallel2(x=x,other.points,integration.points=integration.points,
integration.weights=integration.weights,
intpoints.oldmean=intpoints.oldmean,intpoints.oldsd=intpoints.oldsd,
precalc.data=precalc.data,T=T,model=model,weight=weight,
batchsize=batchsize,current.timse=Inf)

n.grid <- 20 # you can run it with 100
x.grid <- y.grid <- seq(0,1,length=n.grid)
x <- expand.grid(x.grid, y.grid)
tmse_parallel.grid <- apply(x=x,FUN=tmse_optim_parallel2,MARGIN=1,other.points,
integration.points=integration.points,
integration.weights=integration.weights,
intpoints.oldmean=intpoints.oldmean,intpoints.oldsd=intpoints.oldsd,
precalc.data=precalc.data,T=T,model=model,weight=weight,
batchsize=batchsize,current.timse=Inf)

z.grid <- matrix(tmse_parallel.grid, n.grid, n.grid)

# plots: contour of the criterion, doe points and new point
image(x=x.grid,y=y.grid,z=z.grid,col=grey.colors(10))
contour(x=x.grid,y=y.grid,z=z.grid,15,add=TRUE)
points(design, col="black", pch=17, lwd=4,cex=2)
points(matrix(other.points,ncol=2,byrow=TRUE), col="red", pch=17, lwd=4,cex=2)
i.best <- which.min(tmse_parallel.grid)
points(x[i.best,], col="blue", pch=17, lwd=4,cex=3)

# plots the real (unknown in practice) curve f(x)=T
testfun.grid <- apply(x=1,testfun)
z.grid.2 <- matrix(testfun.grid, n.grid, n.grid)
contour(x.grid,y.grid,z.grid.2,levels=T,col="blue",add=TRUE,lwd=5)
title("Contour lines of tmse_parallel criterion (black) and of f(x)=T (blue)"

---

**tmse_optim**  
**Targeted MSE criterion**
Description
Evaluation of the Targeted MSE criterion. To be used in optimization routines, like in `max_infill_criterion`.

Usage
```r
tmse_optim(x, model, T, method.param = NULL)
```

Arguments
- `x`: Input vector at which one wants to evaluate the criterion. This argument can be either a vector of size d (for an evaluation at a single point) or a p*d matrix (for p simultaneous evaluations of the criterion at p different points).
- `model`: An object of class `km` (Kriging model).
- `T`: Target value (scalar).
- `method.param`: Scalar tolerance around the target T.

Value
targeted MSE value. When the argument `x` is a vector the function returns a scalar. When the argument `x` is a p*d matrix the function returns a vector of size p.

Author(s)
V. Picheny (Ecole Centrale Paris)
D. Ginsbourger (IMSV, University of Bern, Switzerland)
Clement Chevalier (IMSV, Switzerland, and IRSN, France)

References

See Also
`EGI`, `max_infill_criterion`

Examples
```r
#tmse_optim
set.seed(8)
N <- 9 # number of observations
T <- 80 # threshold
testfun <- branin
```
tsee_optim

Two Sided Expected Exceedance criterion

Description

Evaluation of a two-sided Expected Exceedance criterion. To be used in optimization routines, like in `max_infill_criterion`.

Usage

`tsee_optim(x, model, T)`

Arguments

- **x**: Input vector at which one wants to evaluate the criterion. This argument can be either a vector of size `d` (for an evaluation at a single point) or a `p*d` matrix (for `p` simultaneous evaluations of the criterion at `p` different points).
model An object of class km (Kriging model).
T Target value (scalar).

Value

tsee criterion. When the argument x is a vector the function returns a scalar. When the argument x is a p*d matrix the function returns a vector of size p.

Author(s)

Clement Chevalier (IMSV, Switzerland, and IRSN, France) Yann Richet (IRSN, France)

See Also

EGI, max_infill_criterion

Examples

```r
#tsee_optim

set.seed(8)
N <- 9 #number of observations
T <- 80 #threshold
testfun <- Branin

9 points initial design
design <- data.frame(matrix(rnorm(2*N), ncol=2))
response <- testfun(design)

#km object with matern3_2 covariance
#params estimated by ML from the observations
model <- km(formula= ~ ., design = design, response = response, covtype="matern3_2")

x <- c(0.5, 0.4)#one evaluation of the tsee criterion
tsee_optim(x=x, T=T, model=model)

n.grid <- 20 #you can run it with 100
x.grid <- y.grid <- seq(0,1, length=n.grid)
x <- expand.grid(x.grid, y.grid)
tsee.grid <- tsee_optim(x=x, T=T, model=model)
z.grid <- matrix(tsee.grid, n.grid, n.grid)

#plots: contour of the criterion, doe points and new point
image(x=x.grid, y=y.grid, z=z.grid, col=grey.colors(10))
contour(x=x.grid, y=y.grid, z=z.grid, 25, add=TRUE)
points(design, col="black", pch=17, lwd=4, cex=2)
i.best <- which.max(tsee.grid)
points(x[i.best,], col="blue", pch=17, lwd=4, cex=3)

#plots the real (unknown in practice) curve f(x)=T
```
**Description**

Update a `km` object when one or many new observations are added. Many, but not all, fields of the `km` object need to be recalculated when new observations are added. It is also possible to modify the k first (existing) observations.

**Usage**

```r
update_km(model, NewX, NewY, NewX_AllreadyExist = FALSE, CovReEstimate = FALSE, new.noise.var = NULL, kmcontrol = NULL, F.newdata = NULL)
```

**Arguments**

- `model` Kriging model of `km` class.
- `NewX` Matrix with `model@d` columns and r rows corresponding to the r locations of the observations to be updated. These locations can be new locations or existing ones.
- `NewY` Matrix with one column and r rows corresponding to the r responses at the r locations NewX.
- `NewX_AllreadyExist` Boolean: indicate whether the locations NewX are all new or not.
- `CovReEstimate` Boolean to decide whether the covariance parameters of the `km` object should be re-estimated.
- `new.noise.var` Vector containing the noise variance at each new observations.
- `kmcontrol` Optional list representing the control variables for the re-estimation of the kriging model once new points are sampled. The items are the same as in `km`.
- `F.newdata` Optional matrix containing the value of the trend at the new locations. Setting this argument avoids a call to an expensive function.

**Value**

Updated `km` object

**Author(s)**

Clement Chevalier (IMSV, Switzerland, and IRSN, France)
References


See Also

km

Examples

```r
#update_km

set.seed(8)
N <- 9 #number of observations
testfun <- branin

#9 points initial design
design <- data.frame(matrix(runif(2*N),ncol=2))
response <- testfun(design)

#km object with matern3_2 covariance
#params estimated by ML from the observations
model <- km(formula=-., design = design,
response = response,covtype="matern3_2")
model@covariance

new.x <- matrix(c(0.4,0.5),ncol=2)#the point that we are going to add in the km object
new.y <- testfun(new.x)
new.model <- update_km(model=model,NewX=new.x,NewY=new.y,CovReEstimate=TRUE)
new.model@covariance
```

Description

Evaluation of the parallel Vorob’ev criterion for some candidate points. To be used in optimization routines, like in `max_vorob_parallel`. To avoid numerical instabilities, the new points are evaluated only if they are not too close to an existing observation, or if there is some observation noise. The criterion is the integral of the posterior Vorob’ev uncertainty.
Usage

vorob_optim_parallel(x, integration.points, integration.weights = NULL, intpoints.old.mean, intpoints.old.sd, precalc.data, model, T, new.noise.var = NULL, batchsize, alpha, current.vorob)

Arguments

x
Input vector of size batchsize*d at which one wants to evaluate the criterion. This argument is NOT a matrix.

integration.points
p*d matrix of points for numerical integration in the X space.

integration.weights
Vector of size p corresponding to the weights of these integration points.

intpoints.old.mean
Vector of size p corresponding to the kriging mean at the integration points before adding the batchsize points x to the design of experiments.

intpoints.old.sd
Vector of size p corresponding to the kriging standard deviation at the integration points before adding the batchsize points x to the design of experiments.

precalc.data
List containing useful data to compute quickly the updated kriging variance. This list can be generated using the precomputeupdatedata function.

model
Object of class km (Kriging model).

T
Target value (scalar).

new.noise.var
Optional scalar value of the noise variance for the new observations.

batchsize
Number of points to sample simultaneously. The sampling criterion will return batchsize points at a time for sampling.

alpha
The Vorob'ev threshold.

current.vorob
Current value of the vorob criterion (before adding new observations)

Details

The first argument x has been chosen to be a vector of size batchsize*d (and not a matrix with batchsize rows and d columns) so that an optimizer like genoud can optimize it easily. For example if d=2, batchsize=3 and x=c(0.1,0.2,0.3,0.4,0.5,0.6), we will evaluate the parallel criterion at the three points (0.1,0.2),(0.3,0.4) and (0.5,0.6). The last argument current.vorob is used as a default value for the vorob criterion when the new points x are too close to existing observations.

Value

Parallel vorob value

Author(s)

Clement Chevalier (IMSV, Switzerland, and IRSN, France)
References


See Also

EGIparallel, max_vorob_parallel

Examples

```r
vorob_optim_parallel

set.seed(8)
N <- 9 # number of observations
T <- 80 # threshold

testfun <- branin

data_points <- 9

design <- data.frame(matrix(runif(2*N), ncol = 2))
response <- testfun(design)

covariance <- km(formula = ~ ., design = design,
 response = response, covtype = "matern3_2")

we need to compute some additional arguments:
integration_points <- obj$integration.points
integration.weights <- obj$integration.weights
alpha <- obj$alpha

def <- predict_nobias_km(object = model, newdata = integration.points,
 type = "UK", se.compute = TRUE)

ten_points.oldmean <- def$mean; ten_points.oldsd <- def$sd

batchsize <- 4
x <- c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8)

evaluation of the vorob_optim_parallel criterion
we calculate the expectation of the future "vorob" uncertainty
when 4 points added to the doe
the 4 points are (0.1,0.2), (0.3,0.4), (0.5,0.6), (0.7,0.8)
```
vorob_optim_parallel2

vorob_optim_parallel(x=x, integration.points=integration.points, 
integration.weights=integration.weights, 
intpoints.oldmean=intpoints.oldmean, intpoints.oldsd=intpoints.oldsd, 
precalc.data=precalc.data, T=T, model=model, 
batchsize=batchsize, alpha=alpha, current.vorob=Inf)

#the function max_vorob_parallel will help to find the optimum: 
#ie: the batch of 4 minimizing the expectation of the future uncertainty

---

**vorob_optim_parallel2  Parallel Vorob’ev criterion**

### Description

Evaluation of the Vorob’ev criterion for some candidate points, assuming that some other points are also going to be evaluated. To be used in optimization routines, like in `max_vorob_parallel`. To avoid numerical instabilities, the new points are evaluated only if they are not too close to an existing observation, or if there is some observation noise. The criterion is the integral of the posterior Vorob’ev uncertainty.

### Usage

```
vorob_optim_parallel2(x, other.points,
integration.points, integration.weights = NULL,
intpoints.oldmean, intpoints.oldsd, precalc.data,
model, T, new.noise.var = NULL,
batchsize, alpha, current.vorob)
```

### Arguments

- **x**  
  Input vector of size d at which one wants to evaluate the criterion. This argument corresponds to only ONE point.

- **other.points**  
  Vector giving the other batchsize-1 points at which one wants to evaluate the criterion

- **integration.points**  
  p*d matrix of points for numerical integration in the X space.

- **integration.weights**  
  Vector of size p corresponding to the weights of these integration points.

- **intpoints.oldmean**  
  Vector of size p corresponding to the kriging mean at the integration points before adding x to the design of experiments.

- **intpoints.oldsd**  
  Vector of size p corresponding to the kriging standard deviation at the integration points before adding x to the design of experiments.
precals.data List containing useful data to compute quickly the updated kriging variance. This list can be generated using the `precomputeUpdateData` function.

model Object of class `km` (Kriging model).

T Target value (scalar).

new.noise.var Optional scalar value of the noise variance of the new observations.

batchsize Number of points to sample simultaneously. The sampling criterion will return batchsize points at a time for sampling.

alpha The Vorob’ev threshold.

current.vorob Current value of the vorob criterion (before adding new observations)

Details

The first argument `x` has been chosen to be a vector of size `d` so that an optimizer like `genoud` can optimize it easily. The second argument `other.points` is a vector of size `(batchsize-1)*d` corresponding to the batchsize-1 other points. The last argument `current.vorob` is used as a default value for the vorob criterion when the new points `x` are too close to existing observations.

Value

Parallel Vorob’ev value

Author(s)

Clement Chevalier (IMSV, Switzerland, and IRSN, France)

References


See Also

`EGIparallel`, `max_vorob_parallel`

Examples

```r
#vorob_optim_parallel2

set.seed(8)
N <- 9 #number of observations
T <- 80 #threshold
testfun <- branin

a 9 points initial design
design <- data.frame(matrix(runif(2*N),ncol=2))
```
response <- testfun.design)

#km object with matern3_2 covariance
#params estimated by ML from the observations
model <- km(formula=-., design = design,
response = response, covtype="matern3_2")

### we need to compute some additional arguments:
#integration points, and current kriging means and variances at these points
integcontrol <- list(n.points=50, distrib="vorob", init.distrib="MC")
obj <- integration.design(integcontrol=integcontrol,
lower=c(0,0), upper=c(1,1), model=model, T=T)

integration.points <- obj$integration.points
integration.weights <- obj$integration.weights
alpha <- obj$alpha
pred <- predict.nobias_km(object=model, newdata=integration.points,
type="UK", se.compute=TRUE)
intpoints.oldmean <- pred$mean; intpoints.oldsd <- pred$sd

# another precomputation
precalc.data <- precomputeUpdateData(model, integration.points)

batchsize <- 4
other.points <- c(0.7,0.5,0.5,0.9,0.9,0.8)
x <- c(0.1,0.2)
# one evaluation of the vorob_optim_parallel criterion
# we calculate the expectation of the future "vorob" uncertainty when
# 1+3 points are added to the doe
# the 1+3 points are (0.1,0.2) and (0.7,0.5), (0.5,0.9), (0.9,0.8)
vorob_optim_parallel2(x=x, other.points, integration.points=integration.points,
integration.weights=integration.weights,
intpoints.oldmean=intpoints.oldmean, intpoints.oldsd=intpoints.oldsd,
precalc.data=precalc.data, T=T, model=model,
batchsize=batchsize, alpha=alpha, current.vorob=Inf)

n.grid <- 20 # you can run it with 100
x.grid <- y.grid <- seq(0,1,length=n.grid)
x <- expand.grid(x.grid, y.grid)
vorob_parallel.grid <- apply(X=x, FUN=vorob_optim_parallel2, MARGIN=1,
other.points, integration.points=integration.points,
integration.weights=integration.weights,
intpoints.oldmean=intpoints.oldmean, intpoints.oldsd=intpoints.oldsd,
precalc.data=precalc.data, T=T, model=model,
batchsize=batchsize, alpha=alpha, current.vorob=Inf)
z.grid <- matrix(vorob_parallel.grid, n.grid, n.grid)

# plots: contour of the criterion, doe points and new point
image(x=x.grid, y=y.grid, z=z.grid, col=grey.colors(10))
contour(x=x.grid, y=y.grid, z=z.grid, 15, add=TRUE)
points(design, col="black", pch=17, lwd=4, cex=2)
points(matrix(other.points, ncol=2, byrow=TRUE), col="red", pch=17, lwd=4, cex=2)
Calculation of the Vorob’ev threshold

Description
Evaluation of the Vorob’ev threshold given an excursion probability vector. This threshold is such that the volume of the set \( \{x : pn(x) > \text{threshold}\} \) is equal to the integral of \( pn \).

Usage
vorob_threshold(pn)

Arguments
pn Input vector of arbitrary size containing the excursion probabilities \( pn(x) \).

Details
In this function, all the points \( x \) are supposed to be equally weighted.

Value
a scalar: the Vorob’ev threshold

Author(s)
Clement Chevalier (IMSV, Switzerland, and IRSN, France)

References

See Also

max_vorob_parallel, vorob_optim_parallel

Examples

#vorob_threshold

set.seed(8)
N <- 9  # number of observations
T <- 80  # threshold
testfun <- branin

# a 9 points initial design
design <- data.frame(matrix(runif(2*N),ncol=2))
response <- testfun(design)

# km object with matern3_2 covariance
# params estimated by ML from the observations
model <- km(formula=~., design = design,
response = response,covtype="matern3_2")

## Not run:
### we need to compute some additional arguments:
### integration points, and current kriging means and variances at these points
integcontrol <- list(n.points=50,distrib="sobol")
obj <- integration_design(integcontrol=integcontrol,
lower=c(0,0),upper=c(1,1),model=model,T=T)

integration.points <- obj$integration.points

pred <- predict_nobias_km(object=model,newdata=integration.points,
type="UK",se.compute=TRUE)
pn <- pnorm((pred$mean-T)/pred$sd)

vorob_threshold(pn)

## End(Not run)
Index

*Topic methods
  predict_nobias_km, 42
*Topic models
  computeAuxVariables_noChol, 6
  predict_nobias_km, 42
*Topic package
  KrigInv-package, 2

bconsin1m, 6
bichon2m, 4, 26
chol, 6
computeAuxVariables, 7, 8
computeAuxVariables_noChol, 6
computeAuxVariables_update, 7
computeQuickKrigcov, 8, 40, 41, 45, 47
computeReaVolumeConstant, 10
EGI, 5, 12, 18, 22, 24, 26, 29, 34, 49–53, 55–58, 61, 68, 76, 78
EGI_parallel, 16, 31, 36, 39, 48, 63, 66, 71, 74, 82, 84
genoud, 12, 17, 26, 28, 30, 33, 35, 38
integration_design, 13, 17, 20, 28, 31, 33, 36, 38
jn_optim, 23
km, 4, 6–8, 10, 12, 13, 16–18, 21, 23, 26, 28, 31, 33, 36, 38, 40, 42, 44, 49, 51, 53, 56, 58, 60, 63, 65, 68, 71, 73, 76, 78–81, 84
KrigInv (KrigMpackage), 2
KrigMpackage, 2
max_infill2criterion, 4, 5, 14, 25, 58, 76–78
max_surn, 14, 22, 24, 27, 59, 61
max_sur_parallel, 18, 30, 36, 39, 48, 62–64, 66
max_timse, 14, 22, 32, 67, 68
max_timse_parallel, 35, 70–72, 74
max_vorob_parallel, 37, 80, 82–84, 87
precomputeUpdateData, 8, 9, 11, 23, 40, 45, 60, 62, 65, 68, 70, 73, 81, 84
predict.km, 44
predict_nobias_km, 9, 11, 41, 42, 45
predict_update.km, 9, 11, 41, 44, 47
predict_update_km_parallel, 47
print_uncertainty, 49
print_uncertainty_1d, 50
print_uncertainty_2d, 53
print_uncertainty Nd, 56
ranjan2m, 26, 58
sur_optim, 24, 29, 59
sur_optim_parallel, 18, 31, 48, 62
sur_optim_parallel2, 64
timse_optim, 34, 67
timse_optim_parallel, 70
timse_optim_parallel2, 72
timse_optim, 26, 75
timse_optim, 77
update_km, 79
vorob_optim_parallel, 80, 87
vorob_optim_parallel2, 83
vorob_threshold, 86