Package ‘LCA’

April 22, 2019

Version 0.1.1

Date 2013-09-30

Title Localised Co-Dependency Analysis

Maintainer Ed Curry <e.curry@imperial.ac.uk>

Depends R (>= 2.15.0)

Description Performs model fitting and significance estimation for Localised Co-
Dependency between pairs of features of a numeric dataset.

License GPL (>= 2)

URL https://www.r-project.org,
 https://www.imperial.ac.uk/people/e.curry

NeedsCompilation no

Repository CRAN

Date/Publication 2019-04-22 06:54:13 UTC

Author Ed Curry [aut, cre]

R topics documented:

estimateB .. 2
evaluateDiffSignificance 2
fitPTLmodel ... 3
getPTLExpectedCounts 4
getPTLparams ... 5
LCA .. 6
LCD ... 7
predictPTLparams .. 8
PTL .. 9

Index 11
estimateB *ML Estimation of Laplace Beta*

Description
Estimates initial value of parameter Beta from the PTL distribution used in LCA analysis.

Usage
```r
estimateB(x)
```

Arguments
- `x` Numeric vector of differences between the values of each feature, for a pair of objects in the dataset.

Details
Calculates maximum-likelihood estimate for Beta in the Laplace distribution fit to distribution of `x`.

Value
Numeric value for initial estimate of PTL distribution parameter Beta

Author(s)
Ed Curry <e.curry@imperial.ac.uk>

evaluateDiffSignificance
Evaluate Statistical Significance of an Observed Difference Between Two Objects

Description
Use PTL model to estimate the significance of a difference between the values of some feature of interest in two selected objects from a dataset.

Usage
```r
evaluateDiffSignificance(d,diff,PTLmodel)
```
Arguments

- **d**: Numeric value specifying global dissimilarity between the selected objects.
- **diff**: Numeric value specifying magnitude of difference between the values of a selected feature of interest in the selected objects.
- **PTLmodel**: List, as returned by the function `fitPTLmodel`, with named elements `alpha`, `beta`, and `gamma` specifying linear models for PTL parameter prediction.

Details

Evaluates statistical significance of observing as great a difference as that observed between the values of a selected feature of interest in the selected objects, given the global dissimilarity between those objects and the PTL models fitted to characterise these distributions across the whole dataset.

Value

Numeric value giving p-value representing significance estimate of the observed difference, given the fitted models.

Author(s)

Ed Curry <e.curry@imperial.ac.uk>

Description

Fits PTL models to randomly sampled pairs of the dataset, to enable prediction of PTL model parameter values based on hyperparameter `d`.

Usage

```r
fitPTLmodel(x, nPairs=10000)
```

Arguments

- **x**: Numeric data input array, standardised to range (0,1).
- **nPairs**: Numeric value specifying the number of samplings of pairs of objects to use to obtain hyperparameter fits.

Details

Evaluates parameters for PTL model fits to the distributions of feature-wise differences between each of a specified (large) number of pairs of objects represented in dataset `x`. Obtains subsequent model fits explaining the individual PTL parameters `alpha`, `beta`, `gamma` in terms of the global (Euclidean) distances between the corresponding pairs of objects.
getPTLExpectedCounts

Value
List with the following components:

- **alpha**: Object of class `lm`, which can be used to predict an appropriate value of \(\alpha \) in the PTL distribution corresponding to a pair of objects in the dataset with a specified global dissimilarity.
- **beta**: Object of class `lm`, which can be used to predict an appropriate value of \(\beta \) in the PTL distribution corresponding to a pair of objects in the dataset with a specified global dissimilarity.
- **gamma**: Object of class `lm`, which can be used to predict an appropriate value of \(\gamma \) in the PTL distribution corresponding to a pair of objects in the dataset with a specified global dissimilarity.

Author(s)
Ed Curry <e.curry@imperial.ac.uk>

Description
Predicts the expected number of features with a difference between two objects of a given global dissimilarity lying within a set of specified ranges.

Usage
```
getPTLExpectedCounts(alpha, beta, gamma, bin_limits, ntrials)
```

Arguments

- **alpha**: Numeric value specifying the parameter \(\alpha \) in the PTL model used to estimate distribution of differences between the given objects.
- **beta**: Numeric value specifying the parameter \(\beta \) in the PTL model used to estimate distribution of differences between the given objects.
- **gamma**: Numeric value specifying the parameter \(\gamma \) in the PTL model used to estimate distribution of differences between the given objects.
- **bin_limits**: Numeric vector specifying the limits of each range to be evaluated. Effectively, this gives the breakpoints between cells of the predicted histogram.
- **ntrials**: Numeric value specifying the number of features being evaluated in the dataset.

Details
Uses a PTL model with the specified parameters to estimate the expected number of features with differences between specified ranges. Used in calibration of PTL model parameter prediction to the dataset.
getPTLparams

Value

Numeric vector giving expected counts for numbers of features with a difference lying within the
given set of specified ranges.

Author(s)

Ed Curry <e.curry@imperial.ac.uk>

getPTLparams
Find best values of PTL parameters

description

Finds parameters alpha, beta and gamma in PTL model to fit an observed distribution of differences
in each feature’s values between two given objects from a dataset.

Usage

getPTLparams(x1,x2)

Arguments

x1 Numeric data input vector, standardised to range (0,1)
x2 Numeric data input vector, standardised to range (0,1)

Details

Uses iterative NLS fitting to determine parameters of PTL model to represent the distribution of the
differences observed between two objects selected from the dataset being analysed with LCA.

Value

List with the following elements:

d Numeric value specifying pair-wise global distance between objects x1 and x2
beta Numeric value specifying value of parameter beta in best PTL fit
alpha Numeric value specifying value of parameter alpha in best PTL fit
gamma Numeric value specifying value of parameter gamma in best PTL fit

Author(s)

Ed Curry <e.curry@imperial.ac.uk>
Localised Co-dependency Analysis

Description

Performs Localised Co-dependency Analysis

Usage

LCA(x,PTLmodel,clique,seed.row,combine.method="Fisher",
adjust.method="BH",comparison.alpha=0.05)

Arguments

x Numeric data input array, standardised to range (0,1)
PTLmodel List with named elements alpha, beta and gamma specifying PTL parameters
clique Numeric vector specifying which columns of data table represent entities defining the clique across which to evaluate co-dependency
seed.row Numeric value specifying which row of data table to use as 'seed' feature with which to evaluate co-dependency
combine.method Character specifying which method to use for combining individual LCD estimates. One of "Fisher" or "Inverse Product".
adjust.method Character specifying which method to use for multiple testing adjustment of significance estimates. See p.adjust for further details.
comparison.alpha Significance level threshold for including objects in the set to be used for evaluating LCD significance estimates for a given pair of features in a given clique.

Details

Function to evaluate LCD, within the members of clique, for all features in a dataset against the feature represented by seed.row.

Value

List with elements:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCD</td>
<td>Data frame giving across-clique LCD significance estimates for each feature in the dataset, as both unadjusted p-value and adjusted for multiple testing.</td>
</tr>
<tr>
<td>combinations</td>
<td>An array detailing the individual pair-wise LCD tests performed amongst members of the clique, which were combined to give the overall significance estimates</td>
</tr>
</tbody>
</table>

Author(s)

Ed Curry <e.curry@imperial.ac.uk>
Examples

```r
suppressWarnings(RNGversion("3.5.0"))
## create a data matrix
x <- array(runif(1200), dim=c(40,12))
## implant similarity across a 'clique'
clique.cols <- sample(ncol(x), 4)
x[, clique.cols] <- x[, clique.cols] + rnorm(nrow(x))
## scale x to (0,1)
x[x<0] <- 0
x[x>1] <- 1
## choose a 'seed' feature and some partner
seed.row <- sample(nrow(x), 1)
partner.row <- sample(setdiff(1:nrow(x), seed.row), 1)
x[c(seed.row, partner.row), clique.cols] <- x[c(seed.row, partner.row), clique.cols] +
  rep(rnorm(length(clique.cols)), each=2)
## calibrate PTL models to dataset
PTL.fit <- fitPTLmodel(x, nPairs=15)
## evaluate LCD between 'seed' feature and all other features
lca.result <- lca(x, PTL.model=PTL.fit, clique=clique.cols, seed.row=seed.row)
## Not run: head(lca.result$LCD)
```

Description

Evaluates Statistical Significance of Localised Co-Dependency (LCD)

Usage

```
LCD(x1, x2, seed.row, PTL.model)
```

Arguments

- `x1`: Numeric data vector giving values of all features for one selected object
- `x2`: Numeric data vector giving values of all features for another selected object
seed.row Numeric value specifying which row of data table to use as 'seed' feature with which to evaluate co-dependency

PTLmodel List with named elements alpha, beta and gamma specifying PTL parameters

Details
Function to evaluate LCD, between two selected objects, for all features in a dataset against the feature represented by seed.row.

Value
Numeric vector giving p-values for significance estimates of localised co-dependency, with the feature specified by seed.row, of all features in the dataset being analysed.

Author(s)
Ed Curry <e.curry@imperial.ac.uk>

predictPTLparams Predict Values for PTL Model

Description
Generates parameter values for PTL model, based on a specified value of the hyperparameter

Usage
predictPTLparams(d,PTLmodel)

Arguments
d Numeric value specifying global dissimilarity between the selected objects

PTLmodel List, as returned by the function fitPTLmodel, with named elements alpha, beta and gamma specifying linear models for PTL parameter prediction.

Details
Uses hyperparameter-based prediction linear models, calibrated to the dataset being analysed using the fitPTLmodel function, to estimate PTL model parameters for a pair of objects in the dataset with a global dissimilarity d.
Value

List with elements:

- alpha: Numeric value specifying the parameter alpha in the PTL model used to estimate distribution of differences between the given objects.
- beta: Numeric value specifying the parameter beta in the PTL model used to estimate distribution of differences between the given objects.
- gamma: Numeric value specifying the parameter gamma in the PTL model used to estimate distribution of differences between the given objects.

Author(s)

Ed Curry <e.curry@imperial.ac.uk>

PTL

Polynomial-Tail Laplace

Description

Probability density and distribution functions for Polynomial-Tail Laplace distribution.

Usage

dPTL(x, alpha, beta, gamma)
pPTL(q, alpha, beta, gamma)

Arguments

- x, q: Numeric vector of quantiles.
- alpha: Linear tail adjustment coefficient for PTL distribution.
- beta: Exponential decay term for PTL distribution, similar to beta parameter in Laplace distribution.
- gamma: Polynomial tail adjustment coefficient for PTL distribution.

Details

The PTL distribution has density

\[
f(x) = \begin{cases}
0 & \text{if } x < -2 \\
\frac{\alpha(x^2 + 2x + 2) + \beta(e^{\frac{x}{\beta}} - e^{-\frac{x}{\beta}}) + \gamma\left(\frac{x^3}{3} + 4x + \frac{16}{3}\right)}{4\alpha + 2\beta(1 - e^{-\frac{2}{\beta}}) + \frac{32\gamma}{3}} & \text{if } -2 \leq x \leq 0 \\
\frac{\alpha(2x - \frac{x^2}{2} - 2) + \beta(e^{-\frac{x}{\beta}} - e^{\frac{x}{\beta}}) + \gamma\left(4x - \frac{x^3}{3} - \frac{16}{3}\right)}{4\alpha + 2\beta(1 - e^{-\frac{2}{\beta}}) + \frac{32\gamma}{3}} & \text{if } 0 < x \leq 2 \\
1 & \text{if } x > 2
\end{cases}
\]
Value

\texttt{dnorm} gives the density, \texttt{pnorm} gives the distribution function.

The length of the result is the maximum of the lengths of the numerical parameters for the other functions. The numerical parameters are recycled to the length of the result.

Author(s)

Ed Curry <e.curry@imperial.ac.uk>
Index

dPTL (PTL), 9
estimateB, 2
evaluateDiffSignificance, 2
fitPTLmodel, 3
getPTLExpectedCounts, 4
getPTLparams, 5
LCA, 6
LCD, 7

pPTL (PTL), 9
predictPTLparams, 8
PTL, 9