Package ‘LFDR.MME’

November 20, 2020

Type Package
Title Estimating Local False Discovery Rates Using the Method of Moments
Version 1.0
Date 2020-11-17
Author Ali Karimnezhad
Maintainer Ali Karimnezhad <ali.karimnezhad@gmail.com>
Description Estimation of the local false discovery rate using the method of moments.
Depends R(>= 2.14.2)
Encoding UTF-8
biocViews Bayesian, MathematicalBiology, MultipleComparison
License GPL-3
RoxygenNote 7.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2020-11-20 09:10:08 UTC

R topics documented:

LFDR.MM ... 1

Index 4

LFDR.MM Performs a Multiple Hypothesis Testing Using the Method of Moments

Description

Based on a given vector of chi-square test statistics, provides estimates of local false discoveries.
Usage

LFDR.MM(x)

Arguments

x A vector of chi-square test statistics with one degree of freedom.

Details

For N given features (genes, proteins, SNPs, etc.), the function tests the null hypothesis H_{0i}, $i = 1, \ldots, N$, indicating that there is no association between feature i and a specific disease, versus its alternative hypothesis H_{1i}. For each unassociated feature i, it is supposed that the corresponding test statistic x_i follows a central chi-square distribution with one degree of freedom. For each associated feature i, it is assumed that the corresponding test statistic x_i follows a non-central chi-square distribution with one degree of freedom and non-centrality parameter λ. In this packag, association is measured by estimating the local false discovery rate (LFDR), the posterior probability that the null hypothesis H_{0i} given the test statistic x_i is true. This package returns three components as mentioned in the Value section.

Value

Outputs three elements as seen below:

\begin{itemize}
 \item \texttt{pi0.hat} estimate of proportion of unassociated features π_0.
 \item \texttt{ncp.hat} estimate of the non-centrality parameter λ of the chi-square model for associated features.
 \item \texttt{lfdr.hat} estimates of local false discovery rates.
\end{itemize}

Author(s)

References

Examples

\begin{verbatim}
vector of test statistics for associated features
stat.assoc<- rchisq(n=1000,df=1, ncp = 3)

vector of test statistics for unassociated features
stat.unassoc<- rchisq(n=9000,df=1, ncp = 0)

vector of test statistics
stat<- c(stat.assoc,stat.unassoc)
\end{verbatim}
output <- LFDR.MM(x=stat)

Estimated pi0
output$p0.hat

Estimated non-centrality parameter
output$ncp.hat

Estimated LFDRs
output$lfdr.hat
Index

* Chi-Square Distribution
 LFDR.MM, 1
* Empirical Bayes
 LFDR.MM, 1
* Local False Discovery Rate
 LFDR.MM, 1
* Multiple Hypothesis Testing
 LFDR.MM, 1
* Null Hypothesis
 LFDR.MM, 1

LFDR.MM, 1