Package ‘LLM’

October 12, 2022

Title Logit Leaf Model Classifier for Binary Classification
Version 1.1.0
Date 2020-05-05
Author Arno De Caigny [aut, cre],
Kristof Coussement [aut],
Koen W. De Bock [aut]
Maintainer Arno De Caigny <a.de-caigny@ieseg.fr>
Description Fits the Logit Leaf Model, makes predictions and visualizes the output. (De Caigny et al., (2018) <DOI:10.1016/j.ejor.2018.02.009>).
Depends R (>= 4.0.0)
License GPL (>= 3)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.0
Suggests mlbench
Imports partykit, stats, stringr, RWeka, survey, reghelper, scales
NeedsCompilation no
Repository CRAN
Date/Publication 2020-05-08 06:30:03 UTC

R topics documented:

llm ... 2
llm.cv .. 3
predict.llm ... 4
table.cat.llm ... 6
table.llm .. 7

Index 9
Create Logit Leaf Model

Description
This function creates the logit leaf model. It takes a dataframe with numeric values as input and a corresponding vector with dependent values. Decision tree parameters threshold for pruning and number of observations per leaf can be set.

Usage
llm(X, Y, threshold_pruning = 0.25, nbr_obs_leaf = 100)

Arguments
- **X**: Dataframe containing numerical independent variables.
- **Y**: Numerical vector of dependent variable. Currently only binary classification is supported.
- **threshold_pruning**: Set confidence threshold for pruning. Default 0.25.
- **nbr_obs_leaf**: The minimum number of observations in a leaf node. Default 100.

Value
An object of class logitleafmodel, which is a list with the following components:
- **Segment Rules**: The decision rules that define segments. Use `table.llm.html` to visualize.
- **Coefficients**: The segment specific logistic regression coefficients. Use `table.llm.html` to visualize.
- **Full decision tree for segmentation**: The raw decision tree. Use `table.llm.html` to visualize.
- **Observations per segment**: The raw decision tree. Use `table.llm.html` to visualize.
- **Incidence of dependent per segment**: The raw decision tree. Use `table.llm.html` to visualize.

Author(s)
Arno De Caigny, <a.de-caigny@ieseg.fr>, Kristof Coussement, <k.coussement@ieseg.fr> and Koen W. De Bock, <kdebock@audencia.com>

References
See Also

predict.llm, table.llm.html, llm.cv

Examples

```r
## Load PimaIndiansDiabetes dataset from mlbench package
if (requireNamespace("mlbench", quietly = TRUE)) {
  library("mlbench")
}
data("PimaIndiansDiabetes")
## Split in training and test (2/3 - 1/3)
idtrain <- c(sample(1:768,512))
PimaTrain <- PimaIndiansDiabetes[idtrain,]
PimaTest <- PimaIndiansDiabetes[-idtrain,]
## Create the LLM
Pima.llm <- llm(X = PimaTrain[,-c(9)], Y = PimaTrain$diabetes,
threshold_pruning = 0.25, nbr_obs_leaf = 100)
```

llm.cv

Runs v-fold cross validation with LLM

Description

In v-fold cross validation, the data are divided into v subsets of approximately equal size. Subsequently, one of the v data parts is excluded while the remainder of the data is used to create a logitleafmodel object. Predictions are generated for the excluded data part. The process is repeated v times.

Usage

```
llm.cv(X, Y, cv, threshold_pruning = 0.25, nbr_obs_leaf = 100)
```

Arguments

- **X**: Dataframe containing numerical independent variables.
- **Y**: Numerical vector of dependent variable. Currently only binary classification is supported.
- **cv**: An integer specifying the number of folds in the cross-validation.
- **threshold_pruning**: Set confidence threshold for pruning. Default 0.25.
- **nbr_obs_leaf**: The minimum number of observations in a leaf node. Default 100.
Value

An object of class llm.cv, which is a list with the following components:

- `foldpred`: a data frame with, per fold, predicted class membership probabilities for the left-out observations.
- `pred`: a data frame with predicted class membership probabilities.
- `foldclass`: a data frame with, per fold, predicted classes for the left-out observations.
- `class`: a data frame with the predicted classes.
- `conf`: the confusion matrix which compares the real versus the predicted class memberships based on the class object.

Author(s)

Arno De Caigny, <a.de-caigny@ieseg.fr>, Kristof Coussement, <k.coussement@ieseg.fr> and Koen W. De Bock, <kdebock@audencia.com>

References

See Also

predict.llm, table.llm.html, llm

Examples

```r
## Load PimaIndiansDiabetes dataset from mlbench package
if (requireNamespace("mlbench", quietly = TRUE)) {
  library("mlbench")
}
data("PimaIndiansDiabetes")
## Create the LLM with 5-cv
Pima.llm <- llm.cv(X = PimaIndiansDiabetes[,-c(9)], Y = PimaIndiansDiabetes$diabetes, cv=5,
                   threshold_pruning = 0.25, nbr_obs_leaf = 100)
```

Description

This function creates a prediction for an object of class logitleafmodel. It assumes a dataframe with numeric values as input and an object of class logitleafmodel, which is the result of the `llm` function. Currently only binary classification is supported.
predict.llm

Usage

```r
## S3 method for class 'llm'
predict(object, X, ...)
```

Arguments

- `object`: An object of class logitleafmodel, as that created by the function llm.
- `X`: Dataframe containing numerical independent variables.
- `...`: further arguments passed to or from other methods.

Value

Returns a dataframe containing a probability for every instance based on the LLM model. Optional rownumbers can be added.

Author(s)

Arno De Caigny, <a.de-caigny@ieseg.fr>, Kristof Coussement, <k.coussement@ieseg.fr> and Koen W. De Bock, <kdebock@audencia.com>

References

See Also

- `llm`, `table.llm.html`, `llm.cv`

Examples

```r
## Load PimaIndiansDiabetes dataset from mlbench package
if (requireNamespace("mlbench", quietly = TRUE)) {
  library("mlbench")
}
data("PimaIndiansDiabetes")
## Split in training and test (2/3 - 1/3)
idtrain <- c(sample(1:768,512))
PimaTrain <- PimaIndiansDiabetes[idtrain,]
PimaTest <- PimaIndiansDiabetes[-idtrain,]
## Create the LLM
Pima.llm <- llm(X = PimaTrain[, -c(9)], Y = PimaTrain$diabetes,
  threshold_pruning = 0.25, nbr_obs_leaf = 100)
## Use the model on the test dataset to make a prediction
PimaPrediction <- predict.llm(object = Pima.llm, X = PimaTest[, -c(9)])
## Optionally add the dependent to calculate performance statistics such as AUC
# PimaPrediction <- cbind(PimaPrediction, "diabetes" = PimaTest[, "diabetes"])
```
Create the HTML code for Logit Leaf Model visualization

Description

This function generates HTML code for a visualization of the logit leaf model based on the variable importance per variable category.

Usage

```r
table.cat.llm.html(
  object,
  category_var_df,
  headertext = "The Logit Leaf Model",
  footertext = "A table footer comment",
  roundingnumbers = 2,
  methodvarimp = "Coef"
)
```

Arguments

- **object** An object of class logitleafmodel, as that created by the function llm.
- **category_var_df** dataframe containing a column called "iv" with the independent variables and a column called "cat" with the variable category names that is associated with every iv
- **headertext** Allows to provide the table with a header.
- **footertext** Allows to provide the table with a custom footer.
- **roundingnumbers** An integer stating the number of decimals in the visualization.
- **methodvarimp** Allows to determine the method to calculate the variable importance. There are 4 options: 1/ Variable coefficient (method = 'Coef') 2/ Standardized beta ('Beta') 3/ Wald statistic ('Wald') 4/ Likelihood Rate Test ('LRT')

Value

Generates HTML code for a visualization.

Author(s)

Arno De Caigny, <a.de-caigny@ieseg.fr>, Kristof Coussement, <k.coussement@ieseg.fr> and Koen W. De Bock, <kdebock@audencia.com>

References

See Also

predict.llm, llm, llm.cv

Examples

```r
## Load PimaIndiansDiabetes dataset from mlbench package
if (requireNamespace("mlbench", quietly = TRUE)) {
  library("mlbench")
}
data("PimaIndiansDiabetes")
## Split in training and test (2/3 - 1/3)
idtrain <- c(sample(1:768,512))
PimaTrain <- PimaIndiansDiabetes[idtrain,]
Pimatest <- PimaIndiansDiabetes[-idtrain,]
## Create the LLM
Pima.llm <- llm(X = PimaTrain[,-c(9)], Y = PimaTrain$diabetes,
                threshold_pruning = 0.25, nbr_obs_leaf = 100)
## Define the variable categories (note: the categories are only created for demonstration)
var_cat_df <- as.data.frame(cbind(names(PimaTrain[,-c(9)]),
                       c("cat_a","cat_a","cat_a","cat_a","cat_b","cat_b","cat_b","cat_b"),
                       stringsAsFactors = FALSE),
                       names = c("iv", "cat"))
## Save the output of the model to a html file
Pima.Viz <- table.cat.llm.html(object = Pima.llm, category_var_df= var_cat_df,
                                headertext = "This is an example of the LLM model",
                                footertext = "Enjoy the package!"
) # Optionally write it to your working directory
# write(Pima.Viz, "Visualization_LLM_on_PimaIndiansDiabetes.html")
```

table.llm.html

Create the HTML code for Logit Leaf Model visualization

Description

This function generates HTML code for a visualization of the logit leaf model.

Usage

```r
table.llm.html(
  object,
  headertext = "The Logit Leaf Model",
  footertext = "A table footer comment",
  roundingnumbers = 2
)
```

Arguments

- **object**: An object of class logitleafmodel, as that created by the function llm.
- **headertext**: Allows to provide the table with a header.
footertext Allows to provide the table with a custom footer.

roundingnumbers

An integer stating the number of decimals in the visualization.

Value

Generates HTML code for a visualization.

Author(s)

Arno De Caigny, <a.de-caigny@ieseg.fr>, Kristof Coussement, <k.coussement@ieseg.fr>
and Koen W. De Bock, <kdebock@audencia.com>

References

Arno De Caigny, Kristof Coussement, Koen W. De Bock, A New Hybrid Classification Algorithm
for Customer Churn Prediction Based on Logistic Regression and Decision Trees, European Journal

See Also

predict.llm, llm, llm.cv

Examples

```r
## Load PimaIndiansDiabetes dataset from mlbench package
if (requireNamespace("mlbench", quietly = TRUE)) {
  library("mlbench")
}
data("PimaIndiansDiabetes")
## Split in training and test (2/3 - 1/3)
idtrain <- c(sample(1:768,512))
PimaTrain <- PimaIndiansDiabetes[idtrain,]
PimaTest <- PimaIndiansDiabetes[-idtrain,]
## Create the LLM
Pima.llm <- llm(X = PimaTrain[,-c(9)], Y = PimaTrain$diabetes,
  threshold_pruning = 0.25, nbr_obs_leaf = 100)
## Save the output of the model to a html file
Pima.Viz <- table.llm.html(object = Pima.llm, headertext = "This is an example of the LLM model",
  footertext = "Enjoy the package!")
## Optionally write it to your working directory
# write(Pima.Viz, "Visualization_LLM_on_PimaIndiansDiabetes.html")
```
Index

llm, 2, 4, 5, 7, 8
llm.cv, 3, 3, 5, 7, 8
predict.llm, 3, 4, 4, 7, 8

table.cat.llm.html, 6
table.llm.html, 2–5, 7