Package ‘LLM’

February 20, 2018

Title Logit Leaf Model Classifier for Binary Classification
Version 1.0.0
Date 2018-02-14
Author Arno De Caigny [aut, cre],
 Kristof Coussement [aut],
 Koen W. De Bock [aut]
Maintainer Arno De Caigny <a.de-caigny@ieseg.fr>
Description Fits the Logit Leaf Model, makes predictions and visualizes the output. (De Caigny et al., (2018) <DOI:10.1016/j.ejor.2018.02.009>).
Depends R (>= 3.4.0)
License GPL (>= 3)
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
Suggests mlbench
Imports partykit, stats, stringr, RWeka
NeedsCompilation no
Repository CRAN
Date/Publication 2018-02-20 11:25:25 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>llm</td>
<td>2</td>
</tr>
<tr>
<td>llm.cv</td>
<td>3</td>
</tr>
<tr>
<td>predict.llm</td>
<td>4</td>
</tr>
<tr>
<td>table.llm.html</td>
<td>6</td>
</tr>
</tbody>
</table>

Index 8
llm

Create Logit Leaf Model

Description

This function creates the logit leaf model. It takes a dataframe with numeric values as input and a corresponding vector with dependent values. Decision tree parameters threshold for pruning and number of observations per leaf can be set.

Usage

llm(x, y, threshold_pruning = 0.25, nbr_obs_leaf = 100)

Arguments

- **X**: Dataframe containing numerical independent variables.
- **Y**: Numerical vector of dependent variable. Currently only binary classification is supported.
- **threshold_pruning**: Set confidence threshold for pruning. Default 0.25.
- **nbr_obs_leaf**: The minimum number of observations in a leaf node. Default 100.

Value

An object of class logitleafmodel, which is a list with the following components:

- **DecisionRules**: The raw decision rules that define segments. Use `table.llm.html` to visualize.
- **Coefficients**: The segment specific logistic regression coefficients. Use `table.llm.html` to visualize.

Author(s)

Arno De Caigny, <a.de-caigny@ieseg.fr>, Kristof Coussement, <k.coussement@ieseg.fr> and Koen W. De Bock, <kdebock@audencia.com>

References

See Also

predict.llm, table.llm.html, llm.cv
Examples

```r
## Load PimaIndiansDiabetes dataset from mlbench package
if (requireNamespace("mlbench", quietly = TRUE)) {
  library("mlbench")
} data("PimaIndiansDiabetes")
## Split in training and test (2/3 - 1/3)
idtrain <- c(sample(1:768,512))
PimaTrain <- PimaIndiansDiabetes[idtrain,]
Pimatest <- PimaIndiansDiabetes[-idtrain,]
## Create the LLM
Pima.lm <- llm(x = PimaTrain[,,-c(9)], Y = PimaTrain$diabetes,
               threshold_pruning = 0.25,nbr_obs_leaf = 100)
```

llm.cv

Runs v-fold cross validation with LLM

Description

In v-fold cross validation, the data are divided into v subsets of approximately equal size. Subsequently, one of the v data parts is excluded while the remainder of the data is used to create a logitleafmodel object. Predictions are generated for the excluded data part. The process is repeated v times.

Usage

```r
llm.cv(X, Y, cv, threshold_pruning = 0.25, nbr_obs_leaf = 100)
```

Arguments

- **X**: Dataframe containing numerical independent variables.
- **Y**: Numerical vector of dependent variable. Currently only binary classification is supported.
- **cv**: An integer specifying the number of folds in the cross-validation.
- **threshold_pruning**: Set confidence threshold for pruning. Default 0.25.
- **nbr_obs_leaf**: The minimum number of observations in a leaf node. Default 100.

Value

An object of class llm.cv, which is a list with the following components:

- **foldpred**: a data frame with, per fold, predicted class membership probabilities for the left-out observations
- **pred**: a data frame with predicted class membership probabilities.
predict.llm

foldclass a data frame with, per fold, predicted classes for the left-out observations.
class a data frame with the predicted classes.
conf the confusion matrix which compares the real versus the predicted class memberships based on the class object.

Author(s)
Arno De Caigny, <a.de-caigny@ieseg.fr>, Kristof Coussement, <k.coussement@ieseg.fr> and Koen W. De Bock, <kdebock@audencia.com>

References

See Also
predict.llm, table.llm.html, llm

Examples

```r
## Load Pima Indians Diabetes dataset from mlbench package
if (requireNamespace("mlbench", quietly = TRUE)) {
  library("mlbench")
}
data("PimaIndiansDiabetes")
## Create the LLM with 5-cv
Pima.llm <- llm.cv(X = PimaIndiansDiabetes[, -c(9)], Y = PimaIndiansDiabetes$diabetes, cv=5, threshold_pruning = 0.25, nbr_obs_leaf = 100)
```

predict.llm Create Logit Leaf Model Prediction

Description
This function creates a prediction for an object of class logitleafmodel. It assumes a dataframe with numeric values as input and an object of class logitleafmodel, which is the result of the llm function. Currently only binary classification is supported.

Usage

```r
## S3 method for class 'llm'
predict(object, X, addrownnumbers = TRUE, ...)
```
predict.llm

Arguments

object An object of class logitleafmodel, as that created by the function llm.
X Dataframe containing numerical independent variables.
addrownumbers Boolean to add row numbers in output.
... further arguments passed to or from other methods.

Value

Returns a dataframe containing a probability for every instance based on the LLM model. Optional rownumbers can be added.

Author(s)

Arno De Caigny, <a.de-caigny@ieseg.fr>, Kristof Coussement, <k.coussement@ieseg.fr> and Koen W. De Bock, <kdebock@audencia.com>

References

See Also

llm, table.llm.html, llm.cv

Examples

```r
## Load PimaIndiansDiabetes dataset from mlbench package
if (requireNamespace("mlbench", quietly = TRUE)) {
  library("mlbench")
} data("PimaIndiansDiabetes")
## Split in training and test (2/3 - 1/3)
idtrain <- c(sample(1:768,512))
PimaTrain <- PimaIndiansDiabetes[idtrain,]
PimaTest <- PimaIndiansDiabetes[-idtrain,]
## Create the LLM
Pima.llm <- llm(X = PimaTrain[, -c(9)], Y = PimaTrain$diabetes,
  threshold_pruning = 0.25, nbr_obs_leaf = 100)
## Use the model on the test dataset to make a prediction
PimaPrediction <- predict.llm(object = Pima.llm, X = PimaTest[, -c(9)])
## Optionally add the dependent to calculate performance statistics such as AUC
PimaPrediction <- cbind(PimaPrediction, "diabetes" = PimaTest[, "diabetes"])
```
Create the HTML code for Logit Leaf Model visualization

Description

This function generates HTML code for a visualization of the logit leaf model.

Usage

table.llm.html(object, headertext = "The Logit Leaf Model",
footertext = "A table footer comment", roundingnumbers = 2)

Arguments

object An object of class logitleafmodel, as that created by the function llm.
headertext Allows to provide the table with a header.
footertext Allows to provide the table with a custom footer.
roundingnumbers
An integer stating the number of decimals in the visualization.

Value

Generates HTML code for a visualization.

Author(s)

Arno De Caigny, <a.de-caigny@ieseg.fr>, Kristof Coussement, <k.coussement@ieseg.fr>
and Koen W. De Bock, <kdebock@audencia.com>

References

Arno De Caigny, Kristof Coussement, Koen W. De Bock, A New Hybrid Classification Algorithm
for Customer Churn Prediction Based on Logistic Regression and Decision Trees, European Journal

See Also

predict.llm, llm, llm.cv

Examples

Load PimaIndiansDiabetes dataset from mlbench package
if (requireNamespace("mlbench", quietly = TRUE)) {
 library("mlbench")
}
data("PimaIndiansDiabetes")
Split in training and test (2/3 - 1/3)
idtrain <- c(sample(1:768,512))
```r
PimaTrain <- PimaIndiansDiabetes[idtrain,]
Pimatest <- PimaIndiansDiabetes[-idtrain,]
## Create the LLM
Pima.llm <- llm(X = PimaTrain[, -c(9)], Y = PimaTrain$diabetes,
threshold_pruning = 0.25, nbr_obs_leaf = 100)
## Save the output of the model to a html file
Pima.Viz <- table.llm.html(object = Pima.llm, headertext = "This is an example of the LLM model",
footertext = "Enjoy the package!")
## Optionally write it to your working directory
# write(Pima.Viz, "Visualization_LLM_on_PimaIndiansDiabetes.html")
```
Index

llm, 2, 4–6
llm.cv, 2, 3, 5, 6

predict.llm, 2, 4, 4, 6

table.llm.html, 2, 4, 5, 6