Package ‘LMMsolver’

November 27, 2023

Type Package

Title Linear Mixed Model Solver

Description An efficient and flexible system to solve sparse mixed model equations. Important applications are the use of splines to model spatial or temporal trends as described in Boer (2023). (<doi:10.1177/1471082X231178591>).

Version 1.0.6

Date 2023-11-27

License GPL

Encoding UTF-8

LazyData true

Depends R (>= 3.6)

Imports agriddat, ggplot2, maps, Matrix, methods, Rcpp (>= 0.10.4), sf, spam, splines

LinkingTo Rcpp

RoxygenNote 7.2.3

Suggests rmarkdown, knitr, tinytest

VignetteBuilder knitr

URL https://biometris.github.io/LMMsolver/index.html,
https://github.com/Biometris/LMMsolver/

BugReports https://github.com/Biometris/LMMsolver/issues

NeedsCompilation yes

Author Martin Boer [aut] (<https://orcid.org/0000-0002-1879-4588>),
Bart-Jan van Rossum [aut, cre]
(<https://orcid.org/0000-0002-8673-2514>)

Maintainer Bart-Jan van Rossum <bart-jan.vanrossum@wur.nl>

Repository CRAN

Date/Publication 2023-11-27 15:50:07 UTC
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>APSIMdat</td>
<td>2</td>
</tr>
<tr>
<td>coef.LMMsolve</td>
<td>3</td>
</tr>
<tr>
<td>deviance.LMMsolve</td>
<td>4</td>
</tr>
<tr>
<td>diagnosticsMME</td>
<td>5</td>
</tr>
<tr>
<td>displayMME</td>
<td>5</td>
</tr>
<tr>
<td>fitted.LMMsolve</td>
<td>6</td>
</tr>
<tr>
<td>LMMsolve</td>
<td>7</td>
</tr>
<tr>
<td>LMMsolveObject</td>
<td>9</td>
</tr>
<tr>
<td>LMMsolver</td>
<td>10</td>
</tr>
<tr>
<td>logLik.LMMsolve</td>
<td>11</td>
</tr>
<tr>
<td>multipop</td>
<td>12</td>
</tr>
<tr>
<td>obtainSmoothTrend</td>
<td>12</td>
</tr>
<tr>
<td>residuals.LMMsolve</td>
<td>14</td>
</tr>
<tr>
<td>spl1D</td>
<td>14</td>
</tr>
<tr>
<td>summary.LMMsolve</td>
<td>17</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
</tr>
</tbody>
</table>

APSIMdat

Simulated Biomass as function of time using APSIM wheat.

Description

Simulated Biomass as function of time using APSIM wheat.

Usage

```r
APSIMdat
```

Format

A data.frame with 121 rows and 4 columns.

- `env` Environment, Emerald in 1993
- `geno` Simulated genotype g001
- `das` Days after sowing
- `biomass` Simulated biomass using APSIM; medium measurement error added

References

coef.LMMsolve

Coefficients from the mixed model equations of an LMMsolve object.

Description

Obtain the coefficients from the mixed model equations of an LMMsolve object.

Usage

S3 method for class 'LMMsolve'
coef(object, se = FALSE, ...)

Arguments

object an object of class LMMsolve
se calculate standard errors, default FALSE.
... some methods for this generic require additional arguments. None are used in this method.

Value

A list of vectors, containing the estimated effects for each fixed effect and the predictions for each random effect in the defined linear mixed model.

Examples

Fit model on john.alpha data from agridat package.
data(john.alpha, package = "agridat")

Fit simple model with only fixed effects.
LMM1 <- LMMsolve(fixed = yield ~ rep + gen,
data = john.alpha)

Obtain coefficients.
coefs1 <- coef(LMM1)

Obtain coefficients with standard errors.
coefs2 <- coef(LMM1, se = TRUE)
deviance.LMMsolve

Deviance of an LMMsolve object

Description

Obtain the deviance of a model fitted using LMMsolve.

Usage

S3 method for class 'LMMsolve'
deviance(object, includeConstant = TRUE, ...)

Arguments

object
an object of class LMMsolve

includeConstant

Should the constant in the restricted log-likelihood be included. Default is TRUE, as for example in lme4 and SAS. In asreml the constant is omitted.

...

some methods for this generic require additional arguments. None are used in this method.

Value

The deviance of the fitted model.

Examples

Fit model on john.alpha data from agridat package.
data(john.alpha, package = "agridat")

Fit simple model with only fixed effects.
LMM1 <- LMMsolve(fixed = yield ~ rep + gen,
 data = john.alpha)

Obtain deviance.
logLik(LMM1)

Obtain deviance. without constant.
logLik(LMM1, includeConstant = FALSE)
diagnosticsMME

Give diagnostics for mixed model coefficient matrix C and the cholesky decomposition

Description

Give diagnostics for mixed model coefficient matrix C and the cholesky decomposition.

Usage

`diagnosticsMME(object)`

Arguments

- `object` an object of class LMMsolve.

Value

A summary of the mixed model coefficient matrix and its cholesky decomposition.

Examples

```r
## Fit model on john.alpha data from agridat package.
data(john.alpha, package = "agridat")

## Fit simple model with only fixed effects.
LMM1 <- LMMsolve(fixed = yield ~ rep + gen,
data = john.alpha)

## Obtain deviance.
diagnosticsMME(LMM1)
```

displayMME

Display the sparseness of the mixed model coefficient matrix

Description

Display the sparseness of the mixed model coefficient matrix.

Usage

`displayMME(object, cholesky = FALSE)`

Arguments

- `object` an object of class LMMsolve.
- `cholesky` Should the cholesky decomposition of the coefficient matrix be plotted?
fitted.LMMsolve

Value

A plot of the sparseness of the mixed model coefficient matrix.

Examples

```r
## Fit model on john.alpha data from agridat package.
data(john.alpha, package = "agridat")

## Fit simple model with only fixed effects.
LMM1 <- LMMsolve(fixed = yield ~ rep + gen,
data = john.alpha)

## Obtain deviance.
displayMME(LMM1)
```

fitted.LMMsolve

Fitted values of an LMMsolve object.

Description

Obtain the fitted values from a mixed model fitted using LMMSolve.

Usage

```r
## S3 method for class 'LMMsolve'
fitted(object, ...)
```

Arguments

- `object`: an object of class LMMsolve
- `...`: some methods for this generic require additional arguments. None are used in this method.

Value

A vector of fitted values.

Examples

```r
## Fit model on john.alpha data from agridat package.
data(john.alpha, package = "agridat")

## Fit simple model with only fixed effects.
LMM1 <- LMMsolve(fixed = yield ~ rep + gen,
data = john.alpha)

## Obtain fitted values.
fitted1 <- fitted(LMM1)
```
LMMsolve
Solve Linear Mixed Models

Description

Solve Linear Mixed Models using REML.

Usage

```r
LMMsolve(  
  fixed,  
  random = NULL,  
  spline = NULL,  
  group = NULL,  
  ginverse = NULL,  
  weights = NULL,  
  data,  
  residual = NULL,  
  family = gaussian(),  
  offset = 0,  
  tolerance = 1e-06,  
  trace = FALSE,  
  maxit = 250,  
  theta = NULL,  
  grpTheta = NULL  
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fixed</td>
<td>A formula for the fixed part of the model. Should be of the form "response ~ pred"</td>
</tr>
<tr>
<td>random</td>
<td>A formula for the random part of the model. Should be of the form "~ pred".</td>
</tr>
</tbody>
</table>
| spline | A formula for the spline part of the model. Should be of the form "~ spl1D()",
| | ~ spl2D()", or "~spl3D()". |
| group | A named list where each component is a numeric vector specifying contiguous fields in data that are to be considered as a single term. |
| ginverse | A named list with each component a symmetric matrix, the precision matrix of a corresponding random term in the model. The row and column order of the precision matrices should match the order of the levels of the corresponding factor in the data. |
| weights | A character string identifying the column of data to use as relative weights in the fit. Default value NULL, weights are all equal to one. |
| data | A data.frame containing the modeling data. |
| residual | A formula for the residual part of the model. Should be of the form "~ pred". |
| family | An object of class family specifying the distribution and link function. |
offset

An optional numerical vector containing an a priori known component to be included in the linear predictor during fitting.

tolerance

A numerical value. The convergence tolerance for the modified Henderson algorithm to estimate the variance components.

trace

Should the progress of the algorithm be printed? Default trace = FALSE.

maxit

A numerical value. The maximum number of iterations for the algorithm. Default maxit = 250.

theta

Initial values for penalty or precision parameters. Default NULL, all precision parameters set equal to 1.

gpTheta

A vector to give components the same penalty. Default NULL, all components have a separate penalty.

Details

A Linear Mixed Model (LMM) has the form

\[y = X\beta + Zu + e, u \sim N(0, G), e \sim N(0, R) \]

where \(y \) is a vector of observations, \(\beta \) is a vector with the fixed effects, \(u \) is a vector with the random effects, and \(e \) a vector of random residuals. \(X \) and \(Z \) are design matrices.

LMMsolve can fit models where the matrices \(G^{-1} \) and \(R^{-1} \) are a linear combination of precision matrices \(Q_{G,i} \) and \(Q_{R,i} \):

\[G^{-1} = \sum_i \psi_i Q_{G,i}, R^{-1} = \sum_i \phi_i Q_{R,i} \]

where the precision parameters \(\psi_i \) and \(\phi_i \) are estimated using REML. For most standard mixed models \(1/\psi_i \) are the variance components and \(1/\phi_i \) the residual variances. We use a formulation in terms of precision parameters to allow for non-standard mixed models using tensor product splines.

Value

An object of class LMMsolve representing the fitted model. See LMMsolveObject for a full description of the components in this object.

See Also

LMMsolveObject, spl1D, spl2D, spl3D

Examples

```r
## Fit models on john.alpha data from agridat package.
data(john.alpha, package = "agridat")

## Fit simple model with only fixed effects.
LMM1 <- LMMsolve(fixed = yield ~ rep + gen,
data = john.alpha)

## Fit the same model with genotype as random effect.
LMM2 <- LMMsolve(fixed = yield ~ rep + gen,
data = john.alpha, random = gen)
```
LMMsolveObject

An object of class `LMMsolve` returned by the `LMMsolve` function, representing a fitted linear mixed model. Objects of this class have methods for the generic functions `coef`, `fitted`, `residuals`, `loglik` and `deviance`.

Value

An object of class `LMMsolve` contains the following components:

- `logL` The restricted log-likelihood at convergence
- `sigma2e` The residual error
- `tau2e` The estimated variance components
- `EDdf` The effective dimensions

```r
LMM1_rand <- LMMsolve(fixed = yield ~ rep,
            random = ~gen,
            data = john.alpha)

## Fit the model with a 1-dimensional spline at the plot level.
LMM1_spline <- LMMsolve(fixed = yield ~ rep + gen,
            spline = ~spl1D(x = plot, nseg = 20),
            data = john.alpha)

## Fit models on multipop data included in the package.
data(multipop)

## The residual variances for the two populations can be different.
## Allow for heterogeneous residual variances using the residual argument.
LMM2 <- LMMsolve(fixed = pheno ~ cross,
             residual = ~cross,
             data = multipop)

## QTL-probabilities are defined by the columns pA, pB, pC.
## They can be included in the random part of the model by specifying the
## group argument and using grp() in the random part.
# Define groups by specifying columns in data corresponding to groups in a list.
# Name used in grp() should match names specified in list.
lGrp <- list(QTL = 3:5)
LMM2_group <- LMMsolve(fixed = pheno ~ cross,
             group = lGrp,
             random = ~grp(QTL),
             residual = ~cross,
             data = multipop)
```
LMMsolver

Package LMMsolver

Description

Linear Mixed Model Solver using sparse matrix algebra.

Details

An efficient and flexible system to solve sparse mixed model equations, for models that are often used in statistical genetics. Important applications are the use of splines to model spatial or temporal trends. Another application area is mixed model QTL analysis for multiparental populations, allowing for heterogeneous residual variance and random design matrices with Identity-By-Descent (IBD) probabilities.
logLik.LMMsolve

Author(s)

Martin Boer <martin.boer@wur.nl>
Bart-Jan van Rossum <bart-jan.vanrossum@wur.nl> (maintainer)

References

logLik.LMMsolve
Log-likelihood of an LMMsolve object

Description

Obtain the Restricted Maximum Log-Likelihood of a model fitted using LMMsolve.

Usage

```r
## S3 method for class 'LMMsolve'
logLik(object, includeConstant = TRUE, ...)
```

Arguments

- `object`: an object of class LMMsolve
- `includeConstant`: Should the constant in the restricted log-likelihood be included. Default is TRUE, as for example in lme4 and SAS. In asreml the constant is omitted.
- `...`: some methods for this generic require additional arguments. None are used in this method.

Value

The restricted maximum log-likelihood of the fitted model.

Examples

```r
## Fit model on john.alpha data from agridat package.
data(john.alpha, package = "agridat")

## Fit simple model with only fixed effects.
LMM1 <- LMMsolve(fixed = yield ~ rep + gen, data = john.alpha)

## Obtain log-likelihood.
logLik(LMM1)

## Obtain log-likelihood without constant.
logLik(LMM1, includeConstant = FALSE)
```
multipop
Simulated QTL mapping data set

Description

Simulated QTL mapping data set

Usage

```r
multipop
```

Format

A data.frame with 180 rows and 6 columns.

- **cross** Cross ID, two populations, AxB and AxC
- **ind** Genotype ID
- **pA** Probability that individual has alleles from parent A
- **pB** Probability that individual has alleles from parent B
- **pC** Probability that individual has alleles from parent C
- **pheno** Simulated phenotypic value

obtainSmoothTrend
Obtain Smooth Trend.

Description

Obtain the smooth trend for models fitted with a spline component.

Usage

```r
obtainSmoothTrend(
  object,
  grid = NULL,
  newdata = NULL,
  deriv = 0,
  includeIntercept = FALSE,
  which = 1
)
```
Arguments

object An object of class LMMsolve.
grid A numeric vector having the length of the dimension of the fitted spline component. This represents the number of grid points at which a surface will be computed.
newdata A data.frame containing new points for which the smooth trend should be computed. Column names should include the names used when fitting the spline model.
deriv Derivative of B-splines, default 0. At the moment only implemented for spl1D.
includeIntercept Should the value of the intercept be included in the computed smooth trend? Ignored if deriv > 0.
which An integer, for if there are multiple splxD terms in the model. Default value is 1.

Value
A data.frame with predictions for the smooth trend on the specified grid. The standard errors are saved if 'deriv' has default value 0.

Examples

Fit model on john.alpha data from agridat package.
data(john.alpha, package = "agridat")

Fit a model with a 1-dimensional spline at the plot level.
LMM1_spline <- LMMsolve(fixed = yield ~ rep + gen,
 spline = ~spl1D(x = plot, nseg = 20),
 data = john.alpha)

Obtain the smooth trend for the fitted model on a dense grid.
smooth1 <- obtainSmoothTrend(LMM1_spline,
 grid = 100)

Obtain the smooth trend on a new data set - plots 10 to 40.
newdat <- data.frame(plot = 10:40)
smooth2 <- obtainSmoothTrend(LMM1_spline,
 newdata = newdat)

The first derivative of the smooth trend can be obtained by setting deriv = 1.
smooth3 <- obtainSmoothTrend(LMM1_spline,
 grid = 100,
 deriv = 1)

For examples of higher order splines see the vignette.
Description

Obtain the residuals from a mixed model fitted using LMMsolve.

Usage

S3 method for class 'LMMsolve'
residuals(object, ...)

Arguments

- **object**: an object of class LMMsolve
- **...**: some methods for this generic require additional arguments. None are used in this method.

Value

A vector of residuals.

Examples

```r
## Fit model on john.alpha data from agridat package.
data(john.alpha, package = "agridat")

## Fit simple model with only fixed effects.
LMM1 <- LMMsolve(fixed = yield ~ rep + gen,
data = john.alpha)

## Obtain fitted values.
residuals1 <- residuals(LMM1)
```

spl1D

Fit P-splines

Description

Fit multi dimensional P-splines using sparse implementation.
Usage

\texttt{spl1D(}
\begin{verbatim}
x,
nseg,
pord = 2,
degree = 3,
scaleX = TRUE,
xlim = NULL,
cond = NULL,
level = NULL
\end{verbatim}
\texttt{)}

\texttt{spl2D(}
\begin{verbatim}
x1,
x2,
nseg,
pord = 2,
degree = 3,
scaleX = TRUE,
x1lim = NULL,
x2lim = NULL,
cond = NULL,
level = NULL
\end{verbatim}
\texttt{)}

\texttt{spl3D(}
\begin{verbatim}
x1,
x2,
x3,
nseg,
pord = 2,
degree = 3,
scaleX = TRUE,
x1lim = range(x1),
x2lim = range(x2),
x3lim = range(x3)
\end{verbatim}
\texttt{)}

Arguments

- \texttt{x, x1, x2, x3} The variables in the data containing the values of the \texttt{x} covariates.
- \texttt{nseg} The number of segments
- \texttt{pord} The order of penalty, default \texttt{pord = 2}
- \texttt{degree} The degree of B-spline basis, default \texttt{degree = 3}
- \texttt{scaleX} Should the fixed effects be scaled.
- \texttt{x1lim, x1lim, x2lim, x3lim} A numerical vector of length 2 containing the domain of the corresponding \texttt{x}
covariate where the knots should be placed. Default set to NULL, when the covariate range will be used.

cond
Conditional factor: splines are defined conditional on the level. Default NULL.

level
The level of the conditional factor. Default NULL.

Value
A list with the following elements:

• X - design matrix for fixed effect. The intercept is not included.
• Z - design matrix for random effect.
• LGinv - a list of precision matrices
• knots - a list of vectors with knot positions
• dim.f - the dimensions of the fixed effect.
• dim.r - the dimensions of the random effect.
• term.labels.f - the labels for the fixed effect terms.
• term.labels.r - the labels for the random effect terms.
• x - a list of vectors for the spline variables.
• pord - the order of the penalty.
• degree - the degree of the B-spline basis.
• scaleX - logical indicating if the fixed effects are scaled.
• EDnom - the nominal effective dimensions.

Functions

• spl2D(): 2-dimensional splines
• spl3D(): 3-dimensional splines

See Also
LMMsolve

Examples

Fit model on john.alpha data from agridat package.
data(john.alpha, package = "agridat")

Fit a model with a 1-dimensional spline at the plot level.
LMM1_spline <- LMMsolve(fixed = yield ~ rep + gen,
spline = ~spl1D(x = plot, nseg = 20),
data = john.alpha)
summary(LMM1_spline)

Fit model on US precipitation data from spam package.
data(USprecip, package = "spam")
Only use observed data
USprecip <- as.data.frame(USprecip)
USprecip <- USprecip[USprecip$infill == 1,]

Fit a model with a 2-dimensional P-spline.
LMM2_spline <- LMMsolve(fixed = anomaly ~ 1,
spline = ~spl2D(x1 = lon, x2 = lat, nseg = c(41, 41)),
data = USprecip)

summary(LMM2_spline)

summary.LMMsolve

Summarize Linear Mixed Model fits

Description

Summary method for class "LMMsolve". Creates either a table of effective dimensions (which = "dimensions") or a table of variances (which = "variances").

Usage

```r
## S3 method for class 'LMMsolve'
summary(object, which = c("dimensions", "variances"), ...)

## S3 method for class 'summary.LMMsolve'
print(x, ...)
```

Arguments

- **object**: An object of class LMMsolve
- **which**: A character string indicating which summary table should be created.
- **...**: Some methods for this generic require additional arguments. None are used in this method.
- **x**: An object of class summary.LMMsolve, the result of a call to summary.LMMsolve

Value

A data.frame with either effective dimensions or variances depending on which.

Methods (by generic)

- `print(summary.LMMsolve)`: print summary
Examples

Fit model on john.alpha data from agridat package.
data(john.alpha, package = "agridat")

Fit simple model with only fixed effects.
LMM1 <- LMMsolve(fixed = yield ~ rep + gen,
 data = john.alpha)

Obtain table of effective dimensions.
summ1 <- summary(LMM1)
print(summ1)

Obtain table of variances.
summ2 <- summary(LMM1,
 which = "variances")
print(summ2)
Index

* datasets
 APSIMdat, 2
 multipop, 12

APSIMdat, 2

coeff.LMMsolve, 3

deviance.LMMsolve, 4
diagnosticsMME, 5
displayMME, 5

fitted.LMMsolve, 6

LMMsolve, 7, 16
LMMsolveObject, 8, 9
LMMsolver, 10
LMMsolver-package (LMMsolver), 10
logLik.LMMsolve, 11

multipop, 12

obtainSmoothTrend, 12

print.summary.LMMsolve
 (summary.LMMsolve), 17

residuals.LMMsolve, 14

spl1D, 8, 14
spl2D, 8
spl2D(spl1D), 14
spl3D, 8
spl3D(spl1D), 14
summary.LMMsolve, 17