Package ‘LMest’

August 27, 2023

Title Generalized Latent Markov Models

Description Latent Markov models for longitudinal continuous and categorical data. See Bar-

Version 3.1.2

Date 2023-08-27

Author Francesco Bartolucci [aut, cre],
Silvia Pandolfi [aut],
Fulvia Pennoni [aut],
Alessio Farcomeni [ctb],
Alessio Serafini [ctb]

Maintainer Francesco Bartolucci <francesco.bartolucci@unipg.it>

Depends R (>= 3.5.0)

Imports MASS, MultiLCIRT, stats, mvtnorm, Formula(>= 1.2-3), mix,
utils, graphics, diagram(>= 1.6.4), mclust(>= 5.4.6),
scatterplot3d(>= 0.3-41), grDevices

Suggests knitr, rmarkdown, bookdown

NeedsCompilation yes

Repository CRAN

LazyLoad yes

Encoding UTF-8

Date/Publication 2023-08-27 14:50:02 UTC

R topics documented:

LMest-package .. 3
bootstrap ... 5
bootstrap_lm_basic .. 7
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>bootstrap_lm_basic_cont</td>
<td>8</td>
</tr>
<tr>
<td>bootstrap_lm_cov_latent</td>
<td>9</td>
</tr>
<tr>
<td>bootstrap_lm_cov_latent_cont</td>
<td>11</td>
</tr>
<tr>
<td>data_criminal_sim</td>
<td>12</td>
</tr>
<tr>
<td>data_drug</td>
<td>13</td>
</tr>
<tr>
<td>data_long_cont</td>
<td>14</td>
</tr>
<tr>
<td>data_SRHS_long</td>
<td>15</td>
</tr>
<tr>
<td>decoding</td>
<td>16</td>
</tr>
<tr>
<td>drawLMbasic</td>
<td>18</td>
</tr>
<tr>
<td>drawLMbasiccont</td>
<td>19</td>
</tr>
<tr>
<td>drawLMlatent</td>
<td>21</td>
</tr>
<tr>
<td>drawLMlatentcont</td>
<td>23</td>
</tr>
<tr>
<td>drawLMmixed</td>
<td>24</td>
</tr>
<tr>
<td>draw_lm_basic</td>
<td>26</td>
</tr>
<tr>
<td>draw_lm_basic_cont</td>
<td>27</td>
</tr>
<tr>
<td>draw_lm_cov_latent</td>
<td>28</td>
</tr>
<tr>
<td>draw_lm_cov_latent_cont</td>
<td>29</td>
</tr>
<tr>
<td>draw_lm_mixed</td>
<td>31</td>
</tr>
<tr>
<td>est_lm_basic</td>
<td>32</td>
</tr>
<tr>
<td>est_lm_basic_cont</td>
<td>34</td>
</tr>
<tr>
<td>est_lm_cov_latent</td>
<td>36</td>
</tr>
<tr>
<td>est_lm_cov_latent_cont</td>
<td>38</td>
</tr>
<tr>
<td>est_lm_cov_manifest</td>
<td>40</td>
</tr>
<tr>
<td>est_lm_mixed</td>
<td>43</td>
</tr>
<tr>
<td>est_mc_basic</td>
<td>44</td>
</tr>
<tr>
<td>est_mc_cov</td>
<td>46</td>
</tr>
<tr>
<td>LMbasic-class</td>
<td>47</td>
</tr>
<tr>
<td>LMBasiccont-class</td>
<td>49</td>
</tr>
<tr>
<td>lmest</td>
<td>50</td>
</tr>
<tr>
<td>lmestCont</td>
<td>55</td>
</tr>
<tr>
<td>lmestData</td>
<td>59</td>
</tr>
<tr>
<td>lmestDecoding</td>
<td>62</td>
</tr>
<tr>
<td>lmestFormula</td>
<td>64</td>
</tr>
<tr>
<td>lmestMc</td>
<td>67</td>
</tr>
<tr>
<td>lmestMixed</td>
<td>70</td>
</tr>
<tr>
<td>lmestSearch</td>
<td>72</td>
</tr>
<tr>
<td>LMlatent-class</td>
<td>75</td>
</tr>
<tr>
<td>LMlatentcont-class</td>
<td>76</td>
</tr>
<tr>
<td>LMmanifest-class</td>
<td>77</td>
</tr>
<tr>
<td>LMmanifestcont-class</td>
<td>79</td>
</tr>
<tr>
<td>LMmixed-class</td>
<td>80</td>
</tr>
<tr>
<td>long2matrices</td>
<td>81</td>
</tr>
<tr>
<td>long2wide</td>
<td>82</td>
</tr>
<tr>
<td>matrices2long</td>
<td>83</td>
</tr>
<tr>
<td>MCbasic-class</td>
<td>84</td>
</tr>
<tr>
<td>MCcov-class</td>
<td>85</td>
</tr>
<tr>
<td>NLSYlong</td>
<td>86</td>
</tr>
<tr>
<td>plot</td>
<td>87</td>
</tr>
</tbody>
</table>
Overview of the Package LMest

Description

The package LMest is a framework for specifying and fitting Latent (or Hidden) Markov (LM) models for the analysis of longitudinal continuous and categorical data. Covariates are also included in the model specification through suitable parameterizations.

Details

Different LM models are estimated through specific functions requiring a data frame in long format. Responses are mainly categorical, the functions referred to continuous responses are specified with Cont. The functions are the following:

lmest Function to estimate LM models for categorical responses generating the following classes:
- **LMbasic-class** for the basic LM model without covariates.
- **LMmanifest-class** for the LM model with covariates in the measurement submodel.
- **LMlatent-class** for the LM model with covariates in the latent model.

lmestCont Function to estimate LM models for continuous outcomes generating the following classes:
- **LMbasiccont-class** for the basic LM model for continuous responses without covariates.
- **LMlatentcont-class** for the LM model for continuous responses with covariates in the latent model.

lmestMixed Function to estimate Mixed LM models for categorical responses with discrete random effects in the latent model generating the following class:
- **LMmixed-class** for the mixed LM model.

lmestMc Function to estimate Markov Chain models for categorical responses generating the following classes:
- **MCbasic-class** for the Markov Chain (MC) model without covariates.
- **MCcov-class** for the MC model with covariates.
Maximum likelihood estimation of model parameters is performed through the Expectation-Maximization algorithm, which is implemented by relying on Fortran routines.

Model selection is provided by \texttt{lmest} and \texttt{lmestCont} functions. In addition, function \texttt{lmestSearch} allows us to deal with both model selection and multimodality of the likelihood function. Two main criteria are provided to select the number of latent states: the Akaike Information Criterion and the Bayesian Information Criterion.

Prediction of the latent states is performed by the function \texttt{lmestDecoding}: for local and global decoding (Viterbi algorithm) from the output of functions \texttt{lmest}, \texttt{lmestCont} and \texttt{lmestMixed}.

The package allows us to deal with missing responses, including drop-out and non-monotonic missingness, under the missing-at-random assumption.

Standard errors for the parameter estimates are obtained by the function \texttt{se} through exact computation of the information matrix or by reliable numerical approximations of this matrix.

The \texttt{print} method shows some convergence information, and the \texttt{summary} method shows the estimation results.

The package also provides some real and simulated data sets that are listed using the function \texttt{data(package = "LMest").}

\section*{Author(s)}
Francesco Bartolucci [aut, cre], Silvia Pandolfi [aut], Fulvia Pennoni [aut], Alessio Farcomeni [ctb], and Alessio Serafini [ctb]

Maintainer: Francesco Bartolucci <francesco.bartolucci@unipg.it>

\section*{References}

\section*{See Also}
\texttt{lmest, lmestCont, lmestMc, lmestMixed, LMbasic-class, LMbasiccont-class, LMlatent-class, LMlatentcont-class, LMmanifest-class}
bootstrap

Parametric bootstrap

Description

Function that performs bootstrap parametric resampling to compute standard errors for the parameter estimates.

Usage

\[
\text{bootstrap}(\text{est}, \ldots)
\]

S3 method for class 'LMbasic'

\[
\text{bootstrap}(\text{est}, \text{n} = 1000, \text{B} = 100, \text{seed} = \text{NULL}, \ldots)
\]

S3 method for class 'LMbasiccont'

\[
\text{bootstrap}(\text{est}, \text{n} = 1000, \text{B}=100, \text{seed} = \text{NULL}, \ldots)
\]

S3 method for class 'LMlatent'

\[
\text{bootstrap}(\text{est}, \text{B} = 100, \text{seed} = \text{NULL}, \ldots)
\]

S3 method for class 'LMlatentcont'

\[
\text{bootstrap}(\text{est}, \text{B} = 100, \text{seed} = \text{NULL}, \ldots)
\]

Arguments

- **est**: an object obtained from a call to `lmest` and `lmestCont`
- **n**: sample size
- **B**: number of bootstrap samples
- **seed**: an integer value with the random number generator state
- **...**: further arguments

Value

Average of bootstrap estimates and standard errors for the model parameters in `est` object.

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

Examples

```r
# Not run:

# LM model for categorical responses with covariates on the latent model

data("data_SRHS_long")
SRHS <- data_SRHS_long[1:2400,]

# Categories rescaled to vary from 0 ("poor") to 4 ("excellent")
```
SRHS$srhs <- 5 - SRHS$srhs

out1 <- lmest(responsesFormula = srhs ~ NULL,
 index = c("id","t"),
 data = SRHS,
 k = 3,
 tol = 1e-8,
 start = 1,
 modBasic = 1,
 out_se = TRUE,
 seed = 123)

boot1 <- bootstrap(out1)

out2 <- lmest(responsesFormula = srhs ~ NULL,
 latentFormula = ~
 I(0 + (race == 2) + (race == 3)) +
 I(0 + (education == 4)) +
 I(0 + (education == 5)) +
 I(age - 50) + I((age-50)^2/100),
 index = c("id","t"),
 data = SRHS,
 k = 2,
 paramLatent = "multilogit",
 start = 0)

boot2 <- bootstrap(out2)

LM model for continuous responses without covariates

data(data_long_cont)

out3 <- lmestCont(responsesFormula = Y1 + Y2 + Y3 ~ NULL,
 index = c("id", "time"),
 data = data_long_cont,
 k =3,
 modBasic=1,
 tol=10^-5)

boot3 <- bootstrap(out3)

LM model for continuous responses with covariates

out4 <- lmestCont(responsesFormula = Y1 + Y2 + Y3 ~ NULL,
 latentFormula = ~ X1 + X2,
 index = c("id", "time"),
 data = data_long_cont,
 k = 3,
 output=TRUE)

boot4 <- bootstrap(out4)
bootstrap_lm_basic

Parametric bootstrap for the basic LM model

Description

Function that performs bootstrap parametric resampling to compute standard errors for the parameter estimates.

The function is no longer maintained. Please look at bootstrap function.

Usage

```r
bootstrap_lm_basic(piv, Pi, Psi, n, B = 100, start = 0, mod = 0, tol = 10^-6)
```

Arguments

- `piv`: initial probability vector
- `Pi`: probability transition matrices ($k \times k \times TT$)
- `Psi`: matrix of conditional response probabilities ($mb \times k \times r$)
- `n`: sample size
- `B`: number of bootstrap samples
- `start`: type of starting values ($0 =$ deterministic, $1 =$ random)
- `mod`: model on the transition probabilities ($0 =$ time-heter., $1 =$ time-homog., from 2 to $(TT-1)$ partial homog. of that order)
- `tol`: tolerance level for convergence

Value

- `mPsi`: average of bootstrap estimates of the conditional response probabilities
- `mpiv`: average of bootstrap estimates of the initial probability vector
- `mPi`: average of bootstrap estimates of the transition probability matrices
- `sePsi`: standard errors for the conditional response probabilities
- `sepiv`: standard errors for the initial probability vector
- `sePi`: standard errors for the transition probability matrices

Author(s)

Francesco Bartolucci, Silvia Pandolfi, University of Perugia (IT), http://www.stat.unipg.it/bartolucci
Not run:

```r
# Example of drug consumption data
# load data
data(data_drug)
data_drug <- as.matrix(data_drug)
S <- data_drug[,1:5]-1
yv <- data_drug[,6]
n <- sum(yv)
# fit of the Basic LM model
k <- 3
e1 <- est_lm_basic(S, yv, k, mod = 1, out_se = TRUE)
e2 <- bootstrap_lm_basic(e1$piv, e1$Pi, e1$Psi, n, mod = 1, B = 1000)
```

End(Not run)

bootstrap_lm_basic_cont

Parametric bootstrap for the basic LM model for continuous outcomes

Description

Function that performs bootstrap parametric resampling to compute standard errors for the parameter estimates.

The function is no longer maintained. Please look at bootstrap function.

Usage

```r
bootstrap_lm_basic_cont(piv, Pi, Mu, Si, n, B = 100, start = 0, mod = 0, tol = 10^-6)
```

Arguments

- **piv**: initial probability vector
- **Pi**: probability transition matrices (k x k x TT)
- **Mu**: matrix of conditional means for the response variables (r x k)
- **Si**: var-cov matrix common to all states (r x r)
- **n**: sample size
- **B**: number of bootstrap samples
- **start**: type of starting values (0 = deterministic, 1 = random)
- **mod**: model on the transition probabilities (0 for time-heter., 1 for time-homog., from 2 to (TT-1) partial homog. of that order)
- **tol**: tolerance level for convergence
bootstrap_lm_cov_latent

Value

- \(\text{mMu} \) average of bootstrap estimates of the conditional means of the response variables
- \(\text{mSi} \) average of bootstrap estimates of the var-cov matrix
- \(\text{mpiv} \) average of bootstrap estimates of the initial probability vector
- \(\text{mPi} \) average of bootstrap estimates of the transition probability matrices
- \(\text{seMu} \) standard errors for the conditional means of the response variables
- \(\text{seSi} \) standard errors for the var-cov matrix
- \(\text{sepiv} \) standard errors for the initial probability vector
- \(\text{sePi} \) standard errors for the transition probability matrices

Author(s)

Francesco Bartolucci, Silvia Pandolfi, University of Perugia (IT), http://www.stat.unipg.it/bartolucci

Examples

```r
## Not run:
# Example based on multivariate longitudinal continuous data
data(data_long_cont)
res <- long2matrices(data_long_cont$id, X = cbind(data_long_cont$X1, data_long_cont$X2),
                      Y = cbind(data_long_cont$Y1, data_long_cont$Y2, data_long_cont$Y3))
Y <- res$YY
n <- dim(Y)[1]

# fit of the Basic LM model for continuous outcomes
k <- 3
out1 <- est_lm_basic_cont(Y, k, mod = 1)
out2 <- bootstrap_lm_basic_cont(out1$piv, out1$Pi, out1$Mu, out1$Si, n, mod = 1, B = 1000)
## End(Not run)
```

Description

Function that performs bootstrap parametric resampling to compute standard errors for the parameter estimates.

The function is no longer maintained. Please look at bootstrap function.
bootstrap_lm_cov_latent

Usage

bootstrap_lm_cov_latent(X1, X2, param = "multilogit", Psi, Be, Ga, B = 100,
fort = TRUE)

Arguments

X1 matrix of covariates affecting the initial probabilities (n x nc1)
X2 array of covariates affecting the transition probabilities (n x TT-1 x nc2)
param type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters)
Psi array of conditional response probabilities (mb x k x r)
Be parameters affecting the logit for the initial probabilities
Ga parameters affecting the logit for the transition probabilities
B number of bootstrap samples
fort to use fortran routine when possible (FALSE for not use fortran)

Value

mPsi average of bootstrap estimates of the conditional response probabilities
mBe average of bootstrap estimates of the parameters affecting the logit for the initial probabilities
mGa average of bootstrap estimates of the parameters affecting the logit for the transition probabilities
sePsi standard errors for the conditional response probabilities
seBe standard errors for the parameters in Be
seGa standard errors for the parameters in Ga

Author(s)

Francesco Bartolucci, Silvia Pandolfi - University of Perugia (IT)

Examples

Not run:
Example based on self-rated health status (SRHS) data
load SRHS data
data(data_SRHS_long)
dataSRHS <- data_SRHS_long

TT <- 8
head(dataSRHS)
res <- long2matrices(dataSRHS$id, X = cbind(dataSRHS$gender-1,
dataSRHS$race == 2 | dataSRHS$race == 3, dataSRHS$education == 4,
dataSRHS$education == 5, dataSRHS$age-50, (dataSRHS$age-50)^2/100),
Y = dataSRHS$srhs)
matrix of responses (with ordered categories from 0 to 4)
S <- 5-res$YY

matrix of covariates (for the first and the following occasions)
columns are: gender, race, educational level (2 columns), age, age*2
X1 <- res$XX[,1,]
X2 <- res$XX[,2:TT,]

estimate the model
out1 <- est_lm_cov_latent(S, X1, X2, k = 2, output = TRUE, out_se = TRUE)
out2 <- bootstrap_lm_cov_latent(X1, X2, Psi = out1$Psi, Be = out1$Be, Ga = out1$Ga, B = 1000)

End(Not run)

bootstrap_lm_cov_latent_cont

Parametric bootstrap for LM models for continuous outcomes with individual covariates in the latent model

Description

Function that performs bootstrap parametric resampling to compute standard errors for the parameter estimates.

The function is no longer maintained. Please look at bootstrap function.

Usage

```r
bootstrap_lm_cov_latent_cont(X1, X2, param = "multilogit", Mu, Si, Be, Ga, B = 100)
```

Arguments

- `X1`: matrix of covariates affecting the initial probabilities (n x nc1)
- `X2`: array of covariates affecting the transition probabilities (n x TT-1 x nc2)
- `param`: type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters)
- `Mu`: matrix of conditional means for the response variables (r x k)
- `Si`: var-cov matrix common to all states (r x r)
- `Be`: parameters affecting the logit for the initial probabilities
- `Ga`: parameters affecting the logit for the transition probabilities
- `B`: number of bootstrap samples
data_criminal_sim

Value

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{m}_{\mu})</td>
<td>average of bootstrap estimates of the conditional means for the response variables</td>
</tr>
<tr>
<td>(\bar{m}_{\Sigma})</td>
<td>average of bootstrap estimates of the var-cov matrix</td>
</tr>
<tr>
<td>(\bar{m}_{\beta})</td>
<td>average of bootstrap estimates of the parameters affecting the logit for the initial probabilities</td>
</tr>
<tr>
<td>(\bar{m}_{\gamma})</td>
<td>average of bootstrap estimates of the parameters affecting the logit for the transition probabilities</td>
</tr>
<tr>
<td>(se_{\mu})</td>
<td>standard errors for the conditional means</td>
</tr>
<tr>
<td>(se_{\Sigma})</td>
<td>standard errors for the var-cov matrix</td>
</tr>
<tr>
<td>(se_{\beta})</td>
<td>standard errors for the parameters in Be</td>
</tr>
<tr>
<td>(se_{\gamma})</td>
<td>standard errors for the parameters in Ga</td>
</tr>
</tbody>
</table>

Author(s)

Francesco Bartolucci, Silvia Pandolfi - University of Perugia (IT)

Examples

```r
## Not run:
# Example based on multivariate longitudinal continuous data
data(data_long_cont)
TT <- 5
res <- long2matrices(data_long_cont$id, X = cbind(data_long_cont$X1, data_long_cont$X2),
                      Y = cbind(data_long_cont$Y1, data_long_cont$Y2, data_long_cont$Y3))
Y <- res$YY
X1 <- res$XX[,1,]
X2 <- res$XX[,2:TT,]

# estimate the model
est <- est_lm_cov_latent_cont(Y, X1, X2, k = 3, output = TRUE)
out <- bootstrap_lm_cov_latent_cont(X1, X2, Mu = est$Mu, Si = est$Si,
                                    Be = est$Be, Ga = est$Ga, B = 1000)

## End(Not run)
```

data_criminal_sim | Criminal dataset

Description

Simulated dataset about crimes committed by a cohort of subjects.
Usage

data(data_criminal_sim)

Format

A data frame with 60000 observations on the following 13 variables.

<table>
<thead>
<tr>
<th>id</th>
<th>subject id</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex</td>
<td>gender of the subject</td>
</tr>
<tr>
<td>time</td>
<td>occasion of observation</td>
</tr>
<tr>
<td>y1</td>
<td>crime of type 1 (violence against the person)</td>
</tr>
<tr>
<td>y2</td>
<td>crime of type 2 (sexual offences)</td>
</tr>
<tr>
<td>y3</td>
<td>crime of type 3 (burglary)</td>
</tr>
<tr>
<td>y4</td>
<td>crime of type 4 (robbery)</td>
</tr>
<tr>
<td>y5</td>
<td>crime of type 5 (theft and handling stolen goods)</td>
</tr>
<tr>
<td>y6</td>
<td>crime of type 6 (fraud and forgery)</td>
</tr>
<tr>
<td>y7</td>
<td>crime of type 7 (criminal demage)</td>
</tr>
<tr>
<td>y8</td>
<td>crime of type 8 (drug offences)</td>
</tr>
<tr>
<td>y9</td>
<td>crime of type 9 (motoring offences)</td>
</tr>
<tr>
<td>y10</td>
<td>crime of type 10 (other offences)</td>
</tr>
</tbody>
</table>

References

Examples

data(data_criminal_sim)

data_drug

Dataset about marijuana consumption

Description

Longitudinal dataset derived from the National Youth Survey about marijuana consumption measured by ordinal variables with 3 categories with increasing levels of consumption (1 "never in the past year", 2 "no more than once in a month in the past year", 3 "more than once a month in the past year").

Usage

data(data_drug)
data_long_cont

Format
A data frame with 51 observations on the following 6 variables.

V1 reported drug use at the 1st occasion
V2 reported drug use at the 2nd occasion
V3 reported drug use at the 3rd occasion
V4 reported drug use at the 4th occasion
V5 reported drug use at the 5th occasion
V6 frequency of the response configuration

Source

References

Examples
data(data_drug)

data_long_cont Multivariate Longitudinal Continuous (Gaussian) Data

Description
Simulated multivariate longitudinal continuous dataset assuming that there are 500 subjects in the study whose data are collected at 5 equally-spaced time points.

Usage
data(data_long_cont)

Format
A data frame with 2500 observations on the following 7 variables.

id subject id.
time occasion of observation.
Y1 a numeric vector for the first longitudinal response.
Y2 a numeric vector for the second longitudinal response.
Y3 a numeric vector for the third longitudinal response.
X1 a numeric vector for the first covariate.
X2 a numeric vector for the second covariate.
data_SRHS_long

Examples

data(data_long_cont)

data_SRHS_long Self-reported health status dataset

Description

Dataset about self-reported health status derived from the Health and Retirement Study conducted by the University of Michigan.

Usage

data(data_SRHS_long)

Format

A data frame with 56592 observations on the following 6 variables.

t occasion of observation
id subject id
gender sex of the subject coded as 1 for "male", 2 for "female"
race race coded as 1 for "white", 2 for "black", 3 for "others"
education educational level coded as 1 for "high school", 2 for "general educational diploma", 3 for "high school graduate", 4 for "some college", 5 for "college and above"
age age at the different time occasions
srhs self-reported health status at the different time occasions coded as 1 for "excellent", 2 for "very good", 3 for "good", 4 for "fair", 5 for "poor"

References

Examples

data(data_SRHS_long)
decoding

Perform local and global decoding

Description

Function that performs local and global decoding (Viterbi) from the output of est_lm_basic, est_lm_cov_latent, est_lm_cov_manifest, and est_lm_mixed.

The function is no longer maintained. Please look at lmestDecoding function

Usage

decoding(est, Y, X1 = NULL, X2 = NULL, fort = TRUE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>est</td>
<td>output from est_lm_basic, est_lm_cov_latent, est_lm_cov_manifest, or est_lm_mixed</td>
</tr>
<tr>
<td>Y</td>
<td>single vector or matrix of responses</td>
</tr>
<tr>
<td>X1</td>
<td>matrix of covariates on the initial probabilities (est_lm_cov_latent) or on the responses (est_lm_cov_manifest)</td>
</tr>
<tr>
<td>X2</td>
<td>array of covariates on the transition probabilities</td>
</tr>
<tr>
<td>fort</td>
<td>to use Fortran routines</td>
</tr>
</tbody>
</table>

Value

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ul</td>
<td>matrix of local decoded states corresponding to each row of Y</td>
</tr>
<tr>
<td>Ug</td>
<td>matrix of global decoded states corresponding to each row of Y</td>
</tr>
</tbody>
</table>

Author(s)

Francesco Bartolucci, Silvia Pandolfi, University of Perugia (IT), http://www.stat.unipg.it/bartolucci

References

Examples

Not run:
example for the output from est_lm_basic

data(data_drug)
data_drug <- as.matrix(data_drug)
S <- data_drug[,1:5]-1
yv <- data_drug[,6]
n <- sum(yv)

fit the Basic LM model
k <- 3
est <- est_lm_basic(S, yv, k, mod = 1)

decoding for a single sequence
out1 <- decoding(est, S[1,])

decoding for all sequences
out2 <- decoding(est, S)

End(Not run)

example for the output from est_lm_cov_latent with difflogit parametrization

data(data_SRHS_long)
data_SRHS <- data_SRHS_long[1:1600,]

TT <- 8
head(data_SRHS)
res <- long2matrices(data_SRHS$id, X = cbind(data_SRHS$gender-1, data_SRHS$race == 2 | data_SRHS$race == 3, data_SRHS$education == 4, data_SRHS$education == 5, data_SRHS$age-50,(data_SRHS$age-50)^2/100), Y= data_SRHS$srhs)

matrix of responses (with ordered categories from 0 to 4)
S <- 5-res$YY

matrix of covariates (for the first and the following occasions)
columns are: gender, race, educational level (2 columns), age, age^2
X1 <- res$XX[,1,]
X2 <- res$XX[,2:TT,]

estimate the model
est <- est_lm_cov_latent(S, X1, X2, k = 2, output = TRUE, param = "difflogit")
decoding for a single sequence
out1 <- decoding(est, S[1,,], X1[1,], X2[1,,])
decoding for all sequences
out2 <- decoding(est, S, X1, X2)

End(Not run)
drawLMbasic

Draw samples from the basic LM model

Description

Function that draws samples from the basic LM model.

Usage

```r
drawLMbasic(piv, Pi, Psi, n, est = NULL, format = c("long","matrices"), seed = NULL)
```

Arguments

- `piv`: vector of initial probabilities of the latent Markov chain
- `Pi`: set of transition probabilities matrices (k x k x TT)
- `Psi`: array of conditional response probabilities (mb x k x r)
- `n`: sample size
- `est`: object of class `LMbasic` (`LMbasic-class`)
- `format`: character string indicating the format of final responses matrix
- `seed`: an integer value with the random number generator state

Value

- `Y`: matrix of response configurations unit by unit
- `S`: matrix of distinct response configurations
- `yv`: corresponding vector of frequencies
- `piv`: vector of initial probabilities of the latent Markov chain
- `Pi`: set of transition probabilities matrices (k x k x TT)
- `Psi`: array of conditional response probabilities (mb x k x r)
- `n`: sample size
- `est`: object of class `LMbasic` (`LMbasic-class`)

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini
Examples

```r
## Not run:

# draw a sample for 1000 units and only one response variable
n <- 1000
TT <- 6
k <- 2
r <- 1  # number of response variables
mb <- 3  # maximum number of response categories

piv <- c(0.7, 0.3)
Pi <- matrix(c(0.9, 0.1, 0.1, 0.9), k, k)
Pi[,]1] <- 0
Psi <- matrix(c(0.7, 0.2, 0.1, 0.5, 0.4, 0.1), mb, k)
Psi <- array(Psi, c(mb, k, r))

out <- drawLMbasic(piv, Pi, Psi, n = 1000)

data("data_SRHS_long")
SRHS <- data_SRHS_long[1:2400,]

SRHS$srhs <- 5 - SRHS$srhs

est <- lmest(responsesFormula = srhs ~ NULL,
             index = c("id","t"),
             data = SRHS,
             k = 3)

out1 <- drawLMbasic(est = est, format = "matrices", seed = 4321, n = 100)

## End(Not run)
```

drawLMbasiccont
Draw samples from the basic LM model for continuous outcomes

Description

Function that draws samples from the basic LM model for continuous outcomes with specific parameters.

Usage

```r
drawLMbasiccont(piv, Pi, Mu, Si, n, est = NULL, format = c("long","matrices"), seed = NULL)
```
Arguments

- `piv`: vector of initial probabilities of the latent Markov chain
- `Pi`: set of transition probabilities matrices (k x k x TT)
- `Mu`: matrix of conditional means for the response variables (r x k)
- `Si`: var-cov matrix common to all states (r x r)
- `n`: sample size
- `est`: object of class `LMbasiccont` (`LMbasiccont-class`)
- `format`: character string indicating the format of final responses matrix
- `seed`: an integer value with the random number generator state

Value

- `Y`: array of continuous outcomes (n x TT x r)
- `piv`: vector of initial probabilities of the latent Markov chain
- `Pi`: set of transition probabilities matrices (k x k x TT)
- `Mu`: matrix of conditional means for the response variables (r x k)
- `Si`: var-cov matrix common to all states (r x r)
- `n`: sample size
- `est`: object of class `LMbasiccont` (`LMbasiccont-class`)

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

Examples

```r
## Not run:
# draw a sample for 1000 units and 3 response variable
n <- 1000
TT <- 5
k <- 2
r <- 3  # number of response variables
piv <- c(0.7, 0.3)
Pi <- matrix(c(0.9, 0.1, 0.1, 0.9), k, k)
Pi <- array(Pi, c(k, k, TT))
Pi[,,1] <- 0
Mu <- matrix(c(-2, -2, 0, 0, 2, 2), r, k)
Si <- diag(r)
out <- drawLMbasiccont(piv, Pi, Mu, Si, n)
data(data_long_cont)
est <- lmestCont(responsesFormula = Y1 + Y2 + Y3 ~ NULL,
                 index = c("id", "time"),
                 data = data_long_cont,
                 format = "numeric")
```
```r
drawLMlatent

k = 3,
modBasic = 1,
tol = 10^-5)

out2 <- drawLMbasiccont(est = est, n = 100, format = "long", seed = 4321)
```

```r
## End(Not run)
```

drawLMlatent

Draw samples from LM model with covariates in the latent model

Description

Function that draws samples from the LM model with individual covariates with specific parameters.

Usage

```r
drawLMlatent(Psi, Be, Ga, latentFormula, data, index,
paramLatent = c("multilogit","difflogit"), est = NULL,
format = c("long","matrices"), fort = TRUE, seed = NULL)
```

Arguments

- **Psi** array of conditional response probabilities (mb x k x r)
- **Be** parameters affecting the logit for the initial probabilities
- **Ga** parameters affecting the logit for the transition probabilities
- **latentFormula** a symbolic description of the model to be fitted. Detailed description is given in `lmest`
- **data** a data frame in long format, with rows corresponding to observations and columns corresponding to variables, a column corresponding to time occasions and a column containing the unit identifier
- **index** a character vector with two elements indicating the name of the "id" column as first element and the "time" column as second element
- **paramLatent** type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters)
- **est** object of class `LMlatent` (LMlatent-class)
- **format** character string indicating the format of final responses matrix
- **fort** to use fortran routine when possible (FALSE for not use fortran)
- **seed** an integer value with the random number generator state
Value

Y matrix of response configurations
U matrix containing the sequence of latent states (n x TT)
Psi array of conditional response probabilities (mb x k x r)
Be parameters affecting the logit for the initial probabilities
Ga parameters affecting the logit for the transition probabilities
latentFormula a symbolic description of the model to be fitted. Detailed description is given in lmest
data a data frame in long format, with rows corresponding to observations and columns corresponding to variables, a column corresponding to time occasions and a column containing the unit identifier
est object of class LMlatent (LMlatent-class)

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

Examples

```r
## Not run:
data(data_SRHS_long)
dataSRHS <- data_SRHS_long
data_SRHS_long$srhs <- 5 - data_SRHS_long$srhs
est <- lmest(responsesFormula = srhs ~ NULL,
          latentFormula = ~
                          I(gender - 1) +
                          I( 0 + (race == 2) + (race == 3)) +
                          I(0 + (education == 4)) +
                          I(0 + (education == 5)) +
                          I(age - 50) + I((age-50)^2/100),
index = c("id","t"),
data = data_SRHS_long,
k = 2,
paramLatent = "multilogit",
start = 0)

out <- drawLMlatent(est = est, format = "matrices", seed = 4321)

out1 <- drawLMlatent(Psi = est$Psi, Be = est$Be, Ga = est$Ga,
data = data_SRHS_long, index = c("id","t"),
latentFormula = ~
                          I(gender - 1) +
                          I( 0 + (race == 2) + (race == 3)) +
                          I(0 + (education == 4)) +
                          I(0 + (education == 5)) +
                          I(age - 50) + I((age-50)^2/100),
paramLatent = "multilogit", format = "matrice",
seed = 4321)
```
drawLMlatentcont

Draw samples from LM model for continuous outcomes with covariates in the latent model

Description

Function that draws samples from the LM model for continuous outcomes with individual covariates with specific parameters.

Usage

drawLMlatentcont(Mu, Si, Be, Ga, latentFormula, data, index,
 paramLatent = c("multilogit","difflogit"), est = NULL,
 format = c("long","matrices"), fort = TRUE, seed = NULL)

Arguments

Mu
array of conditional means for the response variables (r x k)

Si
var-cov matrix common to all states (r x r)

Be
parameters affecting the logit for the initial probabilities

Ga
parameters affecting the logit for the transition probabilities

latentFormula
a symbolic description of the model to be fitted. A detailed description is given in \texttt{lmestCont}

data
a data frame in long format, with rows corresponding to observations and columns corresponding to variables, a column corresponding to time occasions and a column containing the unit identifier

index
a character vector with two elements indicating the name of the "id" column as first element and the "time" column as second element

paramLatent
type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters)

est
object of class LMLatentcont (\texttt{LMLatentcont-class})

format
character string indicating the format of final responses matrix

fort
to use fortran routine when possible (FALSE for not use fortran)

seed
an integer value with the random number generator state
Value

Y array of continuous outcomes (n x TT x r)
U matrix containing the sequence of latent states (n x TT)
Mu array of conditional means for the response variables (r x k)
Si var-cov matrix common to all states (r x r)
Be parameters affecting the logit for the initial probabilities
Ga parameters affecting the logit for the transition probabilities
latentFormula a symbolic description of the model to be fitted. A detailed description is given in \pkg{lmestCont}
data a data frame in long format, with rows corresponding to observations and columns corresponding to variables, a column corresponding to time occasions and a column containing the unit identifier
est object of class \code{LMlatentcont} (\code{LMlatentcont-class})

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

Examples

```r
## Not run:
data(data_long_cont)
est <- \code{lmestCont}(responsesFormula = Y1 + Y2 + Y3~ NULL,
latentFormula = ~ X1 + X2,
index = c("id", "time"),
data = data_long_cont,
k = 3)

out <- \code{drawLMlatentcont}(est = est,format = "matrices", seed = 4321)
out1 <- \code{drawLMlatentcont}(latentFormula = ~ X1 + X2, data = data_long_cont,
index = c("id", "time"),
Mu = est$Mu, Si = est$Si,
Be = est$Be, Ga = est$Ga, fort=TRUE, seed = 4321, format = "matrices")
```

End(Not run)

\fn{drawLMmixed}

\textit{Draws samples from the mixed LM model}

Description

Function that draws samples from the mixed LM model with specific parameters.
Usage

```r
drawLMmixed(la, Piv, Pi, Psi, n, TT, est = NULL, format = c("long","matrices"), seed = NULL)
```

Arguments

- `la`: vector of mass probabilities for the first latent variable
- `Piv`: matrix of initial probabilities of the latent Markov chain (k2 x k1)
- `Pi`: set of transition matrices (k2 x k2 x k1)
- `Psi`: array of conditional response probabilities (mb x k2 x r)
- `n`: sample size
- `TT`: number of time occasions
- `est`: object of class `LMmixed` (`LMmixed-class`)
- `format`: character string indicating the format of final responses matrix
- `seed`: an integer value with the random number generator state

Value

- `Y`: matrix of response configurations unit by unit
- `S`: matrix of distinct response configurations
- `yv`: corresponding vector of frequencies
- `la`: vector of mass probabilities for the first latent variable
- `Piv`: matrix of initial probabilities of the latent Markov chain (k2 x k1)
- `Pi`: set of transition matrices (k2 x k2 x k1)
- `Psi`: array of conditional response probabilities (mb x k2 x r)
- `n`: sample size
- `TT`: number of time occasions
- `est`: object of class `LMmixed` (`LMmixed-class`)

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

Examples

```r
# draw a sample for 1000 units and only one response variable and 5 time occasions
k1 <- 2
k2 <- 3
la <- rep(1/k1, k1)
Piv <- matrix(1/k2, k2, k1)
Pi[,,1] <- diag(k2)
Pi[,,2] <- 1/k2
Psi <- cbind(c(0.6,0.3,0.1), c(0.1,0.3,0.6), c(0.3,0.6,0.1))
```
out <- drawLMmixed(la, Piv, Pi, Psi, n = 1000, TT = 5)

Not run:
Example based on criminal data
data(data_criminal_sim)
data_criminal_sim = data.frame(data_criminal_sim)
Estimate mixed LM model for females
responsesFormula <- lmestFormula(data = data_criminal_sim,
 response = "y")$responsesFormula
est <- lmestMixed(responsesFormula = responsesFormula,
 index = c("id", "time"),
 k1 = 2,
 k2 = 2,
 data = data_criminal_sim[data_criminal_sim$sex == 2,])
out <- drawLMmixed(est = est, n = 100, seed = 4321)

End(Not run)

draw_lm_basic

draw_lm_basic

Draw samples from the basic LM model

Description

Function that draws samples from the basic LM model with specific parameters.

The function is no longer maintained. Please look at drawLMbasic function.

Usage

`draw_lm_basic(piv, Pi, Psi, n)`

Arguments

- `piv`: vector of initial probabilities of the latent Markov chain
- `Pi`: set of transition probabilities matrices (k x k x TT)
- `Psi`: array of conditional response probabilities (mb x k x r)
- `n`: sample size

Value

- `Y`: matrix of response configurations unit by unit
- `S`: matrix of distinct response configurations
- `yv`: corresponding vector of frequencies
Examples

```r
## Not run:
# draw a sample for 1000 units and only one response variable
n <- 1000
TT <- 6
k <- 2
r <- 1  # number of response variables
mb <- 3  # maximum number of response categories

piv <- c(0.7, 0.3)
Pi <- matrix(c(0.9, 0.1, 0.1, 0.9), k, k)
Pi <- array(Pi, c(k, k, TT))
Pi[,][] <- 0
Psi <- matrix(c(0.7, 0.2, 0.1, 0.5, 0.4, 0.1), mb, k)
Psi <- array(Psi, c(mb, k, r))
out <- draw_lm_basic(piv, Pi, Psi, n = 1000)

## End(Not run)
```

draw_lm_basic_cont
Draw samples from the basic LM model for continuous outcomes

Description

Function that draws samples from the basic LM model for continuous outcomes with specific parameters.

The function is no longer maintained. Please look at `drawLMbasiccont` function.

Usage

```r
draw_lm_basic_cont(piv, Pi, Mu, Si, n)
```

Arguments

- `piv`: vector of initial probabilities of the latent Markov chain
- `Pi`: set of transition probabilities matrices (k x k x TT)
- `Mu`: matrix of conditional means for the response variables (r x k)
- `Si`: var-cov matrix common to all states (r x r)
- `n`: sample size

Value

- `Y`: array of continuous outcomes (n x TT x r)
Author(s)
Francesco Bartolucci, Silvia Pandolfi, University of Perugia (IT), http://www.stat.unipg.it/bartolucci

Examples

```r
## Not run:

# draw a sample for 1000 units and 3 response variable
n <- 1000
TT <- 5
k <- 2
r <- 3  # number of response variables

piv <- c(0.7, 0.3)
Pi <- matrix(c(0.9, 0.1, 0.1, 0.9), k, k)
Pi <- array(Pi, c(k, k, TT))
Pi[, , 1] <- 0
Mu <- matrix(c(-2, -2, 0, 0, 2, 2), r, k)
Si <- diag(r)
out <- draw_lm_basic_cont(piv, Pi, Mu, Si, n)

## End(Not run)
```

draw_lm_cov_latent
Draw samples from LM model with covariates in the latent model

draw_lm_cov_latent

Description

Function that draws samples from the LM model with individual covariates with specific parameters.

The function is no longer maintained. Please look at `drawLMlatent` function.

Usage

draw_lm_cov_latent(X1, X2, param = "multilogit", Psi, Be, Ga, fort = TRUE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>desing matrix for the covariates on the initial probabilities (n x nc1)</td>
</tr>
<tr>
<td>X2</td>
<td>desing matrix for the covariates on the transition probabilities (n x TT-1 x nc2)</td>
</tr>
<tr>
<td>param</td>
<td>type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters)</td>
</tr>
<tr>
<td>Psi</td>
<td>array of conditional response probabilities (mb x k x r)</td>
</tr>
<tr>
<td>Be</td>
<td>parameters affecting the logit for the initial probabilities</td>
</tr>
<tr>
<td>Ga</td>
<td>parameters affecting the logit for the transition probabilities</td>
</tr>
<tr>
<td>fort</td>
<td>to use fortran routine when possible (FALSE for not use fortran)</td>
</tr>
</tbody>
</table>
Value

Y matrix of response configurations unit by unit (n x TT x r)
U matrix containing the sequence of latent states (n x TT)

Author(s)

Francesco Bartolucci, Silvia Pandolfi, University of Perugia (IT), http://www.stat.unipg.it/bartolucci

Examples

Not run:

draw a sample for 1000 units, 10 response variable and 2 covariates
n <- 1000
TT <- 5
k <- 2
nc <- 2 #number of covariates
r <- 10 #number of response variables
mb <- 2 #maximum number of response categories
fort <- TRUE

Psi <- matrix(c(0.9,0.1,0.1,0.9), mb, k)
Psi <- array(Psi, (mb, k, r))
Ga <- matrix(c(-log(0.9/0.1),0.5,1), (nc+1)*(k-1), k)
Be <- array(c(0,0.5,1), (nc+1)*(k-1))

#Simulate covariates
X1 <- matrix(0, n, nc)
for(j in 1:nc) X1[,j] <- rnorm(n)
X2 <- array(0,(n, TT-1, nc))
for (t in 1:(TT-1)) for(j in 1:nc){
 if(t==1){
 X2[,t,j] <- 0.5*X1[,j] + rnorm(n)
 }else{
 X2[,t,j] <- 0.5*X2[,t-1,j] + rnorm(n)
 }
}

out <- draw_lm_cov_latent(X1, X2, Psi = Psi, Be = Be, Ga = Ga, fort = fort)

End(Not run)
draw_lm_cov_latent_cont

Description

Function that draws samples from the LM model for continuous outcomes with individual covariates with specific parameters.

The function is no longer maintained. Please look at `drawLMlatentcont` function.

Usage

```r
draw_lm_cov_latent_cont(X1, X2, param = "multilogit", Mu, Si, Be, Ga, fort = TRUE)
```

Arguments

- **X1**: design matrix for the covariates on the initial probabilities (n x nc1)
- **X2**: design matrix for the covariates on the transition probabilities (n x TT-1 x nc2)
- **param**: type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters)
- **Mu**: array of conditional means for the response variables (r x k)
- **Si**: var-cov matrix common to all states (r x r)
- **Be**: parameters affecting the logit for the initial probabilities
- **Ga**: parameters affecting the logit for the transition probabilities
- **fort**: to use fortran routine when possible (FALSE for not use fortran)

Value

- **Y**: array of continuous outcomes (n x TT x r)
- **U**: matrix containing the sequence of latent states (n x TT)

Author(s)

Francesco Bartolucci, Silvia Pandolfi, University of Perugia (IT), http://www.stat.unipg.it/bartolucci

Examples

```r
## Not run:
# draw a sample for 1000 units, 10 response variable and 2 covariates
n <- 1000
TT <- 5
k <- 2
nc <- 2 #number of covariates
r <- 3 #number of response variables
fort <- TRUE
Mu <- matrix(c(-2,-2,0,0,2,2), r, k)
Si <- diag(r)
Ga <- matrix(c(-log(0.9/0.1),0.5,1), (nc+1)*(k-1), k)
Be <- array(c(0,0.5,1), (nc+1)*(k-1))
```
#Simulate covariates
X1 <- matrix(0, n, nc)
for(j in 1:nc) X1[,j] <- rnorm(n)
X2 <- array(0, c(n,TT-1,nc))
for (t in 1:(TT-1)) for(j in 1:nc){
 if(t==1){
 X2[,t,j] <- 0.5*X1[,j] + rnorm(n)
 }else{
 X2[,t,j] <- 0.5*X2[,t-1,j] + rnorm(n)
 }
}
out <- draw_lm_cov_latent_cont(X1, X2, param = "multilogit", Mu, Si, Be, Ga, fort = fort)
End(Not run)

draw_lm_mixed \hspace{1cm} \textit{Draws samples from the mixed LM model}

\textbf{Description}

Function that draws samples from the mixed LM model with specific parameters.

\textbf{The function is no longer maintained. Please look at} \texttt{drawLMmixed} function.

\textbf{Usage}

draw_lm_mixed(la, Piv, Pi, Psi, n, TT)

\textbf{Arguments}

\begin{itemize}
 \item \texttt{la} \hspace{0.5cm} vector of mass probabilities for the first latent variable
 \item \texttt{Piv} \hspace{0.5cm} matrix of initial probabilities of the latent Markov chain (k2 x k1)
 \item \texttt{Pi} \hspace{0.5cm} set of transition matrices (k2 x k2 x k1)
 \item \texttt{Psi} \hspace{0.5cm} array of conditional response probabilities (mb x k2 x r)
 \item \texttt{n} \hspace{0.5cm} sample size
 \item \texttt{TT} \hspace{0.5cm} number of time occasions
\end{itemize}

\textbf{Value}

\begin{itemize}
 \item \texttt{Y} \hspace{0.5cm} matrix of response configurations unit by unit
 \item \texttt{S} \hspace{0.5cm} matrix of distinct response configurations
 \item \texttt{yv} \hspace{0.5cm} corresponding vector of frequencies
\end{itemize}

\textbf{Author(s)}

Francesco Bartolucci, Silvia Pandolfi, University of Perugia (IT), http://www.stat.unipg.it/bartolucci
est_lm_basic

Examples

```r
## Not run:
# draw a sample for 1000 units and only one response variable and 5 time occasions
k1 <- 2
k2 <- 3
la <- rep(1/k1,k1)
Piv <- matrix(1/k2,k2,k1)
Pi <- array(0,c(k2,k2,k1))
Pi[,,1] <- diag(k2)
Pi[,,2] <- 1/k2
Psi <- cbind(c(0.6,0.3,0.1),c(0.1,0.3,0.6),c(0.3,0.6,0.1))
out <- draw_lm_mixed(la,Piv,Pi,Psi,n=1000,TT=5)

## End(Not run)
```

est_lm_basic Estimate basic LM model

Description

Main function for estimating the basic LM model.

The function is no longer maintained. Please look at lmest function.

Usage

```r
est_lm_basic(S, yv, k, start = 0, mod = 0, tol = 10^-8, maxit = 1000,
             out_se = FALSE, piv = NULL, Pi = NULL, Psi = NULL)
```

Arguments

- `S` array of available configurations (n x TT x r) with categories starting from 0 (use NA for missing responses)
- `yv` vector of frequencies of the available configurations
- `k` number of latent states
- `start` type of starting values (0 = deterministic, 1 = random, 2 = initial values in input)
- `mod` model on the transition probabilities (0 for time-heter., 1 for time-homog., from 2 to (TT-1) partial homog. of that order)
- `tol` tolerance level for convergence
- `maxit` maximum number of iterations of the algorithm
- `out_se` to compute the information matrix and standard errors
- `piv` initial value of the initial probability vector (if start=2)
- `Pi` initial value of the transition probability matrices (k x k x TT) (if start=2)
- `Psi` initial value of the conditional response probabilities (mb x k x r) (if start=2)
est_lm_basic

Value

- **lk**: maximum log-likelihood
- **piv**: estimate of initial probability vector
- **Pi**: estimate of transition probability matrices
- **Psi**: estimate of conditional response probabilities
- **np**: number of free parameters
- **aic**: value of AIC for model selection
- **bic**: value of BIC for model selection
- **lkv**: log-likelihood trace at every step
- **V**: array containing the posterior distribution of the latent states for each response configuration and time occasion
- **sepiv**: standard errors for the initial probabilities
- **sePi**: standard errors for the transition probabilities
- **sePsi**: standard errors for the conditional response probabilities
- **call**: command used to call the function

Author(s)

Francesco Bartolucci, Silvia Pandolfi, University of Perugia (IT), http://www.stat.unipg.it/bartolucci

References

Examples

```r
## Not run:
# Example of drug consumption data

# load data
data(data_drug)
data_drug <- as.matrix(data_drug)
S <- data_drug[,1:5]-1
yv <- data_drug[,6]

# fit of the Basic LM model
k <- 3
out <- est_lm_basic(S, yv, k, mod = 1)
summary(out)

# Example based on criminal data

# load criminal data
data(data_criminal_sim)
out <- long2wide(data_criminal_sim, "id", "time", "sex",
```
est_lm_basic_cont

est_lm_basic_cont

Estimate basic LM model for continuous outcomes

Description

Main function for estimating the basic LM model for continuous outcomes.

The function is no longer maintained. Please look at lmestCont function.

Usage

est_lm_basic_cont(Y, k, start = 0, mod = 0, tol = 10^-8, maxit = 1000,
 out_se = FALSE, piv = NULL, Pi = NULL, Mu = NULL, Si = NULL)

Arguments

Y array of continuous outcomes (n x TT x r)

k number of latent states

start type of starting values (0 = deterministic, 1 = random, 2 = initial values in input)

mod model on the transition probabilities (0 for time-heter., 1 for time-homog., from 2 to (TT-1) partial homog. of that order)

tol tolerance level for convergence

maxit maximum number of iterations of the algorithm

out_se to compute the information matrix and standard errors

piv initial value of the initial probability vector (if start=2)

Pi initial value of the transition probability matrices (k x k x TT) (if start=2)

Mu initial value of the conditional means (r x k) (if start=2)

Si initial value of the var-cov matrix common to all states (r x r) (if start=2)
Value

lk maximum log-likelihood
piv estimate of initial probability vector
\Pi estimate of transition probability matrices
\mu estimate of conditional means of the response variables
\Sigma estimate of var-cov matrix common to all states
np number of free parameters
aic value of AIC for model selection
bic value of BIC for model selection
lkv log-likelihood trace at every step
V array containing the posterior distribution of the latent states for each units and
time occasion
call command used to call the function

Author(s)

Francesco Bartolucci, Silvia Pandolfi, University of Perugia (IT), http://www.stat.unipg.it/bartolucci

References

Examples

```r
## Not run:
# Example based on multivariate longitudinal continuous data

data(data_long_cont)
res <- long2matrices(data_long_cont$id, X=cbind(data_long_cont$X1, data_long_cont$X2),
                     Y=cbind(data_long_cont$Y1, data_long_cont$Y2, data_long_cont$Y3))
Y <- res$YY

# fit of the Basic LM model for continuous outcomes
k <- 3
out <- est_lm_basic_cont(Y, k, mod = 1, tol = 10^-5)
summary(out)

## End(Not run)
```
est_lm_cov_latent
Estimate LM model with covariates in the latent model

Description

Main function for estimating the LM model with covariates in the latent model.

The function is no longer maintained. Please look at lmest function.

Usage

```
est_lm_cov_latent(S, X1=NULL, X2=NULL, yv = rep(1,nrow(S)), k, start = 0, tol = 10^-8, 
maxit = 1000, param = "multilogit", Psi, Be, Ga, fort = TRUE, 
output = FALSE, out_se = FALSE, fixPsi = FALSE)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>S</code></td>
<td>array of available configurations (n x TT x r) with categories starting from 0 (use NA for missing responses)</td>
</tr>
<tr>
<td><code>X1</code></td>
<td>matrix of covariates affecting the initial probabilities (n x nc1)</td>
</tr>
<tr>
<td><code>X2</code></td>
<td>array of covariates affecting the transition probabilities (n x TT-1 x nc2)</td>
</tr>
<tr>
<td><code>yv</code></td>
<td>vector of frequencies of the available configurations</td>
</tr>
<tr>
<td><code>k</code></td>
<td>number of latent states</td>
</tr>
<tr>
<td><code>start</code></td>
<td>type of starting values (0 = deterministic, 1 = random, 2 = initial values in input)</td>
</tr>
<tr>
<td><code>tol</code></td>
<td>tolerance level for checking convergence of the algorithm</td>
</tr>
<tr>
<td><code>maxit</code></td>
<td>maximum number of iterations of the algorithm</td>
</tr>
<tr>
<td><code>param</code></td>
<td>type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters)</td>
</tr>
<tr>
<td><code>Psi</code></td>
<td>initial value of the array of the conditional response probabilities (mb x k x r)</td>
</tr>
<tr>
<td><code>Be</code></td>
<td>initial value of the parameters affecting the logit for the initial probabilities (if start=2)</td>
</tr>
<tr>
<td><code>Ga</code></td>
<td>initial value of the parameters affecting the logit for the transition probabilities (if start=2)</td>
</tr>
<tr>
<td><code>fort</code></td>
<td>to use fortran routine when possible (FALSE for not use fortran)</td>
</tr>
<tr>
<td><code>output</code></td>
<td>to return additional output (V,PI,Piv,Ul)</td>
</tr>
<tr>
<td><code>out_se</code></td>
<td>to compute the information matrix and standard errors</td>
</tr>
<tr>
<td><code>fixPsi</code></td>
<td>TRUE if Psi is given in input and is not updated anymore</td>
</tr>
</tbody>
</table>
Value

lk maximum log-likelihood
Be estimated array of the parameters affecting the logit for the initial probabilities
Ga estimated array of the parameters affecting the logit for the transition probabilities
Piv estimate of initial probability matrix
PI estimate of transition probability matrices
Psi estimate of conditional response probabilities
np number of free parameters
aic value of AIC for model selection
bic value of BIC for model selection
lkv log-likelihood trace at every step
V array containing the posterior distribution of the latent states for each response configuration and time occasion
Ul matrix containing the predicted sequence of latent states by the local decoding method
sePsi standard errors for the conditional response matrix
seBe standard errors for Be
seGa standard errors for Ga
call command used to call the function

Author(s)

Francesco Bartolucci, Silvia Pandolfi, University of Perugia, http://www.stat.unipg.it/bartolucci

References

Examples

```r
## Not run:
# Example based on self-rated health status (SRHS) data
# load SRHS data
data(data_SRHS_long)
dataSRHS = data_SRHS_long
TT <- 8
head(dataSRHS)
res <- long2matrices(dataSRHS$id, X = cbind(dataSRHS$gender-1,
dataSRHS$race == 2 | dataSRHS$race == 3, dataSRHS$education == 4,
dataSRHS$education == 5, dataSRHS$age-50, (dataSRHS$age-50)^2/100),
Y = dataSRHS$srhs)
```
matrix of responses (with ordered categories from 0 to 4)
S <- 5-res$YY
n <- dim(S)[1]

matrix of covariates (for the first and the following occasions)
columns are: gender, race, educational level (2 columns), age, age^2
X1 <- res$XX[,1,]
X2 <- res$XX[,2:TT,]

estimate the model
est2f <- est_lm_cov_latent(S, X1, X2, k = 2, output = TRUE, out_se = TRUE)
summary(est2f)

average transition probability matrix
PI <- round(apply(est2f$PI[,,,2:TT], c(1,2), mean), 4)

Transition probability matrix for white females with high educational level
ind1 <- X1[,1] == 1 & X1[,2] == 0 & X1[,4] == 1
PI1 <- round(apply(est2f$PI[,,,ind1,2:TT], c(1,2), mean), 4)

Transition probability matrix for non-white male, low educational level
ind2 <- (X1[,1] == 0 & X1[,2] == 1 & X1[,3] == 0 & X1[,4] == 0)
PI2 <- round(apply(est2f$PI[,,,ind2,2:TT], c(1,2), mean), 4)

End(Not run)

est_lm_cov_latent_cont

Estimate LM model for continuous outcomes with covariates in the latent model

Description

Main function for estimating the LM model for continuous outcomes with covariates in the latent model.

The function is no longer maintained. Please look at `lmestCont` function.

Usage

```r
est_lm_cov_latent_cont(Y, X1 = NULL, X2 = NULL, yv = rep(1,nrow(Y)), k, start = 0, tol = 10^-8, maxit = 1000, param = "multilogit", Mu = NULL, Si = NULL, Be = NULL, Ga = NULL, output = FALSE, out_se = FALSE)
```

Arguments

- `Y` array of continuous outcomes (n x TT x r)
X1 matrix of covariates affecting the initial probabilities (n x nc1)
X2 array of covariates affecting the transition probabilities (n x TT-1 x nc2)
yv vector of frequencies of the available configurations
k number of latent states
start type of starting values (0 = deterministic, 1 = random, 2 = initial values in input)
tol tolerance level for checking convergence of the algorithm
maxit maximum number of iterations of the algorithm
param type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters)
Mu initial value of the conditional means (r x k) (if start=2)
Si initial value of the var-cov matrix common to all states (r x r) (if start=2)
Be initial value of the parameters affecting the logit for the initial probabilities (if start=2)
Ga initial value of the parametes affecting the logit for the transition probabilities (if start=2)
output to return additional output (V,PI,Piv, Ul)
out_se to compute the information matrix and standard errors

Value

lk maximum log-likelihood
Be estimated array of the parameters affecting the logit for the initial probabilities
Ga estimated array of the parameters affecting the logit for the transition probabilities
Mu estimate of conditional means of the response variables
Si estimate of var-cov matrix common to all states
np number of free parameters
aic value of AIC for model selection
bic value of BIC for model selection
lkv log-likelihood trace at every step
Piv estimate of initial probability matrix
PI estimate of transition probability matrices
Ul matrix containing the predicted sequence of latent states by the local decoding method
call command used to call the function

Author(s)

Francesco Bartolucci, Silvia Pandolfi, University of Perugia, http://www.stat.unipg.it/bartolucci
Examples

```r
# Example based on multivariate longitudinal continuous data

data(data_long_cont)
TT <- 5
res <- long2matrices(data_long_cont$id, X = cbind(data_long_cont$X1, data_long_cont$X2),
                     Y = cbind(data_long_cont$Y1, data_long_cont$Y2, data_long_cont$Y3))
Y <- res$YY
X1 <- res$XX[,1,]
X2 <- res$XX[,2:TT,]

# estimate the model
est <- est_lm_cov_latent_cont(Y, X1, X2, k = 3, output = TRUE)
summary(est)

# average transition probability matrix
PI <- round(apply(est$PI[,,,2:TT], c(1,2), mean), 4)
PI
```

End(Not run)

est_lm_cov_manifest

Estimate LM model with covariates in the measurement model

Description

Main function for estimating LM model with covariates in the measurement model based on a global logit parameterization.

The function is no longer maintained. Please look at `lmest` function.

Usage

```r
est_lm_cov_manifest(S, X, yv = rep(1,nrow(S)), k, q = NULL, mod = c("LM", "FM"),
tol = 10^-8, maxit = 1000, start = 0, mu = NULL, al = NULL,
be = NULL, si = NULL, rho = NULL, la = NULL, PI = NULL,
output = FALSE, out_se = FALSE)
```

Arguments

- **S** array of available configurations (n x TT) with categories starting from 0
- **X** array (n x TT x nc) of covariates with eventually includes lagged response (nc = number of covariates)
yv vector of frequencies of the available configurations
k number of latent states
q number of support points for the AR(1) process
mod model ("LM" = Latent Markov with stationary transition, "FM" = finite mixture)
tol tolerance for the convergence (optional) and tolerance of conditional probability
 if tol>1 then return
maxit maximum number of iterations of the algorithm
start type of starting values (0 = deterministic, 1 = random, 2 = initial values in input)
mu starting value for mu (optional)
al starting value for al (optional)
be starting value for be (optional)
si starting value for si when mod="FM" (optional)
rho starting value for rho when mod="FM" (optional)
l1 starting value for la (optional)
PI starting value for PI (optional)
output to return additional output (PRED0, PRED1)
out_se TRUE for computing information matrix and standard errors

Value

mu vector of cutpoints
al support points for the latent states
be estimate of the vector of regression parameters
si sigma of the AR(1) process (mod = "FM")
rho parameter vector for AR(1) process (mod = "FM")
l1 vector of initial probabilities
PI transition matrix
lk maximum log-likelihood
np number of parameters
aic value of AIC index
bic value of BIC index
PRED0 prediction of latent state
PRED1 prediction of the overall latent effect
sebe standard errors for the regression parameters be
selrho standard errors for logit type transformation of rho
J1 information matrix
call command used to call the function
Examples

```r
## Not run:
# Example based on self-rated health status (SRHS) data

# load SRHS data
data(data_SRHS_long)
dataSRHS <- data_SRHS_long
head(dataSRHS)

res <- long2matrices(dataSRHS$id, X = cbind(dataSRHS$gender-1,
dataSRHS$race == 2 | dataSRHS$race == 3, dataSRHS$education == 4,
dataSRHS$education == 5, dataSRHS$age-50, (dataSRHS$age-50)^2/100),
Y = dataSRHS$srhs)

X <- res$XX
S <- 5-res$YY

# *** fit stationary LM model
res0 <- vector("list", 10)
tol <- 10^-6;
for(k in 1:10){
  res0[[k]] <- est_lm_cov_manifest(S, X, k, 1, mod = "LM", tol)
  save.image("example_SRHS.RData")
}

# *** fit the mixture latent auto-regressive model

tol <- 0.005
res <- vector("list",4)
k <- 1
q <- 51
res[[k]] <- est_lm_cov_manifest(S, X, k, q, mod = "FM", tol, output = TRUE)
for(k in 2:4) res[[k]] <- est_lm_cov_manifest(S, X, k, q = 61, mod = "FM", tol, output = TRUE)

## End(Not run)
```
Estimate mixed LM model

Description

Main function for estimating the mixed LM model with discrete random effect in the latent model.

The function is no longer maintained. Please look at \texttt{lmestMixed} function

Usage

\begin{verbatim}
est_lm_mixed(S, yv = rep(1,nrow(S)), k1, k2, start = 0, tol = 10^-8, maxit = 1000, out_se = FALSE)
\end{verbatim}

Arguments

- \texttt{S} array of available response configurations (n x TT x r) with categories starting from 0
- \texttt{yv} vector of frequencies of the available configurations
- \texttt{k1} number of latent classes
- \texttt{k2} number of latent states
- \texttt{start} type of starting values (0 = deterministic, 1 = random)
- \texttt{tol} tolerance level for convergence
- \texttt{maxit} maximum number of iterations of the algorithm
- \texttt{out_se} to compute standard errors

Value

- \texttt{la} estimate of the mass probability vector (distribution of the random effects)
- \texttt{Piv} estimate of initial probabilities
- \texttt{Pi} estimate of transition probability matrices
- \texttt{Psi} estimate of conditional response probabilities
- \texttt{lk} maximum log-likelihood
- \texttt{W} posterior probabilities of the random effect
- \texttt{np} number of free parameters
- \texttt{bic} value of BIC for model selection
- \texttt{call} command used to call the function

Author(s)

Francesco Bartolucci, Silvia Pandolfi - University of Perugia (IT)
References

Examples

```r
## Not run:
# Example based of criminal data
data(data_criminal_sim)
out <- long2wide(data_criminal_sim, "id", "time", "sex",
c("y1","y2","y3","y4","y5","y6","y7","y8","y9","y10"), aggr = T, full = 999)

XX <- out$XX
YY <- out$YY
freq <- out$freq
n1 <- sum(freq[XX[,1] == 1])
n2 <- sum(freq[XX[,1] == 2])
n <- sum(freq)

# fit mixed LM model only for females
YY <- YY[XX[,1] == 2,]
freq <- freq[XX[,1] == 2]
k1 <- 2
k2 <- 2
res <- est_lm_mixed(YY, freq, k1, k2, tol = 10^-8)
summary(res)

## End(Not run)
```

est_mc_basic

Estimate basic Markov chain (MC) model

Description

Main function for estimating the basic MC model.

The function is no longer maintained. Please look at lmestMc function.

Usage

```r
est_mc_basic(S, yv, mod = 0, tol = 10^-8, maxit = 1000, out_se = FALSE)
```

Arguments

- `S` matrix (n x TT) of available configurations of the response variable with categories starting from 0
- `yv` vector of frequencies of the available configurations
est_mc_basic

mod model on the transition probabilities (0 for time-heter., 1 for time-homog., from 2 to (TT-1) partial homog. of that order)
tol tolerance level for convergence
maxit maximum number of iterations of the algorithm
out_se to compute the information matrix and standard errors

Value

lk maximum log-likelihood
piv estimate of initial probability vector
Pi estimate of transition probability matrices
np number of free parameters
aic value of AIC for model selection
bic value of BIC for model selection
Fy estimated marginal distribution of the response variable for each time occasion
sepiv standard errors for the initial probabilities
sePi standard errors for the transition probabilities
call command used to call the function

Author(s)

Francesco Bartolucci, Silvia Pandolfi, University of Perugia (IT), http://www.stat.unipg.it/bartolucci

References

Examples

Example of drug consumption data
load data
data(data_drug)
data_drug <- as.matrix(data_drug)
S <- data_drug[,1:5]-1
yv <- data_drug[,6]

fit of the Basic MC model
out <- est_mc_basic(S, yv, mod = 1, out_se = TRUE)
summary(out)
Estimate Markov chain (MC) model with covariates

Description

Main function for estimating the MC model with covariates.

The function is no longer maintained. Please look at `lmestMc` function.

Usage

```r
est_mc_cov(S, X1 = NULL, X2 = NULL, yv = rep(1, nrow(S)), start = 0, tol = 10^-8, 
           maxit = 1000, out_se = FALSE, output = FALSE, fort = TRUE)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>matrix of available configurations of the response variable (n x TT) with categories starting from 0</td>
</tr>
<tr>
<td>X1</td>
<td>matrix of covariates affecting the initial probabilities (n x nc1)</td>
</tr>
<tr>
<td>X2</td>
<td>array of covariates affecting the transition probabilities (n x TT-1 x nc2)</td>
</tr>
<tr>
<td>yv</td>
<td>vector of frequencies of the available configurations</td>
</tr>
<tr>
<td>start</td>
<td>type of starting values (0 = deterministic, 1 = random)</td>
</tr>
<tr>
<td>tol</td>
<td>tolerance level for checking convergence of the algorithm</td>
</tr>
<tr>
<td>maxit</td>
<td>maximum number of iterations of the algorithm</td>
</tr>
<tr>
<td>out_se</td>
<td>to compute the information matrix and standard errors</td>
</tr>
<tr>
<td>output</td>
<td>to return additional output (PI,Piv)</td>
</tr>
<tr>
<td>fort</td>
<td>to use fortran routine when possible (FALSE for not use fortran)</td>
</tr>
</tbody>
</table>

Value

- `lk` maximum log-likelihood
- `Be` estimated array of the parameters affecting the logit for the initial probabilities
- `Ga` estimated array of the parameters affecting the logit for the transition probabilities
- `np` number of free parameters
- `aic` value of AIC for model selection
- `bic` value of BIC for model selection
- `seBe` standard errors for Be
- `seGa` standard errors for Ga
- `Piv` estimate of initial probability matrix
- `PI` estimate of transition probability matrices
- `call` command used to call the function
Examples

```r
## Not run:

# Example based on criminal data
data(data_criminal_sim)

# We consider the response variable referring of crime of type 5
out <- long2wide(data_criminal_sim, "id", "time", "sex", "y5", aggr = T, full = 999)
XX <- out$XX-1
YY <- out$YY
freq <- out$freq
TT <- 6

X1 <- as.matrix(XX[,1])
X2 <- as.matrix(XX[,2:TT])
# estimate the model
res <- est_mc_cov(S = YY, yv = freq, X1 = X1, X2 = X2, output = TRUE)
summary(res)

# Initial probability for female
Piv0 <- round(colMeans(res$Piv[X1 == 0,]), 4)
# Initial probability for male
Piv1 <- round(colMeans(res$Piv[X1 == 1,]), 4)

## End(Not run)
```

Description

An S3 class object created by `lmest` function for basic Latent Markov (LM) model.
Value

- `lk`: maximum log-likelihood at convergence of the EM algorithm
- `piv`: estimate of initial probability vector
- `Pi`: estimate of transition probability matrices (k x k x TT)
- `Psi`: estimate of conditional response probabilities (mb x k x r)
- `np`: number of free parameters
- `k`: optimal number of latent states
- `aic`: value of the Akaike Information Criterion for model selection
- `bic`: value of the Bayesian Information Criterion for model selection
- `lkv`: log-likelihood trace at every step
- `n`: number of observations in the data
- `TT`: number of time occasions
- `modBasic`: model on the transition probabilities: default 0 for time-heterogeneous transition matrices, 1 for time-homogeneous transition matrices, 2 for partial time homogeneity based on two transition matrices one from 2 to (TT-1) and the other for TT.
- `sepiv`: standard errors for the initial probabilities
- `sePi`: standard errors for the transition probabilities
- `sePsi`: standard errors for the conditional response probabilities
- `Lk`: vector containing the values of the log-likelihood of the LM model with each k (latent states)
- `Bic`: vector containing the values of the BIC for each k
- `Aic`: vector containing the values of the AIC for each k
- `V`: array containing the estimated posterior probabilities of the latent states for each response configuration and time occasion
- `Ul`: matrix containing the predicted sequence of latent states by the local decoding method
- `S`: array containing the available response configurations
- `yv`: vector of frequencies of the available configurations
- `Pmarg`: matrix containing the marginal distribution of the latent states
- `call`: command used to call the function
- `data`: data.frame given in input

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

See Also

lmest
LMbasiccont-class
Class 'LMbasiccont'

Description

An S3 class object created by `lmestCont` function for the latent Markov (LM) model for continuous responses in long format.

Value

- **lk**: maximum log-likelihood
- **piv**: estimate of initial probability vector
- **Pi**: estimate of transition probability matrices (k x k x TT)
- **Mu**: estimate of conditional means of the response variables (r x k)
- **Si**: estimate of var-cov matrix common to all states (r x r)
- **np**: number of free parameters
- **k**: optimal number of latent states
- **aic**: value of the Akaike Information Criterion for model selection
- **bic**: value of the Bayesian Information Criterion for model selection
- **lkv**: log-likelihood trace at every step
- **n**: number of observations in the data
- **TT**: number of time occasions
- **modBasic**: model on the transition probabilities: default 0 for time-heterogeneous transition matrices, 1 for time-homogeneous transition matrices, 2 for partial time homogeneity based on two transition matrices one from 2 to (TT-1) and the other for TT
- **sepiv**: standard errors for the initial probabilities
- **sePi**: standard errors for the transition probabilities
- **seMu**: standard errors for the conditional means
- **seSi**: standard errors for the var-cov matrix
- **sc**: score vector
- **J**: information matrix
- **Lk**: vector containing the values of the log-likelihood of the LM model with each k (latent states)
- **Bic**: vector containing the values of the BIC of the LM model with each k (latent states)
- **Aic**: vector containing the values of the AIC of the LM model with each k (latent states)
- **V**: array containing the posterior distribution of the latent states for each units and time occasion
\textbf{ul} \hspace{1cm} \text{matrix containing the predicted sequence of latent states by the local decoding method}

\textbf{Pmarg} \hspace{1cm} \text{matrix containing the marginal distribution of the latent states}

\textbf{call} \hspace{1cm} \text{command used to call the function}

\textbf{data} \hspace{1cm} \text{data frame given in input}

\textbf{Author(s)}

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

\textbf{See Also}

\texttt{lmestCont}

\begin{table}
\centering
\begin{tabular}{l}
\textbf{lmest}\hspace{3cm} \textit{Estimate Latent Markov models for categorical responses}\tabularnewline
\end{tabular}
\end{table}

\textbf{Description}

Main function for estimating Latent Markov (LM) models for categorical responses.

\textbf{Usage}

\begin{verbatim}
lmest(responsesFormula = NULL, latentFormula = NULL, data, index, k = 1:4, start = 0, modSel = c("BIC", "AIC"), modBasic = 0, modManifest = c("LM", "FM"), paramLatent = c("multilogit", "difflogit"), weights = NULL, tol = 10^-8, maxit = 1000, out_se = FALSE, q = NULL, output = FALSE, parInit = list(piv = NULL, Pi = NULL, Psi = NULL, Be = NULL, Ga = NULL, mu = NULL, al = NULL, be = NULL, si = NULL, rho = NULL, la = NULL, PI = NULL, fixPsi = FALSE), fort = TRUE, seed = NULL, ntry = 0)
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
\item \texttt{responsesFormula} \hspace{1cm} \text{a symbolic description of the model to fit. A detailed description is given in the \textit{Details} section}
\item \texttt{latentFormula} \hspace{1cm} \text{a symbolic description of the model to fit. A detailed description is given in the \textit{Details} section}
\item \texttt{data} \hspace{1cm} \text{a data frame in long format}
\end{itemize}
index

- a character vector with two elements, the first indicating the name of the unit identifier, and the second the time occasions

k

- an integer vector specifying the number of latent states (default: 1:4)

start

- type of starting values (0 = deterministic, 1 = random, 2 = initial values in input)

modSel

- a string indicating the model selection criteria: "BIC" for Bayesian Information Criterion and "AIC" for Akaike Information Criterion Criterion

modBasic

- model on the transition probabilities (0 for time-heterogeneity, 1 for time-homogeneity, from 2 to (TT-1) partial time-homogeneity of a certain order)

modManifest

- model for manifest distribution ("LM" = Latent Markov with stationary transition, "FM" = finite mixture model) where a mixture of AR(1) processes is estimated with common variance and specific correlation coefficients.

paramLatent

- type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters)

weights

- an optional vector of weights for the available responses

tol

- tolerance level for convergence

maxit

- maximum number of iterations of the algorithm

out.se

- to compute the information matrix and standard errors

q

- number of support points for the AR(1) process (if modManifest ="FM")

output

- to return additional output: V, Ul, S, yv, Pmarg for the basic LM model and for the LM with covariates on the latent model (LMbasic-class and LMLatent-class) and V, PRED1, S, yv, Pmarg for the LM model with covariates in the measurement model (LManifest-class)

parInit

- list of initial model parameters when "start = 2". For the list of parameters look at LMbasic-class, LMLatent-class and LMmanifest-class

fort

- to use fortran routines when possible

seed

- an integer value with the random number generator state

ntry

- to set the number of random initializations

Details

lmest is a general function for estimating LM models for categorical responses. The function requires data in long format and two additional columns indicating the unit identifier and the time occasions.

Covariates are allowed to affect manifest distribution (measurement model) or the initial and transition probabilities (latent model). Two different formulas are employed to specify the different LM models, responsesFormula and latentFormula:

- responsesFormula is used to specify the measurement model:
 - responsesFormula = y1 + y2 ~ NULL
 - the LM model without covariates and two responses (y1 and y2) is specified;
 - responsesFormula = NULL
 - all the columns in the data except the "id" and "time" columns are used as responses to estimate the LM model without covariates;
the univariate LM model with response (y_1) and two covariates (x_1 and x_2) in the measurement model is specified;

- latentFormula is used to specify the LM model with covariates in the latent model:

 - responsesFormula = $y_1 + y_2 \sim \text{NULL}$
 latentFormula = $\sim x_1 + x_2 | x_3 + x_4$
 the LM model with two responses (y_1 and y_2) and two covariates affecting the initial probabilities (x_1 and x_2) and other two affecting the transition probabilities (x_3 and x_4) is specified;

 - responsesFormula = $y_1 + y_2 \sim \text{NULL}$
 latentFormula = $\sim 1 | x_1 + x_2$
 (or latentFormula = $\sim \text{NULL} | x_1 + x_2$)
 the covariates affect only the transition probabilities and an intercept is specified for the initial probabilities;

 - responsesFormula = $y_1 + y_2 \sim \text{NULL}$
 latentFormula = $\sim x_1 + x_2$
 (or latentFormula = $\sim \text{NULL} | x_1 + x_2$)
 the LM model with two covariates (x_1 and x_2) affecting both the initial and transition probabilities is specified;

 - responsesFormula = $y_1 + y_2 \sim \text{NULL}$
 latentFormula = $\sim \text{NULL} | \text{NULL}$
 (or latentFormula = $\sim 1 | 1$)
 the LM model with only an intercept on the initial and transition probabilities is specified.

The function also allows us to deal with missing responses, including drop-out and non-monotonic missingness, under the missing-at-random assumption. Missing values for the covariates are not allowed. The LM model with individual covariates in the measurement model is estimated only for complete univariate responses.

For continuous outcomes see the function \texttt{lmestCont}.

\textbf{Value}

Returns an object of class 'LMbasic' for the model without covariates (see \texttt{LMbasic-class}), or an object of class 'LMmanifest' for the model with covariates on the manifest model (see \texttt{LMmanifest-class}), or an object of class 'LMlatent' for the model with covariates on the latent model (see \texttt{LMlatent-class}).

\textbf{Author(s)}

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

\textbf{References}

Basic LM model

```r
data("data_SRHS_long")
SRHS <- data_SRHS_long[1:2400,]

# Categories rescaled to vary from 0 ("poor") to 4 ("excellent")
SRHS$srhs <- 5 - SRHS$srhs

out <- lmest(responsesFormula = srhs ~ NULL,
             index = c("id","t"),
             data = SRHS,
             k = 3,
             start = 1,
             modBasic = 1,
             seed = 123)

out
summary(out)
```

```r
# Not run:
#
## Basic LM model with model selection using BIC

out1 <- lmest(responsesFormula = srhs ~ NULL,
             index = c("id","t"),
             data = SRHS,
             k = 1:5,
             tol = 1e-8,
             modBasic = 1,
             seed = 123, ntry = 2)

out1$Bic

# Basic LM model with model selection using AIC

out2 <- lmest(responsesFormula = srhs ~ NULL,
             index = c("id","t"),
             data = SRHS,
             k = 1:5,
             tol = 1e-8,
             modBasic = 1,
             modSel = "AIC",
             seed = 123, ntry = 2)

out2
out2$Aic

# Criminal data
data(data_criminal_sim)
data_criminal_sim = data.frame(data_criminal_sim)

responsesFormula <- lmestFormula(data = data_criminal_sim, response = "y")$responsesFormula

out3 <- lmest(responsesFormula = responsesFormula, 
index = c("id","time"),
data = data_criminal_sim,
k = 1:7,
modBasic = 1,
tol = 10^-4)

out3

# Example of drug consumption data
data("data_drug")
long <- data_drug[, -6] - 1
long <- data.frame(id = 1:nrow(long), long)
long <- reshape(long, direction = "long", 
idvar = "id",
varying = list(2:ncol(long)))

out4 <- lmest(index = c("id","time"),
k = 3,
data = long, 
weights = data_drug[, 6],
modBasic = 1)

summary(out4)

### LM model with covariates in the latent model
# Covariates: gender, race, educational level (2 columns), age and age^2

out5 <- lmest(responsesFormula = srhs ~ NULL, 
latentFormula = ~
I(gender - 1) + 
I( 0 + (race == 2) + (race == 3)) + 
I(0 + (education == 4)) + 
I(0 + (education == 5)) + 
I(age - 50) + I((age-50)^2/100),
index = c("id","t"),
data = SRHS,
k = 2,
paramLatent = "multilogit",
start = 0)

out5
summary(out5)

### LM model with the above covariates in the measurement model
out6 <- lmest(responsesFormula = srhs ~ -1 + 
  I(gender - 1) + 
  I(0 + (race == 2) + (race == 3)) + 
  I(0 + (education == 4)) + 
  I(0 + (education == 5)) + I(age - 50) + 
  I((age-50)^2/100),
  index = c("id","t"),
  data = SRHS,
  k = 2,
  modManifest = "LM",
  out_se = TRUE,
  tol = 1e-8,
  start = 1,
  seed = 123)
out6
summary(out6)

## End(Not run)

---

### lmestCont

`Estimate Latent Markov models for continuous responses`

#### Description

Main function for estimating Latent Markov (LM) models for continuous responses.

#### Usage

```r
lmestCont(responsesFormula = NULL, latentFormula = NULL,
 data, index, k = 1:4, start = 0,
 modSel = c("BIC", "AIC"), modBasic = 0,
 paramLatent = c("multilogit", "difflogit"),
 weights = NULL, tol = 10^-10,
 maxit = 5000, out_se = FALSE, output = FALSE,
 parInit = list(piv = NULL, Pi = NULL,
 Mu = NULL, Si = NULL,
 Be = NULL, Ga = NULL),
 fort = TRUE, seed = NULL, ntry = 0, miss.imp = FALSE)
```

#### Arguments

- **responsesFormula**: a symbolic description of the model to be fitted. A detailed description is given in the ‘Details’ section
- **latentFormula**: a symbolic description of the model to be fitted. A detailed description is given in the ‘Details’ section
- **data**: a data.frame in long format
index: a character vector with two elements, the first indicating the name of the unit identifier, and the second the time occasions.

k: an integer vector specifying the number of latent states (default: 1:4)

start: type of starting values (0 = deterministic, 1 = random, 2 = initial values in input)

modSel: a string indicating the model selection criteria: "BIC" for Bayesian Information Criterion and "AIC" for Akaike Information Criterion Criterion

modBasic: model on the transition probabilities (0 for time-heter., 1 for time-homog., from 2 to (T-1) partial homog. of that order)

paramLatent: type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters)

weights: an optional vector of weights for the available responses

tol: tolerance level for convergence

maxit: maximum number of iterations of the algorithm

out_se: to compute the information matrix and standard errors (By default is set to FALSE)

output: to return additional output (V, Ul, Pmarg) (LMbasiccont-class,LMlatentcont-class,LMmanifestcont-class)

parInit: list of initial model parameters when "start = 2". For the list of parameters look at LMbasiccont-class,LMlatentcont-class, and LMmanifestcont-class

fort: to use fortran routines when possible (By default is set to TRUE)

seed: an integer value with the random number generator state

ntry: to set the number of random initializations

miss.imp: how to deal with missing values (TRUE for imputation through the imp.mix function, FALSE for missing at random assumption)

Details

The function lmestCont is a general function for estimating LM models for continuous responses. The function requires data in long format and two additional columns indicating the unit identifier and the time occasions.

Covariates are allowed on the initial and transition probabilities (latent model). Two different formulas are employed to specify the different LM models, responsesFormula and latentFormula:

- responsesFormula is used to specify the measurement model:
  - responsesFormula = y1 + y2 ~ NULL
    the LM model without covariates and two responses (y1 and y2) is specified.
  - responsesFormula = NULL
    all the columns in the data except the "id" and "time" columns are used as responses to estimate the LM model without covariates;
  - responsesFormula = y1 + y2 ~ x1 + x2
    the LM model with two responses (y1 and y2) and two covariates in the measurement model is specified;

- latentFormula is used to specify the LM model with covariates in the latent model:
The LM model with two responses (y1 and y2) and two covariates affecting the initial probabilities (x1 and x2) and other two affecting the transition probabilities (x3 and x4) is specified;

- responsesFormula = y1 + y2 ~ NULL
  latentFormula = ~ x1 + x2 | x3 + x4
  (or latentFormula = ~ NULL | x1 + x2)
  the covariates affect only the transition probabilities and an intercept is specified for the initial probabilities;

- responsesFormula = y1 + y2 ~ NULL
  latentFormula = ~ 1 | x1 + x2
  the LM model with two covariates (x1 and x2) affecting both the initial and transition probabilities is specified;

- responsesFormula = y1 + y2 ~ NULL
  latentFormula = ~ NULL | NULL
  (or latentFormula = ~ 1 | 1)
  the LM model with only an intercept on the initial and transition probabilities is specified.

The function also allows us to deal with missing responses using the mix package for imputing the missing values. Missing values for the covariates are not allowed.

For categorical outcomes see the function Imest.

**Value**

Returns an object of class 'LMbasiccont' for the model without covariates (see LMbasiccont-class), an object of class 'LMlatentcont' for the model with covariates on the latent model (see LMlatentcont-class), or an object of class 'LMmanifestcont' for the model with covariates on the measurement model (see LMmanifestcont-class).

**Author(s)**

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni

**References**


**See Also**

lmestFormula
Examples

## Not run:

```r
data(data_long_cont)

Basic LM model
out <- lmestCont(responsesFormula = Y1 + Y2 + Y3 ~ NULL,
 index = c("id", "time"),
 data = data_long_cont,
 k = 3,
 modBasic = 1,
 tol = 10^-5)

out
summary(out)

Basic LM model with model selection using BIC
out1 <- lmestCont(responsesFormula = Y1 + Y2 + Y3 ~ NULL,
 index = c("id", "time"),
 data = data_long_cont,
 k = 1:5,
 ntry = 2,
 modBasic = 1,
 tol = 10^-5)

out1
out1$Bic

Basic LM model with model selection using AIC
out2 <- lmestCont(responsesFormula = Y1 + Y2 + Y3 ~ NULL,
 index = c("id", "time"),
 data = data_long_cont,
 k = 1:5,
 ntry = 2,
 modSel = "AIC",
 tol = 10^-5)

out2
out2$Aic

LM model with covariates in the measurement model
out3 <- lmestCont(responsesFormula = Y1 + Y2 + Y3 ~ X1 + X2,
 index = c("id", "time"),
 data = data_long_cont,
 k = 3,
 output = TRUE)
```
out3
summary(out3)

# LM model with covariates in the latent model
out4 <- lmestCont(responsesFormula = Y1 + Y2 + Y3 ~ NULL,
    latentFormula = ~ X1 + X2,
    index = c("id", "time"),
    data = data_long_cont,
    k = 3,
    output = TRUE)

out4
summary(out4)

# LM model with two covariates affecting the initial probabilities and one
# affecting the transition probabilities
out5 <- lmestCont(responsesFormula = Y1 + Y2 + Y3 ~ NULL,
    latentFormula = ~ X1 + X2 | X1,
    index = c("id", "time"),
    data = data_long_cont,
    k = 3,
    output = TRUE)

out5
summary(out5)

## End(Not run)

---

**lmestData**

**Data for LMest functions**

**Description**

An object of class `lmestData` containing data in long format, some necessary information on the
data structure and objects for the estimation functions.

**Usage**

```r
lmestData(data, id = NULL, time = NULL,
 idAsFactor = TRUE, timeAsFactor = TRUE,
 responsesFormula = NULL, latentFormula = NULL,
 na.rm = FALSE, check.names = FALSE)
```

**Arguments**

- `data` : a matrix or data frame in long format of observation
id
a numeric vector or a string indicating the column with the unit identifier. If
NULL, the first column is considered.

time
a numeric vector or a string indicating the column with the time occasions. If
NULL, the second column is considered, and if the id is not NULL, the function
will automatically add the column with the time occasions.

idAsFactor
a logical value indicating whether or not the column with the ids is converted to
a factor. (By default is set to TRUE)

timeAsFactor
a logical value indicating whether or not the column with the time occasions is
converted in a factor. (By default is set to TRUE)

responsesFormula
A detailed description is given in \texttt{lmest}, \texttt{lmestCont}

latentFormula
A detailed description is given in \texttt{lmest}, \texttt{lmestCont}

na.rm
a logical value indicating whether or not the observation with at least a missing
value is removed (By default is set to FALSE)

check.names
a logical value indicating whether or not the names of the variables are syntacti-
cally valid, and adjusted if necessary. (By default is set to FALSE)

Value

An object of class ‘\texttt{lmestData}’ with the following objects:

data
a data.frame object to use in the estimation functions

id
a integer vector with the unit identifier

time
a integer vector with the time occasions

n
the number of observation

TT
an integer value indicating number of time occasions

d
an integer value indicating the number of variables (columns except id and
time)

Y
the response variables

Xmanifest
the variables affecting the measurement model if specified in \texttt{responsesFormula}

Xinitial
the variables affecting the initial probabilities of the latent model if specified in
\texttt{latentFormula}

Xtrans
the variables affecting the transition probabilities of the latent model if specified in
\texttt{latentFormula}

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini
Examples

```r
data(data_long_cont)
str(data_long_cont)

Data with continous resposes

dt <- lmestData(data = data_long_cont, id = "id", time="time")
str(dt)

Summary of each variable and for each time

summary(dt)

Summary of each variable

summary(dt, type = "cross")

Summary of each variable by time

summary(dt, type = "year")

plot(dt)
plot(dt, typePlot = "sh")

Not run:

data("data_criminal_sim")

dt1 <- lmestData(data = data_criminal_sim, id = "id", time = "time")
str(dt1)

summary(dt1, varType = rep("d",ncol(dt1$Y)))

Not run:

dt2 <- lmestData(data = data_criminal_sim, id = "id", time = "time",
responsesFormula = y1 + y2 - y3, latentFormula = ~ y7 + y8 | y9 + y10)
str(dt2)

Summary for responses, covariates on the manifest distribution,
covariates on intial and transition probabilities

summary(dt2, dataSummary = "responses",varType = rep("d",ncol(dt2$Y)))
summary(dt2, dataSummary = "manifest",varType = rep("d",ncol(dt2$Xmanifest)))
summary(dt2, dataSummary = "initial",varType = rep("d",ncol(dt2$Xinitial)))
summary(dt2, dataSummary = "transition",varType = rep("d",ncol(dt2$Xtrans)))

End(Not run)
```
lmestDecoding

Perform local and global decoding

Description

Function that performs local and global decoding (Viterbi algorithm) from the output of lmest, lmestCont, and lmestMixed.

Usage

```r
lmestDecoding(est, sequence = NULL, fort = TRUE, ...)
```

## S3 method for class 'LMbasic'
```
lmestDecoding(est, sequence = NULL, fort = TRUE, ...)
```

## S3 method for class 'LMmanifest'
```
lmestDecoding(est, sequence = NULL, fort = TRUE, ...)
```

## S3 method for class 'LMlatent'
```
lmestDecoding(est, sequence = NULL, fort = TRUE, ...)
```

## S3 method for class 'LMbasiccont'
```
lmestDecoding(est, sequence = NULL, fort = TRUE, ...)
```

## S3 method for class 'LMmixed'
```
lmestDecoding(est, sequence = NULL, fort = TRUE, ...)
```

Arguments

- `est`: an object obtained from a call to `lmest`, `lmestCont`, and `lmestMixed`
- `sequence`: an integer vector indicating the units for the decoding. If NULL the whole observations are considered. (By default is set to NULL)
- `fort`: to use fortran routines when possible
- `...`: further arguments

Value

- `Ul`: matrix of local decoded states corresponding to each row of `Y`
- `Ug`: matrix of global decoded states corresponding to each row of `Y`

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

References


Examples

# Decoding for basic LM model

data("data_drug")
long <- data_drug[,,-6]-1
long <- data.frame(id = 1:nrow(long),long)
long <- reshape(long,direction = "long",
idvar = "id",
varying = list(2:ncol(long)))

est <- lmest(index = c("id","time"),
k = 3,
data = long,
weights = data_drug[,6],
modBasic = 1)

# Decoding for a single sequence
out1 <- lmestDecoding(est, sequence = 1)
out2 <- lmestDecoding(est, sequence = 1:4)

# Decoding for all sequences
out3 <- lmestDecoding(est)

## Not run:
# Decoding for LM model with covariates on the initial and transition probabilities

data("data_SRHS_long")
SRHS <- data_SRHS_long[1:2400,]
# Categories rescaled to vary from 0 ("poor") to 4 ("excellent")
SRHS$srhs <- 5 - SRHS$srhs

est2 <- lmest(responsesFormula = srhs ~ NULL,
latentFormula = ~
I(gender - 1) +
I(0 + (race == 2) + (race == 3)) +
I(0 + (education == 4)) +
I(0 + (education == 5)) +
I(age - 50) + I((age-50)^2/100),
index = c("id","t"),
data = SRHS,
k = 2,
paramLatent = "difflogit",
output = TRUE)

# Decoding for a single sequence
out3 <- lmestDecoding(est2, sequence = 1)

# Decoding for the first three sequences
out4 <- lmestDecoding(est2, sequence = 1:3)

# Decoding for all sequences
out5 <- lmestDecoding(est2)

## End(Not run)

---

### lmestFormula

**Formulas for LMest functions**

#### Description

Building formulas for `lmest`, `lmestCont`, `lmestMixed`, and `lmestMc`.

#### Usage

```r
lmestFormula(data,
 response, manifest = NULL,
 LatentInitial = NULL, LatentTransition = NULL,
 AddInterceptManifest = FALSE,
 AddInterceptInitial = TRUE,
 AddInterceptTransition = TRUE, responseStart = TRUE,
 manifestStart = TRUE, LatentInitialStart = TRUE,
 LatentTransitionStart = TRUE)
```

#### Arguments

- **data**
  - a data.frame or a matrix of data
- **response**
  - a numeric or character vector indicating the column indices or the names for the response variables
- **manifest**
  - a numeric or character vector indicating the column indices or the names for the covariates affecting the measurement model
- **LatentInitial**
  - a numeric or character vector indicating the column indices or the names for the covariates affecting the initial probabilities
- **LatentTransition**
  - a numeric or character vector indicating the column indices or the names for the covariates affecting the transition probabilities
- **AddInterceptManifest**
  - a logical value indicating whether the intercept is added to the covariates affecting the measurement model
- **responseStart**, **manifestStart**, **LatentInitialStart**, **LatentTransitionStart**
  - logical values indicating whether the intercept is added to the covariates affecting the corresponding initial or transition probabilities
ImestFormula

AddInterceptInitial
   a logical value indicating whether the intercept is added to covariates affecting
   the initial probabilities

AddInterceptTransition
   a logical value indicating whether the intercept is added to covariates affecting
   the transition probabilities

responseStart
   a logical value indicating whether the response variables names start with response
   argument

manifestStart
   a logical value indicating whether the covariates names start with manifest
   argument

LatentInitialStart
   a logical value indicating whether the covariates names start with LatentInitial
   argument

LatentTransitionStart
   a logical value indicating whether the covariates names start with LatentTransition
   argument

Details

Generates formulas for responsesFormula and latentFormula to use in lmest, lmestCont, lmestMixed,
and lmestMc.

Value

Returns a list with responsesFormula and latentFormula objects.

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

Examples

data(data_SRHS_long)
names(data_SRHS_long)

# Formula with response srhs and covariates for both initial and transition:
# gender,race,educational,age.

## LM model with covariates on the latent model
# and with intercepts on the initial and transition probabilities

fm <- lmestFormula(data = data_SRHS_long,
                    response = "srhs",

fm

## LM model with covariates on the latent model
# and without intercepts on the initial and transition probabilities

fm <- lmestFormula(data = data_SRHS_long,
```r
response = "srhs",
LatentInitial = 3:6, LatentTransition = 3:6,
AddInterceptInitial = FALSE, AddIntercept transition = FALSE)

fm

###
data(data_criminal_sim)
str(data_criminal_sim)

Formula with only the responses from y1 to y10
fm <- lmestFormula(data = data_criminal_sim, response = "y")$responsesFormula
fm

Formula with only the responses from y1 to y10 and intercept for manifest
fm <- lmestFormula(data = data_criminal_sim,
 response = "y", AddInterceptManifest = TRUE)$responsesFormula
fm

LM model for continous responses
data(data_long_cont)
names(data_long_cont)

Formula with response Y1, Y2, no covariate for manifest,
X1 covariates for initail and X2 covariate for transition
fm <- lmestFormula(data = data_long_cont,
 response = c("Y"),
 LatentInitial = "X",
 LatentTransition = "X2")
fm

Wrong model specification since two variable start with X.
Check the starts arguments.

For the right model:
fm <- lmestFormula(data = data_long_cont,
 response = c("Y"),
 LatentInitial = "X1", LatentTransition = "X2")
fm

or
fm <- lmestFormula(data = data_long_cont,
 response = c("Y"),
 LatentInitial = 6, LatentTransition = "X2",
 LatentInitialStart = FALSE)
fm
```
lmestMc

Estimate Markov Chain models

Description

Main function for estimating Markov Chain (MC) models for categorical responses with or without covariates.

Usage

\[
\text{lmestMc}(\text{responsesFormula} = \text{NULL}, \\
\text{data}, \text{index}, \text{start} = 0, \\
\text{modBasic} = 0, \text{weights} = \text{NULL}, \\
\text{tol} = 10^{-8}, \text{maxit} = 1000, \\
\text{out.se} = \text{FALSE}, \text{output} = \text{FALSE}, \text{fort} = \text{TRUE}, \text{seed} = \text{NULL})
\]

Arguments

- **responsesFormula**: a symbolic description of the model to fit. A detailed description is given in the 'Details' section.
- **data**: a data.frame in long format.
- **index**: a character vector with two elements, the first indicating the name of the unit identifier, and the second the time occasions.
- **start**: type of starting values (0 = deterministic, 1 = random, 2 = initial values in input).
- **modBasic**: model on the transition probabilities (0 for time-heter., 1 for time-homog., from 2 to (TT-1) partial homog. of that order).
- **weights**: an optional vector of weights for the available responses.
- **tol**: tolerance level for convergence.
Details

The function `lmestMc` estimates the basic MC model and the MC model with covariates for categorical responses. The function requires data in long format and two additional columns indicating the unit identifier and the time occasions.

`responsesFormula` is used to specify the basic MC models and the model with covariates:

- `responsesFormula = y1 + y2 ~ NULL`
  the MC model without covariates and two responses (y1 and y2) is specified;
- `responsesFormula = NULL`
  all the columns in the data except the "id" and "time" columns are used to estimate MC without covariates;
- `responsesFormula = y1 ~ x1 + x2 | x3 + x4`
  the MC model with one response (y1), two covariates affecting the initial probabilities (x1 and x2) and other two different covariates affecting the transition probabilities (x3 and x4) is specified;
- `responsesFormula = y1 ~ x1 + x2`
  the MC model with one response (y1) and two covariates (x1 and x2) affecting both the initial and transition probabilities is specified.

Missing responses are not allowed.

Value

Returns an object of class 'MCbasic' for the basic model without covariates (see `MCbasic-class`), or an object of class 'MCcov' for the model with covariates (see `MCcov-class`).

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

References


Examples

```r
Not run:
Basic Markov Chain model

data("RLMSlong")

Categories rescaled from 1 “absolutely unsatisfied” to 5 “absolutely satisfied”
RLMSlong$value <- 5 - RLMSlong$value

out <- lmestMc(responsesFormula = value ~ NULL,
 index = c("id","time"),
 modBasic = 1,
 data = RLMSlong)

out
summary(out)

Example of drug consumption data

data("data_drug")
long <- data.frame(id = 1:nrow(long),long)
long <- reshape(long,direction = "long",
 idvar = "id",
 varying = list(2:ncol(long)))

out1 <- lmestMc(index = c("id","time"), data = long,
 weights = data_drug[,6], modBasic = 1, out_se = TRUE)

out1

MC model with covariates
Covariates: gender, race, educational level (2 columns), age and age^2

data("data_SRHS_long")
SRHS <- data_SRHS_long[1:2400,]

Categories of the responses rescaled from 1 “poor” to 5 “excellent”
SRHS$srhs <- 5 - SRHS$srhs

out2 <- lmestMc(responsesFormula = srhs ~
 I(0 + (race==2) + (race == 3)) +
 I(0 + (education == 4)) +
 I(0 + (education == 5)) +
 I(age - 50) +
 I((age-50)^2/100),
 index = c("id","t"),
```
```
out2 = summary(out2)

Criminal data

data(data_criminal_sim)
data_criminal_sim = data.frame(data_criminal_sim)

out3 <- lmestMc(responsesFormula = y5~sex,
 index = c("id","time"),
 data = data_criminal_sim,
 output = TRUE)

out3

End(Not run)
```

---

**lmestMixed**

Estimate mixed Latent Markov models

**Description**

Main function for estimating the mixed latent Markov (LM) models for categorical responses with discrete random effects in the latent model.

**Usage**

```
lmestMixed(responsesFormula = NULL,
 data, index, k1, k2, start = 0,
 weights = NULL, tol = 10^-8, maxit = 1000,
 out_se = FALSE, seed = NULL)
```

**Arguments**

- `responsesFormula`: a symbolic description of the model to fit. A detailed description is given in the 'Details' section.
- `data`: a `data.frame` in long format.
- `index`: a character vector with two elements, the first indicating the name of the unit identifier, and the second the time occasions.
- `k1`: number of latent classes.
- `k2`: number of latent states.
- `start`: type of starting values (0 = deterministic, 1 = random, 2 = initial values in input).
- `weights`: an optional vector of weights for the available responses.
- `tol`: tolerance level for convergence.
maxit maximum number of iterations of the algorithm
out_se to compute the information matrix and standard errors (FALSE is the default option)
seed an integer value with the random number generator state

Details
The function \texttt{lmestMixed} estimates the mixed LM for categorical data. The function requires data in long format and two additional columns indicating the unit identifier and the time occasions.

\texttt{responsesFormula} is used to specify the responses of the mixed LM model:

- \texttt{responsesFormula = y1 + y2 \sim NULL}
  
  the mixed LM model with two categorical responses (y1 and y2) is specified;

- \texttt{responsesFormula = NULL}
  
  all the columns in the data except the "id" and "time" columns are used as responses to estimate the mixed LM.

Missing responses are not allowed.

Value
Returns an object of class 'LMmixed' (see \texttt{LMmixed-class}).

Author(s)
Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

References


Examples

## Not run:

# Example based on criminal data
data(data_criminal_sim)
data_criminal_sim <- data.frame(data_criminal_sim)

# Estimate mixed LM model for females
responsesFormula <- lmestFormula(data = data_criminal_sim, response = "y")$responsesFormula

# fit mixed LM model only for females
out <- lmestMixed(responsesFormula = responsesFormula,
```
index = c("id","time"),
k1 = 2,
k2 = 2,
data = data_criminal_sim[data_criminal_sim$sex == 2,])
out
summary(out)
```

## End(Not run)

---

**lmestSearch**

*Search for the global maximum of the log-likelihood*

**Description**

Function that searches for the global maximum of the log-likelihood of different models and selects the optimal number of states.

**Usage**

```
lmestSearch(responsesFormula = NULL, latentFormula = NULL,
 data, index, k,
 version = c("categorical", "continuous"),
 weights = NULL, nrep = 2, tol1 = 10^-5,
 tol2 = 10^-10, out_se = FALSE, miss.imp = FALSE, seed = NULL, ...)
```

**Arguments**

- **responsesFormula**: a symbolic description of the model to fit. A detailed description is given in the 'Details' section of `lmest`.
- **latentFormula**: a symbolic description of the model to fit. A detailed description is given in the 'Details' section of `lmest`.
- **data**: a data.frame in long format.
- **index**: a character vector with two elements, the first indicating the name of the unit identifier, and the second the time occasions.
- **k**: a vector of integer values for the number of latent states.
- **weights**: an optional vector of weights for the available responses.
- **version**: type of responses for the LM model: "categorical" and "continuous".
- **nrep**: number of repetitions of each random initialization.
- **tol1**: tolerance level for checking convergence of the algorithm in the random initializations.
- **tol2**: tolerance level for checking convergence of the algorithm in the last deterministic initialization.
out_se to compute the information matrix and standard errors (FALSE is the default option)

miss.imp Only for continuous responses: how to deal with missing values (TRUE for imputation through the imp.mix function, FALSE for missing at random assumption)

seed an integer value with the random number generator

Additional arguments to be passed to functions \texttt{lmest} or \texttt{lmestCont}

Details

The function combines deterministic and random initializations strategy to reach the global maximum of the model log-likelihood. It uses one deterministic initialization (start=0) and a number of random initializations (start=1) proportional to the number of latent states. The tolerance level is set equal to $10^{-5}$. Starting from the best solution obtained in this way, a final run is performed (start=2) with a default tolerance level equal to $10^{-10}$.

Missing responses are allowed according to the model to be estimated.

Value

Returns an object of class ‘LMsearch’ with the following components:

\begin{itemize}
  \item \texttt{out.single} Output of every LM model estimated for each number of latent states given in input
  \item \texttt{Aic} Values the Akaike Information Criterion for each number of latent states given in input
  \item \texttt{Bic} Values of the Bayesian Information Criterion for each number of latent states given in input
  \item \texttt{lkv} Values of log-likelihood for each number of latent states given in input.
\end{itemize}

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

References


Examples

### Example with data on drug use in wide format

data(“data_drug”)
long <- data_drug[,-6]
lmestSearch

# add labels referred to the identifier
long <- data.frame(id = 1:nrow(long),long)

# reshape data from the wide to the long format
long <- reshape(long,direction = "long",
    idvar = "id",
    varying = list(2:ncol(long)))

out <- lmestSearch(data = long,
    index = c("id","time"),
    version = "categorical",
    k = 1:3,
    weights = data_drug[,6],
    modBasic = 1,
    seed = 123)

out
summary(out$out.single[[3]])

## Not run:
### Example with data on self rated health
# LM model with covariates in the measurement model
data("data_SRHS_long")
SRHS <- data_SRHS_long[1:1000,]

# Categories rescaled to vary from 1 ("poor") to 5 ("excellent")
SRHS$srhs <- 5 - SRHS$srhs

out1 <- lmestSearch(data = SRHS,
    index = c("id","t"),
    version = "categorical",
    responsesFormula = srhs ~ -1 +
        I(gender - 1) +
        I( 0 + (race == 2) + (race == 3)) +
        I(0 + (education == 4)) +
        I(0 + (education == 5)) + I(age - 50) +
        I((age-50)^2/100),
    k = 1:2,
    out_se = TRUE,
    seed = 123)

summary(out1)
summary(out1$out.single[[2]])

## End(Not run)
Description

An S3 class object created by \texttt{lmest} for Latent Markov (LM) model with covariates in the latent model.

Value

\begin{itemize}
  \item \texttt{lkm} \quad \text{maximum log-likelihood}
  \item \texttt{Be} \quad \text{estimated array of the parameters affecting the logit for the initial probabilities}
  \item \texttt{Ga} \quad \text{estimated array of the parameters affecting the logit for the transition probabilities}
  \item \texttt{Piv} \quad \text{estimate of initial probability matrix. The first state is used as reference category when param = "multilogit"}
  \item \texttt{PI} \quad \text{estimate of transition probability matrices. State u is used as reference category when paramLatent = "multilogit"}
  \item \texttt{Psi} \quad \text{estimate of conditional response probabilities (mb x k x r)}
  \item \texttt{np} \quad \text{number of free parameters}
  \item \texttt{k} \quad \text{optimal number of latent states}
  \item \texttt{aic} \quad \text{value of the Akaike Information Criterion for model selection}
  \item \texttt{bic} \quad \text{value of the Bayesian Information Criterion for model selection}
  \item \texttt{lkv} \quad \text{log-likelihood trace at every step of the EM algorithm}
  \item \texttt{n} \quad \text{number of observations in the data}
  \item \texttt{TT} \quad \text{number of time occasions}
  \item \texttt{paramLatent} \quad \text{type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters)}
  \item \texttt{sePsi} \quad \text{standard errors for the conditional response matrix}
  \item \texttt{seBe} \quad \text{standard errors for Be}
  \item \texttt{seGa} \quad \text{standard errors for Ga}
  \item \texttt{Lk} \quad \text{vector containing the values of the log-likelihood of the LM model with each k (latent states)}
  \item \texttt{Bic} \quad \text{vector containing the values of the BIC for each k}
  \item \texttt{Aic} \quad \text{vector containing the values of the AIC for each k}
  \item \texttt{V} \quad \text{array containing the posterior distribution of the latent states for each response configuration and time occasion}
  \item \texttt{Ul} \quad \text{matrix containing the predicted sequence of latent states by the local decoding method}
\end{itemize}
LMlatentcont-class

S array containing the available response configurations
yv vector of frequencies of the available configurations
Pmarg matrix containing the marginal distribution of the latent states
call command used to call the function
data Data frame given in input

Author(s)
Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

See Also
lmest

LMlatentcont-class Class 'LMlatentcont'

Description
An S3 class object created by lmestCont for the Latent Markov (LM) model for continuous responses in long format with covariates in the latent model.

Value
lk maximum log-likelihood
Be estimated array of the parameters affecting the logit for the initial probabilities
Ga estimated array of the parameters affecting the logit for the transition probabilities
Mu estimate of conditional means of the response variables
Si estimate of var-cov matrix common to all states
np number of free parameters
k optimal number of latent states
daic value of the Akaike Information Criterion for model selection
bic value of the Bayesian Information Criterion for model selection
lkv log-likelihood trace at every step
n number of observations in the data
TT number of time occasions
paramLatent type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters)
seMu standard errors for the conditional means
seSi standard errors for the var-cov matrix
**seBe** standard errors for Be  
**seGa** standard errors for Ga  
**sc** score vector  
**J** information matrix  
**PI** estimate of transition probability matrices  
**Piv** estimate of initial probability matrix  
**Lk** vector containing the values of the log-likelihood of the LM model with each k (latent states)  
**Bic** vector containing the values of the BIC of the LM model with each k (latent states)  
**Aic** vector containing the values of the AIC of the LM model with each k (latent states)  
**V** array containing the posterior distribution of the latent states for each units and time occasion  
**Ul** matrix containing the predicted sequence of latent states by the local decoding method  
**Pmarg** matrix containing the marginal distribution of the latent states  
**call** command used to call the function  
**data** data frame given in input

**Author(s)**
Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

**See Also**
lmestCont

---

**Description**
An S3 class object created by \texttt{lmest} for Latent Markov (LM) model with covariates in the measurement model.

**Value**

- **mu**: vector of cut-points  
- **al**: support points for the latent states  
- **be**: estimate of the vector of regression parameters  
- **si**: sigma of the AR(1) process (mod = "FM")
rho parameter vector for AR(1) process (mod = "FM")
la vector of initial probabilities
PI transition matrix
lk maximum log-likelihood
np number of parameters
k optimal number of latent states
aic value of the Akaike Information Criterion
bic value of Bayesian Information Criterion
n number of observations in the data
TT number of time occasions
modManifest for LM model with covariates on the manifest model: "LM" = Latent Markov with stationary transition, "FM" = finite mixture model where a mixture of AR(1) processes is estimated with common variance and specific correlation coefficients
sebe standard errors for the regression parameters be
selrho standard errors for logit type transformation of rho
J1 information matrix
V array containing the posterior distribution of the latent states for each units and time occasion
PRED1 prediction of the overall latent effect
S array containing the available response configurations
yv vector of frequencies of the available configurations
Pmarg matrix containing the marginal distribution of the latent states
Lk vector containing the values of the log-likelihood of the LM model with each k (latent states)
Bic vector containing the values of the BIC for each k
Aic vector containing the values of the AIC for each k
call command used to call the function
data data frame given in input

Author(s)
Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

See Also
lmest
**LMmanifestcont-class**

*Class ‘LMmanifestcont’*

**Description**

An S3 class object created by `lmestCont` for Latent Markov (LM) model for continuous responses in long format with covariates in the measurement model.

**Value**

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>support points for the latent states</td>
</tr>
<tr>
<td>Be</td>
<td>estimate of the vector of regression parameters</td>
</tr>
<tr>
<td>Si</td>
<td>estimate of var-cov matrix common to all states</td>
</tr>
<tr>
<td>piv</td>
<td>vector of initial probabilities</td>
</tr>
<tr>
<td>Pi</td>
<td>transition matrix</td>
</tr>
<tr>
<td>lk</td>
<td>maximum log-likelihood</td>
</tr>
<tr>
<td>np</td>
<td>number of parameters</td>
</tr>
<tr>
<td>k</td>
<td>optimal number of latent states</td>
</tr>
<tr>
<td>aic</td>
<td>value of the Akaike Information Criterion</td>
</tr>
<tr>
<td>bic</td>
<td>value of Bayesian Information Criterion</td>
</tr>
<tr>
<td>n</td>
<td>number of observations in the data</td>
</tr>
<tr>
<td>TT</td>
<td>number of time occasions</td>
</tr>
<tr>
<td>modBasic</td>
<td>model on the transition probabilities (0 for time-heter., 1 for time-homog., from 2 to (TT-1) partial homog. of that order)</td>
</tr>
<tr>
<td>lkv</td>
<td>log-likelihood trace at every step</td>
</tr>
<tr>
<td>seAl</td>
<td>standard errors for the support points Al</td>
</tr>
<tr>
<td>seBe</td>
<td>standard errors regression parameters Be</td>
</tr>
<tr>
<td>sepiv</td>
<td>standard errors for the initial probabilities</td>
</tr>
<tr>
<td>sePi</td>
<td>standard errors for the transition probabilities</td>
</tr>
<tr>
<td>seSi</td>
<td>standard errors for the var-cov matrix</td>
</tr>
<tr>
<td>Lk</td>
<td>vector containing the values of the log-likelihood of the LM model for each k (latent states)</td>
</tr>
<tr>
<td>Np</td>
<td>vector containing the number of parameters for each k (latent states)</td>
</tr>
<tr>
<td>Bic</td>
<td>vector containing the values of the BIC for each k</td>
</tr>
<tr>
<td>Aic</td>
<td>vector containing the values of the AIC for each k</td>
</tr>
<tr>
<td>J</td>
<td>information matrix</td>
</tr>
<tr>
<td>sc</td>
<td>score vector</td>
</tr>
<tr>
<td>V</td>
<td>array containing the posterior distribution of the latent states for each units and time occasion</td>
</tr>
</tbody>
</table>
matrix containing the predicted sequence of latent states by the local decoding method

matrix containing the marginal distribution of the latent states

command used to call the function
data frame given in input

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni

lmestCont

An S3 class object created by \texttt{lmestMixed} for the mixed latent Markov (LM) models for categorical data in long format.

Value

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>la</td>
<td>estimate of the mass probability vector (distribution of the random effects)</td>
</tr>
<tr>
<td>piv</td>
<td>estimate of initial probabilities</td>
</tr>
<tr>
<td>pi</td>
<td>estimate of transition probability matrices</td>
</tr>
<tr>
<td>psi</td>
<td>estimate of conditional response probabilities</td>
</tr>
<tr>
<td>lk</td>
<td>maximum log-likelihood</td>
</tr>
<tr>
<td>w</td>
<td>posterior probabilities of the random effect</td>
</tr>
<tr>
<td>np</td>
<td>number of free parameters</td>
</tr>
<tr>
<td>k1</td>
<td>number of support points (latent classes) of the latent variable defining the unobserved clusters</td>
</tr>
<tr>
<td>k2</td>
<td>number of support points (latent states) of the latent variable defining the first-order Markov process</td>
</tr>
<tr>
<td>bic</td>
<td>value of the Akaike Information Criterion for model selection</td>
</tr>
<tr>
<td>aic</td>
<td>value of the Akaike Information Criterion for model selection</td>
</tr>
<tr>
<td>n</td>
<td>number of observations in the data</td>
</tr>
<tr>
<td>tt</td>
<td>number of time occasions</td>
</tr>
<tr>
<td>sela</td>
<td>standard errors for la</td>
</tr>
<tr>
<td>sePiv</td>
<td>estimate of initial probability matrix</td>
</tr>
<tr>
<td>sePi</td>
<td>standard errors for the transition probabilities</td>
</tr>
<tr>
<td>sePsi</td>
<td>standard errors for the conditional response matrix</td>
</tr>
<tr>
<td>call</td>
<td>command used to call the function</td>
</tr>
<tr>
<td>data</td>
<td>the input data</td>
</tr>
</tbody>
</table>
long2matrices

From data in the long format to data in array format

Description

Function that transforms data in the long format to data in array format.

Usage

long2matrices(id, time = NULL, X = NULL, Y)

Arguments

id vector of subjects id
time vector of time occasions
X matrix of covariates in long format
Y matrix of responses in long format

Value

XX array of covariates (n x TT x nc)
YY array of responses (n x TT x r)

Author(s)

Francesco Bartolucci, Silvia Pandolfi, University of Perugia (IT), http://www.stat.unipg.it/bartolucci

Examples

# Example based on SRHS data

# load SRHS data
data(data_SRHS_long)
dataSRHS <- data_SRHS_long[1:1600,]
head(dataSRHS)
X <- cbind(dataSRHS$gender-1, dataSRHS$race == 2 | dataSRHS$race == 3, dataSRHS$education == 4, dataSRHS$education == 5, (dataSRHS$age-50)^2/100)
Y <- dataSRHS$srhs
res <- long2matrices(dataSRHS$id, X = X, Y = Y)
long2wide  

From data in the long format to data in the wide format

Description

Function that transforms data in the long format to data in the wide format.

Usage

long2wide(data, nameid, namet, colx, coly, aggr = T, full = 999)

Arguments

data  matrix of data
nameid name of the id column
namet name of the t column
colx  vector of the names of the columns of the covariates
coly  vector of the names of the columns of the responses
aggr  if wide aggregated format is required
full  number to use for missing data

Value

listid  list of id for every unit
listt  list of the time occasions
data_wide  data in wide format
XX  array of the covariates
YY  array of the responses
freq  vector of the corresponding frequencies

Author(s)

Francesco Bartolucci, Silvia Pandolfi, University of Perugia (IT), http://www.stat.unipg.it/bartolucci

Examples

# Example based on criminal data
# load criminal data
data(data_criminal_sim)
# consider only the first 1000 records to shorten time
out <- long2wide(data_criminal_sim[1:1000,,], "id", "time", "sex",
c("y1", "y2", "y3", "y4", "y5", "y6", "y7", "y8", "y9", "y10"), aggr = TRUE, full = 999)
matrices2long

From data in array format to data in long format

Description

Function to convert data with array format in data with long format.

Usage

matrices2long(Y, X1 = NULL, X2 = NULL)

Arguments

Y array of responses (n x TT x r)
X1 array of covariates (n x TT x nc1)
X2 array of covariates (n x TT x nc2)

Details

Y, X1 and X2 must have the same number of observations.

Value

Returns a data.frame with data in long format. The first column indicates the name of the unit identifier, and the second column indicates the time occasions.

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

Examples

### Example with data on self rated health

data(data_SRHS_long)
SRHS <- data_SRHS_long[1:1600,]

# Covariates
X <- cbind(SRHS$gender-1, 
    SRHS$race == 2 | SRHS$race == 3, 
    SRHS$education == 4, 
    SRHS$education == 5, 
    SRHS$age-50, 
    (SRHS$age-50)^2/100)

# Responses
Y <- SRHS$srhs

res <- long2matrices(SRHS$id, X = X, Y = Y)

long <- matrices2long(Y = res$YY, X1 = res$XX)

---

**MCbasic-class**  
*Class 'MCbasic'*

**Description**

An S3 class object created by `lmestMc` function for the Markov chain (MC) model without covariates.

**Value**

- `lk`: maximum log-likelihood  
- `piv`: estimate of initial probability vector  
- `Pi`: estimate of transition probability matrices  
- `np`: number of free parameters  
- `aic`: value of the Akaike Information Criterion for model selection  
- `bic`: value of the Bayesian Information Criterion for model selection  
- `Fy`: estimated marginal distribution of the response variable at each time occasion  
- `n`: number of observations in the data  
- `TT`: number of time occasions  
- `modBasic`: model on the transition probabilities: default 0 for time-heterogeneous transition matrices, 1 for time-homogeneous transition matrices, 2 for partial time homogeneity based on two transition matrices one from 2 to (TT-1) and the other for TT  
- `sepiv`: standard errors for the initial probabilities  
- `sePi`: standard errors for the transition probabilities  
- `call`: command used to call the function  
- `data`: data frame given in input

**Author(s)**

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

**See Also**

`lmestMc`
Description

An S3 class object created by \texttt{lmestMc} function for Markov chain (MC) model for categorical responses in long format with covariates.

Value

- \texttt{lk}  
  maximum log-likelihood

- \texttt{Be}  
  estimated array of the parameters affecting the logit for the initial probabilities

- \texttt{Ga}  
  estimated array of the parameters affecting the logit for the transition probabilities

- \texttt{np}  
  number of free parameters

- \texttt{aic}  
  value of the Akaike Information Criterion (AIC) for model selection

- \texttt{bic}  
  value of the Bayesian Information Criterion (BIC) for model selection

- \texttt{n}  
  number of observations in the data

- \texttt{TT}  
  number of time occasions

- \texttt{seBe}  
  standard errors for \texttt{Be}

- \texttt{seGa}  
  standard errors for \texttt{Ga}

- \texttt{Piv}  
  estimate of initial probability matrix

- \texttt{PI}  
  estimate of transition probability matrices

- \texttt{call}  
  command used to call the function

- \texttt{data}  
  data frame given in input

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

See Also

\texttt{lmestMc}
NLSYlong

Description

Longitudinal dataset in long format deriving from the National Longitudinal Survey of Youth with information about 581 individuals followed from 1990 to 1994.

Usage

data(NLSYlong)

Format

A data frame with 1743 observations on the following 12 variables.

- `momage` mother's age at birth.
- `gender` 0 if male, 1 if female.
- `childage` child's age at first interview.
- `hispanic` 1 if child is Hispanic, 0 if not.
- `black` 1 if child is black, 0 if not.
- `momwork` 1 if mother works, 0 if not.
- `married` 1 if parents are married, 0 if not.
- `time` occasion of observation.
- `anti` a measure of antisocial behavior measured on a scale from 0 to 6.
- `self` a measure of self-esteem measured on a scale from 6 to 24.
- `pov` a time varying variable assuming value 1 if family is in poverty, 0 if not.
- `id` subject id.

Source

https://www.nlsinfo.org/content/cohorts/nlsy79

References

The wide format of this dataset is downloadable from the package ‘panelr’.

Examples

data(NLSYlong)
Description

Plots for outputs of LMest objects: LMbasic, LMbasiccont, LMlatent, LMlatentcont, and LMsearch

Usage

```r
S3 method for class 'LMbasic'
plot(x,
 what = c("modSel", "CondProb", "transitions","marginal"),
 verbose=interactive(),...)
S3 method for class 'LMlatent'
plot(x,
 what = c("modSel", "CondProb", "transitions","marginal"),
 verbose=interactive(),...)
S3 method for class 'LMbasiccont'
plot(x,
 what = c("modSel", "density", "transitions","marginal"),
 components,verbose=interactive(),...)
S3 method for class 'LMlatentcont'
plot(x,
 what = c("modSel", "density", "transitions","marginal"),
 components, verbose=interactive(),...)
S3 method for class 'LMsearch'
plot(x,...)
```

Arguments

- `x`: an object of class LMbasic, LMlatent, LMbasiccont, LMlatentcont or LMsearch
- `what`: a string indicating the type of plot. A detailed description is provided in the ‘Details’ section.
- `components`: An integer or a vector of integers specifying the components (latent states) to be selected for the "density" plot.
- `verbose`: A logical controlling if a text progress bar is displayed during the fitting procedure. By default is TRUE if the session is interactive, and FALSE otherwise.
- `...`: Unused argument.

Details

The type of plots are the following:

- "modSel": plot of values of the Bayesian Information Criterion and of the Akaike Information Criterion for model selection
"CondProb" plot of the estimated conditional response probabilities
"density" plot of the overall estimated density for continuous responses, with weights given by the estimated marginal distribution of the latent variable. For multivariate continuous responses a contour plot is provided. If the argument components is specified, the density plot for the selected components results
"transitions" path diagram of the estimated transition probabilities
"marginal" plot of the estimated marginal distribution of the latent variable

If argument what is not specified, a menu of choices is proposed in an interactive session.

Author(s)
Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

Examples

```r
Not run:
Plot of basic LM model

data("data_SRHS_long")
SRHS <- data_SRHS_long[1:2400,]
Categories rescaled to vary from 0 ("poor") to 4 ("excellent")
SRHS$srhs <- 5 - SRHS$srhs

out <- lmest(responsesFormula = srhs ~ NULL,
 index = c("id", "t"),
 data = SRHS,
 k = 1:3,
 start = 1,
 modBasic = 1,
 seed = 123)
out
summary(out)
plot(out)

Plot of basic LM model for continuous responses

data(data_long_cont)

out1 <- lmestCont(responsesFormula = Y1 + Y2 + Y3 ~ NULL,
 index = c("id", "time"),
 data = data_long_cont,
 k = 1:5,
 modBasic=1,
 tol=10^-5)

plot(out1,what="modSel")
```
print

plot(out1,what="density")
plot(out1,what="density",components=c(1,3))

## End(Not run)

print

Print the output

Description

Given the output, it is written in a readable form

Usage

## S3 method for class 'LMbasic'
print(x, ...)
## S3 method for class 'LMbasiccont'
print(x, ...)
## S3 method for class 'LMlatent'
print(x, ...)
## S3 method for class 'LMlatentcont'
print(x, ...)
## S3 method for class 'LMmanifest'
print(x, ...)
## S3 method for class 'LMmixed'
print(x, ...)
## S3 method for class 'MCbasic'
print(x, ...)
## S3 method for class 'MCcov'
print(x, ...)
## S3 method for class 'LMsearch'
print(x, modSel = "BIC",...)

Arguments

x output from lmest,lmestCont,lmestMixed, and lmestMc
modSel a string indicating the model selection criteria: "BIC" (default) for Bayesian Information Criterion and "AIC" for Akaike Information Criterion Criterion
...

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini
PSIDlong  

**Description**
Longitudinal dataset deriving from the Panel Study of Income Dynamics (PSID) from 1987 to 1993.

**Usage**

data(PSIDlong)

**Format**
A data frame with 1446 observations on the following variables.

- **id**  subject id.
- **time** occasion of observation.
- **Y1Fertility** indicating whether a woman had given birth to a child in a certain year 1 for "yes", 0 for "no".
- **Y2Employment** indicating whether she was employed 1 for "yes", 0 for "no".
- **X1Race** dummy variable equal to 1 for a "black" woman, 0 for "other".
- **X2Age** age in 1986, rescaled by its maximum value.
- **X3Age2** squared age.
- **X4Education** number of years of schooling.
- **X5Child1_2** number of children in the family aged between 1 and 2 years, referred to the previous year.
- **X6Child3_5** number of children in the family aged between 3 and 5 years, referred to the previous year.
- **X7Child6_13** number of children in the family aged between 6 and 13 years, referred to the previous year.
- **X8Child14** number of children in the family aged over 14 years, referred to the previous year.
- **X9Income** income of the husband (in dollars, referred to the previous year, divided by 1,000).

**Source**
https://psidonline.isr.umich.edu

**References**
This dataset is downloadable through the package ‘psidR’.

**Examples**
data(PSIDlong)
Dataset about job satisfaction

Description

Longitudinal dataset deriving from the Russia Longitudinal Monitoring Survey (RLMS) about job satisfaction measured by an ordinal variable at seven different occasions with five categories, 1 for “absolutely satisfied”, 2 for “mostly satisfied”, 3 for “neutral”, 4 for “not very satisfied”, and 5 for “absolutely unsatisfied”.

Usage

data(RLMSdat)

Format

A data frame with 1718 observations on the following 7 variables.

IKSJQ reported job satisfaction at the 1st occasion
IKSJR reported job satisfaction at the 2nd occasion
IKSJS reported job satisfaction at the 3rd occasion
IKSJT reported job satisfaction at the 4th occasion
IKSJU reported job satisfaction at the 5th occasion
IKSJV reported job satisfaction at the 6th occasion
IKSJW reported job satisfaction at the 7th occasion

Source


References

Russia Longitudinal Monitoring survey, RLMS-HSE, conducted by Higher School of Economics and ZAO "Demoscope" together with Carolina Population Center, University of North Carolina at Chapel Hill and the Institute of Sociology RAS

Examples

data(RLMSdat)
RLMSlong

Description

Longitudinal dataset in long format deriving from the Russia Longitudinal Monitoring Survey (RLMS, from Round XVII to Round XXIII, collected from 2008 to 2014) about job satisfaction measured by an ordinal variable at seven different occasions with five categories, 1 for “absolutely satisfied”, 2 for “mostly satisfied”, 3 for “neutral”, 4 for “not very satisfied”, and 5 for “absolutely unsatisfied”.

Usage

data(RLMSlong)

Format

A data frame with 1718 observations on the following 7 variables.

- **time**: occasion of observation.
- **id**: subject id.
- **rlms**: see RLMSdat.
- **value**: reported job satisfaction at different time occasions coded as 1 for “absolutely satisfied”, 2 for “mostly satisfied”, 3 for “neutral”, 4 for “not very satisfied”, 5 for “absolutely unsatisfied”.

Source


References

Russia Longitudinal Monitoring survey, RLMS-HSE, conducted by Higher School of Economics and ZAO "Demoscope" together with Carolina Population Center, University of North Carolina at Chapel Hill and the Institute of Sociology RAS

Examples

data(RLMSlong)
Standard errors

Description

Function to compute standard errors for the parameter estimates.

Usage

se(est, ...)  
## S3 method for class 'LMbasic'
se(est, ...)  
## S3 method for class 'LMbasiccont'
se(est, ...)  
## S3 method for class 'LMlatent'
se(est, ...)  
## S3 method for class 'LMlatentcont'
se(est, ...)

Arguments

est an object obtained from a call to \texttt{lmest} and \texttt{lmestCont}

... further arguments

Value

Standard errors for estimates in est object.

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

Examples

## Not run:

# LM model for categorical responses without covariates
data("data_SRHS_long")
SRHS <- data_SRHS_long[1:2400,]

# Categories rescaled to vary from 0 ("poor") to 4 ("excellent")
SRHS$srhs <- 5 - SRHS$srhs

out <- lmest(responsesFormula = srhs ~ NULL,
             index = c("id","t"),
             data = SRHS,
             k = 3,
modBasic = 1,
out_se = FALSE)

out1 <- lmest(responsesFormula = srhs ~ NULL,
index = c("id", "t"),
data = SRHS,
k = 3,
modBasic = 1,
out_se = TRUE)

out1.se <- se(out1)

# LM model for categorical responses with covariates on the latent model

out2 <- lmest(responsesFormula = srhs ~ NULL,
latentFormula = ~
I(gender - 1) +
I(0 + (race == 2) + (race == 3)) +
I(0 + (education == 4)) +
I(0 + (education == 5)) +
I(age - 50) + I((age-50)^2/100),
index = c("id", "t"),
data = SRHS,
k = 2,
paramLatent = "multilogit",
start = 0)

out2.se <- se(out2)

# LM model for continous responses without covariates

data(data_long_cont)

out3 <- lmestCont(responsesFormula = Y1 + Y2 + Y3 ~ NULL,
index = c("id", "time"),
data = data_long_cont,
k = 3,
modBasic = 1,
tol = 10^-5)

out3.se <- se(out3)

# LM model for continous responses with covariates

out4 <- lmestCont(responsesFormula = Y1 + Y2 + Y3 ~ NULL,
latentFormula = ~ X1 + X2 | X1 + X2,
index = c("id", "time"),
data = data_long_cont,
k = 3,
output = TRUE)
out4.se <- se(out4)

## End(Not run)

search.model.LM

Search for the global maximum of the log-likelihood

**Description**

Function that searches for the global maximum of the log-likelihood of different models given a vector of possible number of states to try for.

The function is no longer maintained. Please look at lmestSearch function.

**Usage**

```r
search.model.LM(version = c("basic","latent","manifest","basic.cont", "latent.cont"),
 kv, ..., nrep = 2, tol1 = 10^-5, tol2 = 10^-10, out_se = FALSE)
```

**Arguments**

- **version**: model to be estimated ("basic" = basic LM model (est_lm_basic function); "latent" = LM model with covariates in the distribution of the latent process (est_lm_cov_latent function); "manifest" = LM model with covariates in the measurement model (est_lm_cov_manifest function); "basic.cont" = basic LM model for continuous outcomes (est_lm_basic_cont function); "latent.cont" = LM model for continuous outcomes with covariates in the distribution of the latent process (est_lm_cov_latent_cont function))
- **kv**: vector of possible number of latent states
- **...**: additional arguments to be passed based on the model to be estimated (see details)
- **nrep**: number of repetitions of each random initialization
- **tol1**: tolerance level for checking convergence of the algorithm in the random initializations
- **tol2**: tolerance level for checking convergence of the algorithm in the last deterministic initialization
- **out_se**: TRUE for computing information matrix and standard errors

**Details**

The function combines deterministic and random initializations strategy to reach the global maximum of the model log-likelihood. It uses one deterministic initialization (start=0) and a number of random initializations (start=1) proportional to the number of latent states. The tolerance level is set equal to $10^{-5}$. Starting from the best solution obtained in this way, a final run is performed (start=2) with a default tolerance level equal to $10^{-10}$.

Arguments in ... depend on the model to be estimated. They match the arguments to be passed to functions est_lm_basic, est_lm_cov_latent, est_lm_cov_manifest, est_lm_basic_cont, or est_lm_cov_latent_cont.
Value

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>out.single</td>
<td>output of each single model (as from est_lm_basic, est_lm_cov_latent or est_lm_cov_manifest) for each k in kv</td>
</tr>
<tr>
<td>aicv</td>
<td>value of AIC index for each k in kv</td>
</tr>
<tr>
<td>bicv</td>
<td>value of BIC index for each k in kv</td>
</tr>
<tr>
<td>lkv</td>
<td>value of log-likelihood for each k in kv</td>
</tr>
</tbody>
</table>

Author(s)

Francesco Bartolucci, Silvia Pandolfi, University of Perugia (IT), http://www.stat.unipg.it/bartolucci

Examples

```r
Not run:
example for est_lm_basic
data(data_drug)
data_drug <- as.matrix(data_drug)
S <- data_drug[,1:5]-1
yv <- data_drug[,6]
n <- sum(yv)
Search Basic LM model
res <- search.model.LM("basic", kv = 1:4, S, yv, mod = 1)
summary(res)

End(Not run)
```

summary

Summary of LM fits

Description

Summary methods

Usage

```r
S3 method for class 'LMbasic'
summary(object, ...)
S3 method for class 'LMbasiccont'
summary(object, ...)
S3 method for class 'LMlatent'
summary(object, ...)
S3 method for class 'LMlatentcont'
summary(object, ...)
S3 method for class 'LMmanifest'
summary(object, ...)
```
Arguments

object output from \texttt{ldest,ldestCont,ldestMixed}, and \texttt{ldestMc}

... further arguments passed to or from other methods

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini
type

type of summary to print. all prints a summary for each variable, and a summary for each variables by time. cross prints a summary for each variable. year prints a summary for each variable by time. The summary is adapted according to varType (By default is set to all)

dataSummary

a string indicating whether summary is returned: all for the entire data, responses for the responses, manifest for covariates on the manifest distribution, initial for the covariate affecting the initial probabilities, and transition for the covariates affecting the transition probabilities. (By default is set to all)

varType

da string vector of length equal to the number of variables, "c" for continuous and "d" for discrete, indicating which variables are continuous and which are discrete

digits

the number of significant digits

maxsum

an integer value indicating the maximum number of levels to print

maxobs

an integer value indicating the maximum number of observation in which the summary statistics are reported for each observation

typePlot

a string indicating the type of plot. "s" plots a scatterplot matrix. "sh" plots a scatterplot matrix with the histogram for each variable in the diagonal

dataPlots

a string indicating whether the plot is returned: all for the entire data, responses for the responses, manifest for covariates on the manifest distribution, initial for the covariate affecting the initial probabilities, transition for the covariates affecting the transition probabilities. (By default is set to all)

... further arguments

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini
Index

* datasets
  - data_criminal_sim, 12
  - data_drug, 13
  - data_long_cont, 14
  - data_SRHS_long, 15
  - NLSYlong, 86
  - PSIDlong, 90
  - RLMSdat, 91
  - RLMSlong, 92

bootstrap, 5, 7–9, 11
bootstrap_lm_basic, 7
bootstrap_lm_basic_cont, 8
bootstrap_lm_cov_latent, 9
bootstrap_lm_cov_latent_cont, 11

data_criminal_sim, 12
data_drug, 13
data_long_cont, 14
data_SRHS_long, 15
decoding, 16
draw_lm_basic, 26
draw_lm_basic_cont, 27
draw_lm_cov_latent, 28
draw_lm_cov_latent_cont, 29
draw_lmmixed, 31
drawLMbasic, 18, 26
drawLMBasiccont, 19, 27
drawMLatent, 21, 28
drawMLatentcont, 23, 30
drawLMmixed, 24, 31

est_lm_basic, 32
est_lm_basic_cont, 34
est_lm_cov_latent, 36
est_lm_cov_latent_cont, 38
est_lm_cov_manifest, 40
est_lmmixed, 43
est_mc_basic, 44
est_mc_cov, 46

LMbasic-class, 47
LMbasiccont-class, 49
LMest (LMest-package), 3
LMest, 3–5, 21, 22, 32, 36, 40, 47, 48, 50, 57, 60, 62, 64, 65, 72, 73, 75–78, 89, 93, 97
LMest-package, 3
LMestCont, 3–5, 21, 22, 32, 36, 40, 47, 48, 50, 52, 55, 60, 62, 64, 65, 73, 76, 77, 79, 80, 89, 93, 97
LMestSearch, 4, 72, 95
LMlatent-class, 75
LMlatentcont-class, 76
LMmanifest-class, 77
LMmanifestcont-class, 79
LMmixed-class, 80
long2matrices, 81
long2wide, 82
matrices2long, 83
MCbasic-class, 84
MCcov-class, 85
NLSYlong, 86
plot, 87
plot.lmestData (summary.lmestData), 97
print, 4, 89
print.lmestData (summary.lmestData), 97
PSIDlong, 90
RLMSdat, 91, 92
RLMSlong, 92
se, 4, 93
search.model.LM, 95
summary, 4, 96
summary.lmeData, 97