Package ‘LOCUS’

October 12, 2022

Type Package

Title Low-Rank Decomposition of Brain Connectivity Matrices with Uniform Sparsity

Version 1.0

Date 2022-08-28

Maintainer Jialu Ran <jialuran422@gmail.com>

Depends R (>= 3.1.0), ica, MASS, far

Description To decompose symmetric matrices such as brain connectivity matrices so that one can extract sparse latent component matrices and also estimate mixing coefficients, a blind source separation (BSS) method named LOCUS was proposed in Wang and Guo (2023) <arXiv:2008.08915>. For brain connectivity matrices, the outputs correspond to sparse latent connectivity traits and individual-level trait loadings.

License GPL-2

NeedsCompilation no

Author Yikai Wang [aut, cph],
Jialu Ran [aut, cre],
Ying Guo [aut, ths]

Repository CRAN

Date/Publication 2022-10-04 07:20:05 UTC

R topics documented:

LOCUS ... 2
LOCUS_BIC_selection ... 4
Ltrans ... 5
Ltrinv ... 6

Index 7
Description

This is the main function in the package. It conducts the LOCUS approach for decomposing brain connectivity data into subnetworks.

Usage

LOCUS(Y, q, V, MaxIteration=100, penalty="SCAD", phi = 0.9, approximation=TRUE, preprocess=TRUE, espli1=0.001, espli2=0.001, rho=0.95, silent=FALSE)

Arguments

Y Group-level connectivity data from N subjects, which is of dimension N x p, where p is number of edges. Each row of Y represents a subject’s vectorized connectivity matrix by Ltrans function.
q Number of ICs/subnetworks to extract.
V Number of nodes in the network. Note: p should be equal to V(V-1)/2.
MaxIteration Maximum number of iterations.
penalty The penalization approach for uniform sparsity, which can be NULL, SCAD, and L1.
phi ϕ: tuning parameter for uniform sparse penalty.
approximation Whether to use an approximated algorithm to speed up the algorithm.
preprocess Whether to preprocess the data, which reduces the data dimension to q and whiten the data.
espli1 Toleration for convergence on mixing coefficient matrix, i.e. A.
espli2 Toleration for convergence on latent sources, i.e. S.
rho ρ: tuning parameter for selecting number of ranks in each subnetwork’s decomposition.
silent Whether to print intermediate steps.

Details

This is the main function for LOCUS decomposition of brain connectivity matrices, which is to minimize the following objective function:

$$
\sum_{i=1}^{N} \|y_i\| - \sum_{t=1}^{q} a_{it}s_t\|_2^2 + \phi \sum_{t=1}^{q} \|s_t\|_*,
$$

where y_i is the transpose of ith row in Y, $s_t = L(X_tD_tX_t')$ represents the lth vectorized latent source/subnetwork with low-rank decomposition, L is Ltrans function, $\|\cdot\|_*$ represents the penalty which can either be NULL, L1, or SCAD (Fan & Li, 2001).
If user want to do BIC parameter selection of ϕ, ρ before calling LOCUS main function, one can use LOCUS_BIC_selection to find the best parameter set. Further details can be found in the LOCUS paper.

Value

An R list from Locus containing the following terms:

- **Conver**: Whether the algorithm is converaged.
- **A**: Mixing matrix $\{a_{il}\}$ of dimension N by q.
- **S**: Subnetworks of dimension q by p, where each row represents a vectorized sub-network based on Ltrans function.
- **theta**: A list of length q, where $\theta[[i]]$ contains the symmetric low-rank decomposition of ith subnetwork.

References

Examples

```r
## Simulated the data to use.
V = 50
S1 = S2 = S3 = matrix(0, ncol = V, nrow = V)
S2[15:20,] = -3; S2[,15:20] = -3
S3[15:25,36:45] = 3; S3[36:45,15:25] = 3
Struth = rbind(Ltrans(S1,FALSE), Ltrans(S2,FALSE), Ltrans(S3,FALSE))
set.seed(100)
Atruth = matrix(rnorm(100*3),nrow=100,ncol=3)
Residual = matrix(rnorm(100*dim(Struth)[2]),nrow=100)
Yraw = Atruth%*%Struth + Residual

##### Run Locus on the data #####
Locus_result = LOCUS(Yraw,3,V)
oldpar = par(mfrow=c(2,3))
for(i in 1:dim(Struth)[1]){image(Ltrinv(Struth[i,],V,FALSE))}
for(i in 1:dim(Locus_result$S)[1]){image(Ltrinv(Locus_result$S[i,],V,FALSE))}
par(oldpar)
```
Description

This function is to conduct the BIC-based hyper-parameters selection for LOCUS.

Usage

LOCUS_BIC_selection(Y, q, V, MaxIteration=50, penalty="SCAD", phi_grid_search=seq(0.2, 1, 0.2), rho_grid_search=c(0.95), espli1=0.001, espli2=0.001, save_LOCUS_output=TRUE, preprocess=TRUE)

Arguments

Y Group-level connectivity data from N subjects, which is of dimension N x p, where p is number of edges. Each row of Y represents a subject’s vectorized connectivity matrix by Ltrans function.
q Number of ICs/subnetworks to extract.
V Number of nodes in the network. Note: p should be equal to V(V-1)/2.
MaxIteration Maximum number of iterations.
penalty The penalization approach for uniform sparsity, which can be NULL, SCAD, L1, Hardthreshold.
phi_grid_search Grid search candidates for tuning parameter of uniform sparse penalty.
espli1 Toleration for convergence on mixing coefficient matrix, i.e. A.
espli2 Toleration for convergence on latent sources, i.e. S.
rho_grid_search Grid search candidates for tuning parameter for selecting number of ranks in each subnetwork’s decomposition.
save_LOCUS_output Whether to save LOCUS output from each grid search.
preprocess Whether to preprocess the data, which reduces the data dimension to q and whiten the data.

Details

In Wang, Y. and Guo, Y. (2023), the tuning parameters for learning the LOCUS model include \(\phi, \rho \). The BIC-type criterion is proposed to select those parameters.

\[
BIC = -2 \sum_{i=1}^{N} \log \{g(y_i; \sum_{l=1}^{q} \hat{a}_{i\hat{s}_l} \hat{s}_l^2 I_p)\} + \log(N) \sum_{l=1}^{q} \| \hat{s}_l \|_0
\]

where \(g \) denotes the pdf of a multivariate Gaussian distribution, \(\hat{\sigma}^2 = \frac{1}{Np} \sum_i \| y_i - \sum_{l=1}^{q} \hat{a}_{i\hat{s}_l} \hat{s}_l \|_2^2 \), \(\| \cdot \|_0 \) denotes the \(L_0 \) norm . This criterion balances between model fitting and model sparsity.
Ltrans

Map a symmetric matrix into its upper triangle part.

Description

This function is to map the upper triangle part of a symmetric matrix into a vector.

Usage

Ltrans(X, d = TRUE)

Arguments

X

A symmetric matrix of dimensional V by V.

d

Whether to include the diagonal part of X.
Value
A vector containing the upper triangular part of X.

<table>
<thead>
<tr>
<th>Ltrinv</th>
<th>Inverse function of Ltrans to map back a vector into a symmetric matrix.</th>
</tr>
</thead>
</table>

Description
This function is the inverse function of Ltrans, which is to map a vector back to a symmetric matrix.

Usage
Ltrinv(x, V, d = TRUE)

Arguments
- x: A vector to convert to a matrix, which is of length p.
- V: Dimension of the matrix which x is converted to.
- d: Whether diagonal is kept in x or not.

Value
A symmetric matrix whose upper triangle part is x.
Index

LOCUS, 2
LOCUS_BIC_selection, 4
Ltrans, 5
Ltrinv, 6