Package ‘LUCIDus’

December 21, 2018

Type Package
Title Latent Unknown Clustering with Integrated Data
Version 0.9.0
Author Cheng Peng, Zhao Yang, David V. Conti
Maintainer Cheng Peng <chengpen@usc.edu>
Description An implementation for the ‘LUCID’ method to jointly estimate latent unknown clusters/subgroups with integrated data. An EM algorithm is used to obtain the latent cluster assignment and model parameter estimates. Feature selection is achieved by applying the regularization method.
Depends R (>= 3.1.0)
Imports mvtnorm, nnet, glmnet, glasso, Matrix, lbfgs, stats, methods, networkD3, foreach, doParallel
Suggests testthat, knitr, rmarkdown
License GPL-2
URL https://github.com/USCbiostats/LUCIDus
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2018-12-21 15:20:13 UTC

R topics documented:

CoG ... 2
CoY ... 2
def_initial ... 3
def_tol .. 4
def_tune ... 5
Covariate Set in the G→X path

Description
A simulated dataset containing one of the optional components to run `est_lucid`, `plot_lucid`, and `tune_lucid`. The variables are as follows:

Usage
CoG

Format
A set with 2000 rows and 5 variables:
- GC1 - GC3 Three continuous covariates
- GC4, GC5 Two binary covariates

Covariate Set in the X→Y path

Description
A simulated dataset containing one of the optional components to run `est_lucid`, `plot_lucid`, and `tune_lucid`. The variables are as follows:

Usage
CoY
Format

A set with 2000 rows and 5 variables:

YC1 - YC3 Three continuous covariates
YC4, YC5 Two binary covariates

Description

Defines initial values of model parameters in `est_lucid`, `sem_lucid`, & `tune_lucid` fitting.

Usage

```r
def_initial(init_b = NULL, init_m = NULL, init_s = NULL,
            init_g = NULL, init_pcluster = NULL)
```

Arguments

- `init_b`: Initial model parameters of β, genetic effects parameter: $K*(\text{ncol(G)}+1)$ dimensional matrix, each row refers to a latent cluster and the first column is the intercept.
- `init_m`: Initial model parameters of μ, biomarker mean effects parameters: $K*\text{ncol(Z)}$ dimensional matrix, each row refers to a latent cluster.
- `init_s`: Initial model parameters of Σ, biomarker covariance matrix: a list of $K \times \text{ncol(Z)} \times \text{ncol(Z)}$ matrices.
- `init_g`: Initial model parameters of γ, outcome effects parameter: a vector with a length of K for binary Y or $2K$ for continuous Y. For binary Y, they are log odds in K clusters; for continuous Y, they are K cluster-specific means followed by standard deviations in K clusters.
- `init_pcluster`: Initial probabilities of latent clusters.

Value

A list of initial model parameters will be returned for integrative clustering.

Author(s)

Cheng Peng, Zhao Yang, David V. Conti
def_tol

Define maximum number of iteration and convergence

Description

Defines tolerance settings in est_lucid, sem_lucid, & tune_lucid fitting.

Usage

```r
def_tol(MAX_ITR = 100, MAX_TOT_ITR = 10000, reltol = 1e-8,
        tol_b = 1e-04, tol_m = 1e-04, tol_s = 1e-04, tol_g = 1e-04,
        tol_p = 1e-04, tol_sem = 0.001)
```

Arguments

- `MAX_ITR` Maximum number of iterations, integer, default is 100
- `MAX_TOT_ITR` Maximum number of total iterations, integer, default is 10000
- `reltol` Convergence cut-off using a relative tolerance, default is 1e-8
- `tol_b` Convergence criteria of β, genetic effects parameter, default is 1e-4
- `tol_m` Convergence criteria of μ, biomarker mean effects parameters, default is 1e-4
- `tol_s` Convergence criteria of Σ, biomarker covariance matrix, default is 1e-4
- `tol_g` Convergence criteria of γ, outcome effects parameter, default is 1e-4
- `tol_p` Convergence criteria of the probability of latent clusters, default is 1e-4
- `tol_sem` Convergence criteria of SEM, default is 1e-3

Value

A list of tolerance settings will be returned for integrative clustering.

Author(s)

Cheng Peng, Zhao Yang, David V. Conti
def_tune

Define tuning parameters for regularization during integrative clustering

Description

Defines selection options and tuning parameters in `est_lucid, sem_lucid` fitting.

Usage

```r
def_tune(Rho_G = -9, Rho_Z_InvCov = 0, Rho_Z_CovMu = 0,
          Select_G = FALSE, Select_Z = FALSE)
```

Arguments

- **Rho_G**
 Penalty for selection on genetic data, numeric, default is -9 using a sequence of penalties
- **Rho_Z_InvCov**
 Penalty for the inverse of covariance of biomarkers, numeric, default is 0
- **Rho_Z_CovMu**
 Penalty for the product of covariance and mean of biomarkers, numeric, default is 0
- **Select_G**
 Flag to do model selection on genetic data, default is FALSE
- **Select_Z**
 Flag to do model selection on biomarker data, default is FALSE

Value

A list of tuning parameters and settings will be returned for integrative clustering.

Author(s)

Cheng Peng, Zhao Yang, David V. Conti

est_lucid

Estimating latent clusters with multi-omics data

Description

`est_lucid` estimates an integrated cluster assignment of genetic effects using complete biomarker data with/without disease outcomes. Options to produce sparse solutions for cluster-specific parameter estimates under a circumstance of analyzing high-dimensional data are also provided. An IntClust object will be produced.

Usage

```r
est_lucid(G = NULL, CoG = NULL, Z = NULL, Y, CoY = NULL,
          useY = TRUE, family = "binary", K = 2, Pred = FALSE,
          initial = def_initial(), itr_tol = def_tol(), tunepar = def_tune())
```
est_lucid

Arguments

G Genetic effects, a matrix
CoG Covariates to be included in the G->X path
Z Biomarker data, a matrix
Y Disease outcome, a vector
CoY Covariates to be included in the X->Y path
useY Using Y or not, default is TRUE
family "binary" or "normal" for Y
K Pre-specified # of latent clusters, default is 2
Pred Flag to compute posterior probability of latent cluster with fitted model, default is FALSE
initial A list of initial model parameters will be returned for integrative clustering
itr_tol A list of tolerance settings will be returned for integrative clustering
tunepar A list of tuning parameters and settings will be returned for integrative clustering

Value

est_lucid returns an object of list containing parameters estimates, predicted probability of latent clusters, and other features:

beta Estimates of genetic effects, matrix
mu Estimates of cluster-specific biomarker means, matrix
sigma Estimates of cluster-specific biomarker covariance matrix, list
gamma Estimates of cluster-specific disease risk, vector
pcluster Probability of cluster, when G is null
pred Predicted probability of belonging to each latent cluster

Author(s)

Cheng Peng, Zhao Yang, David V. Conti

References

Peng, C., Conti, D.V., Integrative latent cluster assignment using multi-omics data with phenotypic traits (under preparation).

Examples

Integrative clustering without feature selection
set.seed(10)
IntClusFit <- est_lucid(G=G1,Z=Z1,Y=Y1,K=2,family="binary",Pred=TRUE)

Not run:
Re-run the model with covariates in the G->X path
IntClusCoFit <- est_lucid(G=G1,CoG=CoG,Z=Z1,Y=Y1,K=2,family="binary",Pred=TRUE)
Re-run the model with covariates in the X→Y path
IntClusCoFit2 <- est_lucid(G=G1, Z=Z1, Y=Y1, CoY=CoY, K=2, family="binary", Pred=TRUE)

Re-run the model with covariates in both G→X and X→Y paths
IntClusCoFit3 <- est_lucid(G=G1, CoG=CoG, Z=Z1, Y=Y1, CoY=CoY, K=2, family="binary", Pred=TRUE)

End (Not run)

Genetic Features Set 1

Description

A simulated dataset containing one of the components to run est_lucid, plot_lucid, and tune_lucid. The variables are as follows:

Usage

G1

Format

A set with 2000 rows and 10 variables:

- **CG1 - CG5** Causal SNPs
- **NG1 - NG5** Null SNPs

Genetic Features Set 2

Description

A simulated dataset containing one of the components to run sem_lucid. The variables are as follows:

Usage

G2

Format

A set with 2000 rows and 10 variables:

- **CG1 - CG5** Causal SNPs
- **NG1 - NG5** Null SNPs
plot_lucid

Plot Sankey diagram for integrative clustering

Description

plot_lucid generates a Sankey diagram for the results of integrative clustering based on an IntClust object.

Usage

plot_lucid(x, switch = FALSE, colorScale = default)

Arguments

- **x**: An IntClust class object
- **switch**: An indicator to do label switching with a descending order in gamma or not, the default is FALSE
- **colorScale**: D3 color scheme for the Sankey diagram

Author(s)

Cheng Peng, Zhao Yang, David V. Conti

References

Peng, C., Conti, D.V., Integrative latent cluster assignment using multi-omics data with phenotypic traits (under preparation).

Examples

```r
# Run the model with covariates in the G->X path
IntClusCoFit1 <- est_lucid(G=G1,CoG=CoG,Z=Z1,Y=Y1,K=2,family="binary",Pred=TRUE)

# Visualize the results of integrative clustering
plot_lucid(IntClusCoFit1)
```

pred_lucid

Model Predictions for LUCID

Description

pred_lucid produces predicted values for latent clusters and outcome with an IntClust object and new data.
sem_lucid

Usage

pred_lucid(fit = NULL, G = NULL, CoG = NULL, Z = NULL, Y = NULL, CoY = NULL)

Arguments

- **fit**: An IntClust class object
- **G**: Genetic effects, a matrix
- **CoG**: Covariates to be included in the G->X path
- **Z**: Biomarker data, a matrix
- **Y**: Disease outcome, a vector; default is NULL
- **CoY**: Covariates to be included in the X->Y path

Value

- **pred_lucid** returns a list containing predicted values.
 - **pred_cluster**: predicted probabilities for latent clusters with/without the outcome
 - **pred_outcome**: predicted values for outcome

Author(s)

Cheng Peng, Zhao Yang, David V. Conti

References

Peng, C., Conti, D.V., Integrative latent cluster assignment using multi-omics data with phenotypic traits (under preparation).

Examples

```r
set.seed(10)
IntClusFit <- est_lucid(G=G1, Z=Z1, Y=Y1, K=2, family="binary", Pred=TRUE)
Gpred <- G2[1:20, ]; Zpred <- Z2[1:20,]
PRED <- pred_lucid(Fit = IntClusFit, G=Gpred, CoG = NULL, Z=Zpred, CoY = NULL)
```

Description

sem_lucid provides standard errors (SE) of parameter estimates when performing latent cluster analysis with multi-omics data. SEs are obtained through supplemented EM-algorithm (SEM).
Usage

```r
sem_lucid(G = NULL, Z = NULL, Y, family = "binary", useY = TRUE,
K = 2, initial = def_initial(), itr_tol = def_tol(),
Pred = FALSE, Get_SE = TRUE, Ad_Hoc_SE = FALSE)
```

Arguments

- **G**: Genetic effects, a matrix
- **Z**: Biomarker data, a matrix
- **Y**: Disease outcome, a vector
- **family**: "binary" or "normal" for Y
- **useY**: Using Y or not, default is TRUE
- **K**: Pre-specified # of latent clusters, default is 2
- **initial**: A list of initial model parameters will be returned for integrative clustering
- **itr_tol**: A list of tolerance settings will be returned for integrative clustering
- **Pred**: Flag to compute predicted disease probability with fitted model, boolean, default is FALSE
- **Get_SE**: Flag to perform SEM to get SEs of parameter estimates, default is TRUE
- **Ad_Hoc_SE**: Flag to fit ad hoc regression models to get SEs of parameter estimates, default is FALSE

Value

`sem_lucid` returns an object of list containing parameters estimates, their corresponding standard errors, and other features:

- **beta**: Estimates of genetic effects, matrix
- **se_beta**: SEM standard errors of Beta
- **se_ah_beta**: Ad hoc standard errors of Beta
- **mu**: Estimates of cluster-specific biomarker means, matrix
- **se_mu**: SEM standard errors of Mu
- **se_ah_mu**: Ad hoc standard errors of Mu
- **sigma**: Estimates of cluster-specific biomarker covariance matrix, list
- **gamma**: Estimates of cluster-specific disease risk, vector
- **se_gamma**: SEM standard errors of Gamma
- **se_ah_gamma**: Ad hoc standard errors of Gamma
- **pcluster**: Probability of cluster, when G is null
- **pred**: Predicted probability of belonging to each latent cluster

Author(s)

Cheng Peng, Zhao Yang, David V. Conti
summary_lucid

References

Peng, C., Conti, D.V., Integrative latent cluster assignment using multi-omics data with phenotypic traits (under preparation).

Examples

```r
## Not run:
sem_lucid(G=G2,Z=Z2,Y=Y2,useY=TRUE,K=2,Pred=TRUE,family="normal",Get_SE=TRUE,
itr_tol = def_tol(MAX_ITR=1000,MAX_TOT_ITR=3000))

## End(Not run)
```

summary_lucid

Summarize results for integrative clustering

Description

`summary_lucid` generates a summary for the results of integrative clustering based on an `intclust` object.

Usage

```r
summary_lucid(x, switch = FALSE, order = NULL)
```

Arguments

- **x**: An `intclust` class object
- **switch**: An indicator to do label switching or not, the default is `FALSE`
- **order**: A customized order for label switching, a vector with a length of K; the default is `NULL`, which is a descending order in gamma

Value

`summary_lucid` returns a list containing important outputs from an `intclust` object.

- **Beta**: Estimates of genetic effects, matrix
- **Mu**: Estimates of cluster-specific biomarker means, matrix
- **Gamma**: Estimates of cluster-specific disease risk, vector
- **select_G**: A logical vector indicates non-zero genetic features
- **select_Z**: A logical vector indicates non-zero bio-features
- **NoG**: A total # of non-zero genetic features
- **NoZ**: A total # of non-zero bio-features
- **BIC**: Model BIC
tune_lucid

Author(s)
Cheng Peng, Zhao Yang, David V. Conti

References
Peng, C., Conti, D.V., Integrative latent cluster assignment using multi-omics data with phenotypic traits (under preparation).

Examples
For a testing dataset with 10 genetic features (5 causal) and 4 biomarkers (2 causal)

Integrative clustering without feature selection
set.seed(10)
IntClusFit <- est_lucid(G=G1,Z=Z1,Y=Y1,K=2,family="binary",Pred=TRUE)

Check important model outputs
summary_lucid(IntClusFit)

tune_lucid

Parallel Grid Search for Tuning Parameters in Latent Cluster Analysis

Description
tune_lucid fits regularized latent cluster models with various combinations of three tuning parameters based on joint inference across data types to perform a grid-search helping determine an optimal choice of three tuning parameters with minimum model BIC.

Usage
tune_lucid(G = NULL, CoG = NULL, Z = NULL, CoY = NULL, Y, K, Family, USEY = TRUE, initial = def_initial(), LRho_g, URho_g, NoRho_g, LRho_z_invcov, URho_z_invcov, NoRho_z_invcov, LRho_z_covmu, URho_z_covmu, NoRho_z_covmu, NoCores = detectCores() - 1)

Arguments
G Genetic effects, a matrix
CoG Covariates to be added in G->X path
Z Biomarker data, a matrix
CoY Covariates to be added in X->Y path
Y Disease outcome, a vector
K Pre-specified # of latent clusters
Family "binary" or "normal" for Y
USEY Using Y or not, default is TRUE
tune_lucid

initial A list of initial model parameters will be returned for integrative clustering
LRho_g Lower limit of the penalty for selection on genetic data
URho_g Upper limit of the penalty for selection on genetic data
NoRho_g Number of Rho_g for grid-search
LRho_z_invcov Lower limit of the penalty for the inverse of covariance of biomarkers
URho_z_invcov Upper limit of the penalty for the inverse of covariance of biomarkers
NoRho_z_invcov Number of Rho_z_invcov for grid-search
LRho_z_covmu Lower limit of the penalty for the product of covariance and mean of biomarkers
URho_z_covmu Upper limit of the penalty for the product of covariance and mean of biomarkers
NoRho_z_covmu Number of Rho_z_covmu for grid-search
NoCores Number of CPU cores for parallel grid-search, default is total number of cores minus 1

Value

tune_lucid returns an object of list containing Modelfits, Results, and Optimal:

Modelfits Latent cluster model fits for a combination of given tuning parameters
Results Summary results of grid-search
Optimal Features of the optimal model with minimum BIC in the grid-search summary

Author(s)

Cheng Peng, Zhao Yang, David V. Conti

References

Peng, C., Conti, D.V., Integrative latent cluster assignment using multi-omics data with phenotypic traits (under preparation).

Examples

For a testing dataset with 10 genetic features (5 causal) and 4 biomarkers (2 causal)
Parallel grid-search with 8 combinations of tuning parameters
Not run:
GridSearch <- tune_lucid(G=G1, Z=Z1, Y=Y1, K=2, Family="binary", USEY = TRUE, NoCores = 2,
 LRho_g = 0.008, URho_g = 0.012, NoRho_g = 2,
 LRho_z_invcov = 0.04, URho_z_invcov = 0.06, NoRho_z_invcov = 2,
 LRho_z_covmu = 90, URho_z_covmu = 100, NoRho_z_covmu = 2)

GridSearch$Results
Determine the best tuning parameters
GridSearch$Optimal

End(Not run)
Outcome Set 1

Description
A simulated dataset containing one of the components to run `est_lucid`, `plot_lucid`, and `tune_lucid`. The variables are as follows:

Usage

Format
A set with 2000 rows and 1 variable:

\[Y1 \] A binary outcome

Outcome Set 2

Description
A simulated dataset containing one of the components to run `sem_lucid`. The variables are as follows:

Usage

Format
A set with 2000 rows and 1 variable:

\[Y2 \] A continuous outcome
Biomarker Set 1

Description
A simulated dataset containing one of the components to run est_lucid, plot_lucid, and tune_lucid. The variables are as follows:

Usage
Z1

Format
A set with 2000 rows and 4 variables:

- **CZ1, CZ2** Causal biomarkers
- **NZ1, NZ2** Null biomarkers

Biomarker Set 2

Description
A simulated dataset containing one of the components to run sem_lucid. The variables are as follows:

Usage
Z2

Format
A set with 2000 rows and 4 variables:

- **CZ1, CZ2** Causal biomarkers
- **NZ1, NZ2** Null biomarkers
Index

*Topic Grid-search
 tune_lucid, 12

*Topic Parameter,
 tune_lucid, 12

*Topic SEM,
 sem_lucid, 9

*Topic Tuning
 tune_lucid, 12

*Topic cluster
 est_lucid, 5
 sem_lucid, 9

*Topic datasets
 CoG, 2
 CoY, 2
 G1, 7
 G2, 7
 Y1, 14
 Y2, 14
 Z1, 15
 Z2, 15

*Topic latent
 est_lucid, 5
 sem_lucid, 9

CoG, 2
CoY, 2

def_initial, 3
def_tol, 4
def_tune, 5

est_lucid, 3–5, 5

G1, 7
G2, 7

plot_lucid, 8
pred_lucid, 8

sem_lucid, 3–5, 9
summary_lucid, 11