Package ‘LearningRlab’

June 18, 2022

Version 2.3
Date 2022-6-17
Title Statistical Learning Functions
Author Carlos Javier Hellin Asensio [aut, cre],
 Jose Manuel Gomez Caceres [aut],
 Dennis Monheimius [aut],
 Eduardo Benito [aut],
 Juan Jose Cuadrado [aut],
 Universidad de Alcala de Henares [aut]
Maintainer Carlos Javier Hellin Asensio <carlos.hellin@edu.uah.es>
Depends magick, crayon
Suggests knitr, rmarkdown
Description Aids in learning statistical functions incorporating the result of calculus done with each function and how they are obtained, that is, which equation and variables are used. Also for all these equations and their related variables detailed explanations and interactive exercises are also included. All these characteristics allow to the package user to improve the learning of statistics basics by means of their use.
License Unlimited
VignetteBuilder knitr
NeedsCompilation yes
Type Package
Repository CRAN
Date/Publication 2022-06-17 23:40:09 UTC
RoxygenNote 7.1.1
Encoding UTF-8

R topics documented:

 averageDeviation_ .. 3
 binomial_ .. 4
 chisquared_ .. 6
R topics documented:

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>covariance_</td>
<td>7</td>
</tr>
<tr>
<td>cv_</td>
<td>8</td>
</tr>
<tr>
<td>drawVector</td>
<td>9</td>
</tr>
<tr>
<td>explain.absolute_acum_frequency</td>
<td>10</td>
</tr>
<tr>
<td>explain.absolute_frequency</td>
<td>11</td>
</tr>
<tr>
<td>explain.averageDeviation</td>
<td>12</td>
</tr>
<tr>
<td>explain.binomial</td>
<td>13</td>
</tr>
<tr>
<td>explain.chisquared</td>
<td>14</td>
</tr>
<tr>
<td>explain.covariance</td>
<td>15</td>
</tr>
<tr>
<td>explain.cv</td>
<td>16</td>
</tr>
<tr>
<td>explain.fisher</td>
<td>17</td>
</tr>
<tr>
<td>explain.geometricMean</td>
<td>18</td>
</tr>
<tr>
<td>explain.harmonicMean</td>
<td>19</td>
</tr>
<tr>
<td>explain.laplace</td>
<td>20</td>
</tr>
<tr>
<td>explain.mean</td>
<td>21</td>
</tr>
<tr>
<td>explain.median</td>
<td>22</td>
</tr>
<tr>
<td>explain.mode</td>
<td>23</td>
</tr>
<tr>
<td>explain.normal</td>
<td>24</td>
</tr>
<tr>
<td>explain.poisson</td>
<td>25</td>
</tr>
<tr>
<td>explain.percentile</td>
<td>26</td>
</tr>
<tr>
<td>explain.poisson</td>
<td>27</td>
</tr>
<tr>
<td>explain.quartile</td>
<td>28</td>
</tr>
<tr>
<td>explain.relative_acum_frequency</td>
<td>29</td>
</tr>
<tr>
<td>explain.relative_frequency</td>
<td>30</td>
</tr>
<tr>
<td>explain.standardDeviation</td>
<td>31</td>
</tr>
<tr>
<td>explain.tstudent</td>
<td>32</td>
</tr>
<tr>
<td>explain.variance</td>
<td>33</td>
</tr>
<tr>
<td>fisher_</td>
<td>34</td>
</tr>
<tr>
<td>frequency_abs</td>
<td>35</td>
</tr>
<tr>
<td>frequency_absolute_acum</td>
<td>36</td>
</tr>
<tr>
<td>frequency_relative</td>
<td>37</td>
</tr>
<tr>
<td>frequency_relative_acum</td>
<td>39</td>
</tr>
<tr>
<td>geometricMean_</td>
<td>40</td>
</tr>
<tr>
<td>getUserAction</td>
<td>41</td>
</tr>
<tr>
<td>harmonicMean_</td>
<td>42</td>
</tr>
<tr>
<td>initImages</td>
<td>43</td>
</tr>
<tr>
<td>interactive.absolute_acum_frequency</td>
<td>44</td>
</tr>
<tr>
<td>interactive.absolute_frequency</td>
<td>44</td>
</tr>
<tr>
<td>interactive.averageDeviation</td>
<td>45</td>
</tr>
<tr>
<td>interactive.binomial</td>
<td>46</td>
</tr>
<tr>
<td>interactive.chisquared</td>
<td>47</td>
</tr>
<tr>
<td>interactive.covariance</td>
<td>48</td>
</tr>
<tr>
<td>interactive.cv</td>
<td>48</td>
</tr>
<tr>
<td>interactive.fisher</td>
<td>49</td>
</tr>
<tr>
<td>interactive.geometricMean</td>
<td>50</td>
</tr>
<tr>
<td>interactive.harmonicMean</td>
<td>51</td>
</tr>
<tr>
<td>interactive.laplace</td>
<td>52</td>
</tr>
<tr>
<td>interactive.mean</td>
<td>52</td>
</tr>
</tbody>
</table>
averageDeviation_ Average Absolute Deviation Function

Description

This function calculates the average absolute deviation of a numbers vector.

Usage

averageDeviation_(x)

Arguments

x Should be a numbers vector
Details

To calculate the average deviation, the user should give a numbers vector. The result is the sum of the differences in absolute value between each vector element and the mean, divided by the number of elements. The average absolute deviation formula is the following:

\[
\sigma = \frac{\sum_{i=1}^{N} |X_i - \bar{X}|}{N}
\]

Value

Numeric, the average absolute deviation of the numbers vector.

Note

A vector is created by c(), like c(1,2,3,4,5) creates a vector with the numbers: 1,2,3,4,5

Author(s)

Dennis Monheimius, <dennis.monheimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

Examples

```r
# data creation
data <- c(1:20)
result = averageDeviation_(data)
```

binomial_

Binomial Distribution Calculus Function

Description

This function calculates the binomial distribution of experiment.

Usage

`binomial_(n,x,p)`
Arguments

- x: Should be a number.
- n: Should be a number.
- p: Should be a number.

Details

To calculate the binomial distribution, the user should give three numbers (the number of trials, probability of success and binomial random variable). The result is a discrete probability distribution that counts the number of successes in a sequence of n independent Bernoulli trials with a fixed probability p of occurrence of success between trials. The binomial distribution formula is the following:

\[
\text{Binomial Distribution} = \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}
\]

Value

Numeric, the binomial distribution of three variables.

Note

Each variable is a number. Example: n <- 3 | x <- 2 | p <- 0.7

Author(s)

Jose Manuel Gomez Caceres, <josemanuel.gomezc@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

Examples

```r
#data creation
n = 3
x = 2
p = 0.7
binomial(n, x, p)
```
chisquared_ Chisquared Distribution Calculus Function

Description
This function calculates the chisquared distribution of two vectors of numbers.

Usage
chisquared_ (x, y)

Arguments
x Should be a vector.
y Should be a vector.

Details
To calculate the chisquared distribution, the user should give two vectors of numbers. The result is a sum of the squares of k independent standard normal random variables. The chisquared distribution formula is the following:

\[
\text{Chi-Squared} = \frac{\sum (f_e - f_o)^2}{f_e}
\]

Value
Numeric, the chisquared distribution of two vectors of numbers.

Note
A vector is created by c(), like c(1,2,3,4,5) creates a vector with the numbers: 1,2,3,4,5

Author(s)
Jose Manuel Gomez Caceres, <josemanuel.gomezc@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares
Description

This function calculates the covariance of two vectors of numbers.

Usage

covariance_(x, y)

Arguments

x Should be a vector
y Should be a vector

Details

To calculate the covariance, the user should give two vectors of numbers. The result is a measure of the joint variability of two vectors of numbers. The covariance formula is the following:

\[
\text{Covariance} = \frac{\sum_{i=1}^{n}(x_i - \bar{x})(y_i - \bar{y})}{n}
\]

Value

Numeric, the covariance of two vectors of numbers.

Note

A vector is created by c(), like c(1,2,3,4,5) creates a vector with the numbers: 1,2,3,4,5
Author(s)
Dennis Monheimius, <dennis.monehemius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcalá de Henares

Examples

```r
# data creation
data = c(1,4,3,2,5,7,12,1,2,3,12)
data2 = c(1,2,4,4,6,5,11,2,10,5,6,1)
covariance_(data, data2)
```

cv_

Coefficient of Variation Calculus Function

Description
This function calculates the coefficient of variation of a numbers vector.

Usage

```r
cv_(x)
```

Arguments

- **x**: Should be a numbers vector

Details
To calculate the coefficient of variation, the user should give a numbers vector. The result is defined as the ratio of the standard deviation to the mean. The coefficient of variation formula is the following:

\[
CV = \frac{\text{std dev}}{\text{mean}} = \frac{s}{\bar{y}}
\]

Value
Numeric, the coefficient of variation of the numbers vector.
drawVector

Note

A vector is created by `c()`, like `c(1,2,3,4,5)` creates a vector with the numbers: 1,2,3,4,5

Author(s)

Jose Manuel Gomez Caceres, <josemanuel.gomezc@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

Examples

```r
#data creation
data = c(1,4,3,3,2,5,7,12,1,2,3,12)
cv_(data)
```

<table>
<thead>
<tr>
<th>drawVector</th>
<th>Draw Vector Function</th>
</tr>
</thead>
</table>

Description

This function prints all the elements of a vector

Usage

`drawVector(buffer)`

Arguments

`buffer` A vector of elements

Value

There isn’t return value, prints on screen

Note

A vector is created by `c()`, like `c(1,2,3,4,5)` creates a vector with the numbers: 1,2,3,4,5 or `c(true,false,false)` creates a vector with the booleans: true, false, true

Author(s)

Dennis Monheimius, <dennis.monhemimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares
explain.absolute_acum_frecuency

Absolute Accumulated Frequency Calculus Explained

Description

Step by step demonstration of the absolute accumulated frequency calculus

Usage

explain.absolute_acum_frecuency(v,x)

Arguments

v Should be a vector
x Should be a number

Details

To calculate the absolute accumulated frequency, the user should give a vector and a number. We can saw the absolute accumulated frequency formula in the frecuency_acum_absolute help document.

Value

A demonstration of the calculus process

Note

A vector is created by c(), like c(1,2,3,4,5) creates a vector with the numbers: 1,2,3,4,5

Author(s)

Dennis Monheimius, <dennis.monhemimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

Examples

{ #data creation
 data <- c(1:12)
 drawVector(data)
}
explain.absolute_frequency

Absolute Frequncy Calculus Explained

Description
Step by step demonstration of the absolute frequency calculus

Usage
explain.absolute_frequency(v, x)

Arguments
v Should be a vector
x Should be a number

Details
To calculate the absolute frequency, the user should give a vector and a number. We can saw the absolute frequency formule in the frecuency_abs help document.

Value
A demonstration of the calculus process

Note
A vector is created by c(), like c(1,2,3,4,5) creates a vector with the numbers: 1,2,3,4,5

Author(s)
Dennis Monheimius, <dennis.monheimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares
Examples
{
 # data creation
 data <- c(1,2,2,5,10,4,2)
 value = 2
 # function execution
 explain.absolute_frequency(data, value)
}

explain.averageDeviation

Average Absolute Deviation Function Explained

Description
Step by step demonstration of the average absolute deviation calculus.

Usage

explain.averageDeviation(x)

Arguments

x Should be a numbers vector

Details
To calculate the average absolute deviation, the user should give a numbers vector. The result is the explained process to calculate the average absolute deviation, with the data of the dataset provided like argument. We can saw the average absolute deviation formula in the averageDeviation_help document.

Value
Numeric, the average absolute deviation of the numbers vector.

Note
A vector is created by c(), like c(1,2,3,4,5) creates a vector with the numbers: 1,2,3,4,5

Author(s)
Dennis Monheimius, <dennis.monheimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares
explain.binomial

Examples

```r
# data creation
data <- c(7,2,5,7,1,4,12)

explain.averageDeviation(data)
```

Description

Step by step demonstration of the binomial distribution calculus.

Usage

```r
explain.binomial(n, x, p)
```

Arguments

- `x` Should be a numbers.
- `n` Should be a numbers.
- `p` Should be a numbers.

Details

To calculate the binomial distribution, the user should give three number (the number of trials, probability of success and binomial random variable). The result is a discrete probability distribution that counts the number of successes in a sequence of `n` independent Bernoulli trials with a fixed probability `p` of occurrence of success between trials. We can saw the binomial distribution formule in the binomial help document.

Value

Numeric result and the process of this calculus explained.

Note

Each variable is a number. Example: `n <- 3 | x <- 2 | p <- 0.7`

Author(s)

Jose Manuel Gomez Caceres, `<josemanuel.gomezc@edu.uah.es>`
Juan Jose Cuadrado, `<jjcg@uah.es>`
Universidad de Alcala de Henares
Examples

 # data creation
 n = 3
 x = 2
 p = 0.7

 explain.binomial(n,x,p)

explain.chisquared Chisquared Distribution Function Explained

Description

Step by step demonstration of the chisquared distribution calculus.

Usage

 explain.chisquared(x,y)

Arguments

 x Should be a vector.
 y Should be a vector.

Details

To calculate the chisquared distribution, the user should give two vectors of numbers. The result is a sum of the squares of k independent standard normal random variables. We can saw the chisquared distribution formule in the chisquared help document.

Value

 Numeric result and the process of this calculus explained.

Note

 A vector is created by c(), like c(1,2,3,4,5) creates a vector with the numbers: 1,2,3,4,5

Author(s)

 Jose Manuel Gomez Caceres, <josemanuel.gomezc@edu.uah.es>
 Juan Jose Cuadrado, <jjcg@uah.es>
 Universidad de Alcala de Henares
explain.covariance

Examples

```r
# data creation
data <- c(10,4,5,7,3,4,1)
data2 <- c(1,8,3,4,4,5,7)

explain.chisquared(data, data2)
```

explain.covariance
Covariance Function Explained

Description

Step by step demonstration of the covariance calculus.

Usage

```r
explain.covariance(x, y)
```

Arguments

- `x`: Should be a vector
- `y`: Should be a vector

Details

To calculate the covariance, the user should give two vectors of numbers. The result is the explained process to calculate the covariance, with the data of the datasets provided like argument. We can saw the harmonic mean formule in the covariance help document.

Value

Numeric result and the process of this calculus explained.

Note

A vector is created by `c()`, like `c(1,2,3,4,5)` creates a vector with the numbers: 1,2,3,4,5

Author(s)

Jose Manuel Gomez Caceres, <josemanuel.gomez@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares
Examples

```r
# data creation
data <- c(10, 4, 5, 7, 3, 4, 1)
data2 <- c(1, 8, 3, 4, 4, 5, 7)

explain.covariance(data, data2)
```

Description

Step by step demonstration of the coefficient of variation calculus.

Usage

```r
explain.cv(x)
```

Arguments

- `x` Should be a numbers vector

Details

To calculate the coefficient of variation, the user should give a numbers vector. The result is defined as the ratio of the standard deviation to the mean. We can see the coefficient of variation formula in the `cv` help document.

Value

Numeric result and the process of this calculus explained.

Note

A vector is created by `c()`, like `c(1,2,3,4,5)` creates a vector with the numbers: 1,2,3,4,5

Author(s)

- Jose Manuel Gomez Caceres, `<josemanuel.gomezc@edu.uah.es>`
- Juan Jose Cuadrado, `<jjcg@uah.es>`
- Universidad de Alcala de Henares
explain.fisher

Examples

```r
# data creation
data <- c(10,4,5,7,3,4,1)

explain.cv(data)
```

F Fisher Distribution Function Explained

Description

Step by step demonstration of the fisher distribution calculus.

Usage

```r
explain.fisher(x,y)
```

Arguments

- `x` Should be a vector
- `y` Should be a vector

Details

To calculate the fisher distribution, the user should give two vectors of numbers. The result is a continuous probability distribution that arises frequently as the null distribution of a test statistic. We can saw fisher distribution formule in the fisher_help document.

Value

Numeric result and the process of this calculus explained.

Note

A vector is created by `c()`, like `c(1,2,3,4,5)` creates a vector with the numbers: 1,2,3,4,5

Author(s)

Jose Manuel Gomez Caceres, <josemanuel.gomezc@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares
explain.geometricMean

Examples

data creation
data <- c(10, 4, 5, 7, 3, 4, 1)
data2 <- c(1, 8, 3, 4, 4, 5, 7)

explain.fisher(data, data2)

describe.geometricMean Geometric Mean Function Explained

Description

Step by step demonstration of the geometric mean calculus.

Usage

explain.geometricMean(x)

Arguments

x

Should be a numbers vector

Details

To calculate the geometric mean of a dataset, the user should give a vector. The result is the explained process to calculate the geometric mean, with the data of the dataset provided like argument. We can saw the geometric mean formula in the geometricMean help document.

Value

Numeric result and the process of this calculus explained.

Note

A vector is created by c(), like c(1,2,3,4,5) creates a vector with the numbers: 1,2,3,4,5

Author(s)

Dennis Monheimius, <dennis.monhemimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares
explain.harmonicMean

Examples
{
 # data creation
 data <- c(5,21,12,7,3,9,1)
 explain.geometricMean(data)
}

explain.harmonicMean Harmonic Mean Function Explained

Description
Step by step demonstration of the harmonic mean calculus.

Usage
explain.harmonicMean(x)

Arguments
x Should be a numbers vector

Details
To calculate the harmonic mean, the user should give a numbers vector. The result is the explained process to calculate the harmonic mean, with the data of the dataset provided like argument. We can saw the harmonic mean formule in the harmonicMean_help document.

Value
Numeric result and the process of this calculus explained.

Note
A vector is created by c(), like c(1,2,3,4,5) creates a vector with the numbers: 1,2,3,4,5

Author(s)
Jose Manuel Gomez Caceres, <josemanuel.gomezc@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares
Examples

```r
# data creation
data <- c(10,4,5,7,3,4,1)

explain.harmonicMean(data)
```

explain.laplace
Laplace’s Rule Function Explained

Description
Step by step demonstration of the Laplace’s rule calculus.

Usage
```
explain.laplace(x,y)
```

Arguments
- `x`
 Should be a vector
- `y`
 Should be a vector

Details
To calculate the Laplace’s rule, the user should give two vector (unfavorable cases/favorable cases). The result is the quotient between the number of favorable cases to A, and that of all possible results of the experiment. We can see the Laplace’s rule correlation formula in the laplace_help document.

Value
Numeric result and the process of this calculus explained.

Note
A vector is created by `c()`, like `c(1,2,3,4,5)` creates a vector with the numbers: 1,2,3,4,5

Author(s)
Jose Manuel Gomez Caceres, <josemanuel.gomezc@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares
explain.mean

Examples

```r
# data creation
data <- 3
data2 <- c(1,2,3,4,5,6)

explain.laplace(data, data2)
```

explain.mean
Mean Function Explained

Description
Step by step demonstration of the arithmetic mean calculus.

Usage
`explain.mean(x)`

Arguments
- `x` Should be a numbers vector

Details
To calculate the arithmetic mean of a dataset, the user should give a vector. The result is the explained process to calculate the arithmetic mean, with the data of the dataset provided like argument. We can saw the arithmetic mean formule in the mean_ help document.

Value
Numeric result and the process of this calculus explained.

Note
A vector is created by `c()`, like `c(1,2,3,4,5)` creates a vector with the numbers: 1,2,3,4,5

Author(s)
- Dennis Monheimius, <dennis.monheimius@edu.uah.es>
- Eduardo Benito, <eduardo.benito@edu.uah.es>
- Juan Jose Cuadrado, <jjcg@uah.es>
- Universidad de Alcalá de Henares
explain.median

Examples

```r
# data creation
data <- c(1,2,2,5,10,4,2)

explain.mean(data)
```

explain.median

Median Function Explained

Description

Step by step demonstration of the median calculus.

Usage

```r
explain.median(x)
```

Arguments

- `x`: Should be a numbers vector

Details

To calculate the median, the user should give a numbers vector. The result is the explained process to calculate the median, with the data of the dataset provided like argument. We can see the median formula in the median_ help document.

Value

Numeric result and the process of this calculus explained.

Note

A vector is created by `c()`, like `c(1,2,3,4,5)` creates a vector with the numbers: 1,2,3,4,5

Author(s)

Dennis Monheimius, <dennis.monheimius@edu.uah.es>

Eduardo Benito, <eduardo.benito@edu.uah.es>

Juan Jose Cuadrado, <jjcg@uah.es>

Universidad de Alcalá de Henares
Examples

```r
# data creation
data <- c(1,2,2,5,10,4,2)

explain.median(data)
```

explain.mode
Mode Function Explained

Description

Step by step demonstration of the mode calculus.

Usage

```r
explain.mode(x)
```

Arguments

- `x`
 Should be a numbers vector

Details

To calculate the mode, the user should give a numbers vector. The result is the explained process to calculate the mode, with the data of the dataset provided like argument. We can saw the mode formule in the mode_ help document.

Value

Numeric result and the process of this calculus explained.

Note

A vector is created by `c()`, like `c(1,2,3,4,5)` creates a vector with the numbers: 1,2,3,4,5

Author(s)

Dennis Monheimius, <dennis.menheimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcalá de Henares
explain.normal

Examples
{
 # data creation
 data <- c(1,1,2,5,2,3,1,4,1)

 explain.mode(data)
}

explain.normal Normal Distribution Function Explained

Description
Step by step demonstration of the normal distribution calculus.

Usage
explain.normal(x)

Arguments
x Should be a number.

Details
To calculate the normal distribution, the user should give a number. The result is a type of continuous probability distribution for a real-valued random variable. We can saw the normal distribution correlation formula in the normal_help document.

Value
Numeric result and the process of this calculus explained.

Note
The variable is a number. Example: x <- 0.1

Author(s)
Jose Manuel Gomez Caceres, <josemanuel.gomezc@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares
explain.pearson

Examples

```r
# data creation
x = 0.1

explain.normal(x)
```

Description

Step by step demonstration of the pearson correlation calculus.

Usage

```
explain.pearson(x, y)
```

Arguments

- **x**: Should be a vector
- **y**: Should be a vector

Details

To calculate the pearson correlation, the user should give two vectors of numbers. The result is the covariance of the two vectors of numbers divided by the product of their standard deviations. We can see the pearson correlation formula in the `pearson_ help` document.

Value

Numeric result and the process of this calculus explained.

Note

A vector is created by `c()`, like `c(1,2,3,4,5)` creates a vector with the numbers: 1,2,3,4,5

Author(s)

Jose Manuel Gomez Caceres, <josemanuel.gomezc@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcalá de Henares
describe the percentile

Examples

```r
# data creation
data <- c(10, 4, 5, 7, 3, 4, 1)
data2 <- c(1, 8, 3, 4, 4, 5, 7)

explain.pearson(data, data2)
```

explain.percentile

Percentiles Calculus Explained

Description

Step by step demonstration of the percentiles calculus

Usage

```r
explain.percentile(x)
```

Arguments

- `x` Should be a vector

Details

To calculate the percentiles, the user should give a vector. We can saw the percentile formula in the percentile_help document.

Value

A demonstration of the calculus process

Note

A vector is created by c(), like c(1, 2, 3, 4, 5) creates a vector with the numbers: 1, 2, 3, 4, 5

Author(s)

Dennis Monheimius, <dennis.monheimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares
explain.poisson

Examples

```r
{
  # data creation
  data <- c(1,2,2,5,10,4,2)

  explain.percentile(data)
}
```

explain.poisson
Poisson Distribution Function Explained

Description

Step by step demonstration of the Poisson distribution calculus.

Usage

`explain.poisson(k, lam)`

Arguments

- `k`
 Should be a numbers

- `lam`
 Should be a numbers

Details

To calculate the Poisson distribution, the user should give two number (the number of times the phenomenon and the number of occurrences). The result is a discrete probability distribution that expresses, from a mean frequency of occurrence, the probability that a certain number of events will occur during a certain period of time. We can saw the Poisson distribution correlation formule in the poisson_help document.

Value

Numeric result and the process of this calculus explained.

Note

Each variable is a number. Example: lam <- 2 | k <- 3

Author(s)

Jose Manuel Gomez Caceres, <josemanuel.gomezc@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares
Examples

```r
#data creation
lam = 2
k = 3
explain.poisson(k, lam)
```

explain.quartile
Quartiles Calculus Explained

Description
Step by step demonstration of the quartiles calculus

Usage
```r
explain.quartile(x)
```

Arguments
- `x` Should be a vector

Details
To calculate the quartiles, the user should give a vector. We can saw the quartile formule in the quartile_ help document.

Value
A demonstration of the calculus process

Note
A vector is created by `c()`, like `c(1,2,3,4,5)` creates a vector with the numbers: 1,2,3,4,5

Author(s)
Dennis Monheimius, <dennis.monheimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares
Explanations

Relative Accumulated Frequency Calculus Explained

Description
Step by step demonstration of the relative accumulated frequency calculus

Usage

```r
explain.relative_acum_frecuency(v, x)
```

Arguments

- `v` Should be a vector
- `x` Should be a number of the vector

Details
To calculate the relative accumulated frequency, the user should give a vector and a number. We can saw the relative accumulated frequency formula in the `frequency_acum_relative` help document.

Value

A demonstration of the calculus process

Note

A vector is created by `c()`, like `c(1, 2, 3, 4, 5)` creates a vector with the numbers: 1, 2, 3, 4, 5

Author(s)

Dennis Monheimius, `<dennis.monheimius@edu.uah.es>`
Eduardo Benito, `<eduardo.benito@edu.uah.es>`
Juan Jose Cuadrado, `<jjcg@uah.es>`
Universidad de Alcalá de Henares
Examples

```r
# data creation
data <- c(1, 2, 2, 5, 10, 4, 2)
value = 2
# function execution
explain.relative_acum_frequency(data, value)
```

explain.relative_frequency

Relative Frequency Calculus Explained

Description

Step by step demonstration of the relative frequency calculus

Usage

`explain.relative_frequency(v, x)`

Arguments

- **v** Should be a vector
- **x** Should be a number

Details

To calculate the relative frequency, the user should give a vector and a number. We can saw the relative frequency formule in the `frequency_relative` help document.

Value

A demonstration of the calculus process

Note

A vector is created by `c()`, like `c(1,2,3,4,5)` creates a vector with the numbers: 1,2,3,4,5

Author(s)

Dennis Monheimius, <dennis.monheimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares
explain.standardDeviation

Standard Deviation Function Explained

Description
Step by step demonstration of the standard deviation calculus.

Usage
explain.standardDeviation(x)

Arguments
x
Should be a numbers vector

Details
To calculate the standard deviation, the user should give a numbers vector. The result is the explained process to calculate the standard deviation, with the data of the dataset provided like argument. We can saw the standard deviation formule in the standardDeviation_help document.

Value
Numeric result and the process of this calculus explained.

Note
A vector is created by c(), like c(1,2,3,4,5) creates a vector with the numbers: 1,2,3,4,5

Author(s)
Dennis Monheimius, <dennis.monheimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

Examples
{
 #data creation
data <- c(1,2,2,5,10,4,2)
value = 2
#function execution
explain.relative_frequency(data, value)
}
Examples

```r
# data creation
data <- c(1,5,3,7,10,4,2)
explain.standardDeviation(data)
```

Description

Step by step demonstration of the T-Student distribution calculus.

Usage

```r
explain.tstudent(x, u, s, n)
```

Arguments

- `x`: Should be a number
- `u`: Should be a number
- `s`: Should be a number
- `n`: Should be a number

Details

To calculate the T-Student distribution, the user should give four number (sample mean, population mean, population standard deviation and sample size). The result is a probability distribution that arises from the problem of estimating the mean of a normally distributed population when the sample size is small. We can saw the T-Student distribution formule in the tstudent help document.

Value

Numeric result and the process of this calculus explained.

Note

Each variable is a number. Example: `x <- 2 | y <- 4`

Author(s)

Jose Manuel Gomez Caceres, `<josemanuel.gomezc@edu.uah.es>`
Juan Jose Cuadrado, `<jjcg@uah.es>`
Universidad de Alcala de Henares
explain.variance

Examples

data creation
x = 52.9
u = 50
s = 3
n = 10

explain.tstudent(x,u,s,n)

explain.variance Variance Function Explained

Description
Step by step demonstration of the variance calculus.

Usage
explain.variance(x)

Arguments
x
Should be a numbers vector

Details
To calculate the variance, the user should give a numbers vector. The result is the explained process to calculate the variance, with the data of the dataset provided like argument. We can saw the variance formule in the variance_help document.

Value
Numeric result and the process of this calculus explained.

Note
A vector is created by c(), like c(1,2,3,4,5) creates a vector with the numbers: 1,2,3,4,5

Author(s)
Dennis Monheimius, <dennis.monhemimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares
Examples

#data creation
data <- c(10,4,5,7,3,4,1)
explain.variance(data)

fisher_

F Fisher Distribution Calculus Function

Description

This function calculates the fisher distribution of a numbers vector.

Usage

fisher_(x,y)

Arguments

x Should be a vector
y Should be a vector

Details

To calculate the fisher distribution, the user should give two vectors of numbers. The result is a continuous probability distribution that arises frequently as the null distribution of a test statistic. The fisher distribution formula is the following:

\[
Fisher Distribution = \frac{S_x^2}{S_w^2}
\]

Value

Numeric, the fisher distribution.

Note

A vector is created by c(), like c(1,2,3,4,5) creates a vector with the numbers: 1,2,3,4,5
frecuency_abs

Author(s)
Jose Manuel Gomez Caceres, <josemanuel.gomezc@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

Examples

```r
#data creation
x <- c(70,75,74,72,68,59)
y <- c(74,77,70,80,72,76)

fisher_(x,y)
```

frecuency_abs

Absolute Frecuency Calculus

Description
This function calculate the number of times that a specific number appears in the data set.

Usage

```r
frecuency_abs(v,x)
```

Arguments

- **v**: Should be a vector
- **x**: Should be a number

Details

The absolute frecuency formula is the following:

\[
\text{Absolute frequency} = \frac{\text{number of aparitions of the examined element}}{
\]

Value

An integer that represents the number of times that the value appears in the vector
Note

A vector is created by c(), like c(1,2,3,4,5) creates a vector with the numbers: 1,2,3,4,5

Author(s)

Dennis Monheimius, <dennis.monheimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

Examples

{
 #data creation
data = c(1,4,3,3,2,5,7,12,1,2,3,12)
value = 12
 #function execution
frecuency_abs(data, value)
}

frecuency_absolute_acum

Accumulated Absolute Frequency Calculus

Description

This function calculate the number of times that a specific number appears in the data set. The value depends on the elements that are lower than itself

Usage

frecuency_absolute_acum(v,x)

Arguments

v Should be a vector
x Should be a number
Details

The accumulated absolute frequency formula is the following:

\[
\text{Absolute accumulated frequency (X)} = \sum F_i \text{ where } i \leq X
\]

Value

A double that represents the number of times that the value appears in the vector regarding the total of elements

Note

A vector is created by c(), like c(1,2,3,4,5) creates a vector with the numbers: 1,2,3,4,5

Author(s)

Dennis Monheimius, <dennis.monheimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

Examples

```r
#data creation
data = c(1,4,3,3,2,5,7,12,1,2,3,12)
value = 12
#function execution
frecuency_absolute_acum(data, value)
```

Description

This function calculate the number of times that a specific number appears in the data set divided by the total length of the vector.
Usage

\texttt{frecuency_relative}(v, x)

Arguments

\begin{itemize}
 \item \texttt{v} \quad \text{Should be a vector}
 \item \texttt{x} \quad \text{Should be a number}
\end{itemize}

Details

The relative frequency formula is the following:

\[
\text{Relative frequency} = \frac{\text{absolute frequency}}{\sum \text{all frequencies}}
\]

Value

A double that represents the number of times that the value appears in the vector regarding the total of elements.

Note

A vector is created by \texttt{c()}, like \texttt{c(1,2,3,4,5)} creates a vector with the numbers: 1,2,3,4,5

Author(s)

Dennis Monheimius, \texttt{<dennis.monheimius@edu.uah.es>}
Eduardo Benito, \texttt{<eduardo.benito@edu.uah.es>}
Juan Jose Cuadrado, \texttt{<jjcg@uah.es>}
Universidad de Alcala de Henares

Examples

\begin{verbatim}
data creation
data <- c(1,4,3,3,2,5,7,12,1,2,3,12)
value = 12
frecuency_relative(data, value)
\end{verbatim}
frecuency_relative_acum

Accumulated Relative Frecuency Calculus

Description

This function calculate the number of times that a specific number appears in the data set divided by the total length of the vector. The value depends on the elements that are lower than itself.

Usage

`frecuency_relative_acum(v,x)`

Arguments

- `v` Should be a vector
- `x` Should be a number

Details

The accumulated relative frecuency formula is the following:

\[
\text{Relative accumulated} = \sum_{i \leq X} f_i
\]

Value

A double that represents the number of times that the value appears in the vector regarding the total of elements.

Note

A vector is created by `c()`, like `c(1,2,3,4,5)` creates a vector with the numbers: 1,2,3,4,5

Author(s)

Dennis Monheimius, <dennis.monheimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares
Examples

```r
# data creation
data = c(1,4,3,2,5,7,12,1,2,3,12)
value = 12
# function execution
frequency_relative_acum(data, value)
```

geometricMean_
Geometric Mean Function

Description

This function calculates the geometric mean of a numbers vector.

Usage

`geometricMean_(x)`

Arguments

- `x` Should be a numbers vector

Details

To calculate the geometric mean of a dataset, the user should give a numbers vector. The result is the product of all vector elements raise to 1 divided by the number of elements. The arithmetic mean formula is the following:

\[
MG = \sqrt[n]{X_1 \cdot X_2 \cdot X_3 \cdots X_n}
\]

Value

A numeric, the geometric mean of the numbers vector.

Note

A vector is created by `c()`, like `c(1,2,3,4,5)` creates a vector with the numbers: 1,2,3,4,5
getUserAction

Author(s)
Dennis Monheimius, <dennis.monhemimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

Examples
```
# data creation
data = c(1:20)

geometricMean_(data)
```

getUserAction
Get User Action Function

Description

This function get the buffer introduced by the user. Typically a numerical vector.

Usage

getUserAction()

Value

A vector

Note

The process is interactive with the user

Author(s)

Dennis Monheimius, <dennis.monhemimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

Examples

```
{  
  ## Not run:
  vector <- getUserAction()

  ## End(Not run)
}
```
Harmonic Mean Function

Description
This function calculates the harmonic mean of a numbers vector.

Usage

```r
test <- c(1,2,3,4,5)
harmonicMean_(x)```

**Arguments**

- `x` Should be a numbers vector

**Details**
To calculate the harmonic mean, the user should give a numbers vector. The result is calculated by dividing the number of observations by the reciprocal of each number in the vector. The harmonic mean formula is the following:

\[
\text{Harmonic Mean} = \frac{N}{\frac{1}{X_1} + \frac{1}{X_2} + \ldots + \frac{1}{X_N}}
\]

**Value**
Numeric, the harmonic mean of the numbers vector.

**Note**
A vector is created by `c()`, like `c(1,2,3,4,5)` creates a vector with the numbers: 1,2,3,4,5

**Author(s)**
Jose Manuel Gomez Caceres, <josemanuel.gomezc@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares
Examples

```
data creation
data = c(1,4,3,3,2,5,7,12,1,2,3,12)

harmonicMean_(data)
```

---

**Description**

This function is used to display an image.

**Usage**

`initImages(path)`

**Arguments**

- `path` An url of an image

**Value**

There isn’t return value

**Note**

The path should be toward an image

**Author(s)**

Dennis Monheimius, <dennis.monhemimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

**Examples**

```
{
 ## Not run:
 path = "https://i.imgur.com/8237YhzJ.png"
 initImages(path)

 ## End(Not run)
}
```
interactive.absolute_acum_frequency

User Interactive Absolute Accumulated Frequency Calculus

Description

Interactive function for absolute accumulated frequency calculus.

Usage

interactive.absolute_acum_frequency()

Details

The user provides the dataset when the function needs it. After that, the function will ask what is the correct result for this dataset. The function itself will provide the formula.

Value

An interactive process to calculate the absolute accumulated frequency

Author(s)

Dennis Monheimius, <dennis.monheimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcug@uah.es>
Universidad de Alcalá de Henares

Examples

```r
Not run:
interactive.absolute_acum_frequency()
End(Not run)
```

interactive.absolute_frequency

User Interactive Absolute Frequency Calculus

Description

Interactive function for absolute frequency calculus.

Usage

interactive.absolute_frequency()
interactive.averageDeviation

Details

The user provides the dataset when the function needs it. After that, the function will ask what is the correct result for this dataset. The function itself will provide the formula.

Value

An interactive process to calculate the absolute frequency

Author(s)

Dennis Monheimius, <dennis.monheimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcalá de Henares

Examples

```r
Not run:
interactive.absolute_frequency()

End(Not run)
```

Description

Interactive function for average absolute deviation calculus.

Usage

```r
interactive.averageDeviation()
```

Details

The user provides the dataset when the function needs it. After that, the function will ask what is the correct result for this dataset. The function itself will provide the average absolute deviation formula, apart from the averageDeviation_help document.

Value

An interactive process to calculate the average absolute deviation
Author(s)

Dennis Monheimius, <dennis.monhemimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>

References

https://en.wikipedia.org/wiki/Average_absolute_deviation

Examples

```r
Not run:
interactive.averageDeviation()

End(Not run)
```

interactive.binomial  User Interactive Binomial Distribution Calculus

Description

Interactive function for binomial distribution calculus.

Usage

interactive.binomial()

Details

The user provides the values when the function needs it. After that, the function will ask what is the correct result for this datas. The function itself will provide the binomial distribution formule, apart from the binomial help document.

Value

An interactive process to calculate the binomial distribution.

Author(s)

Jose Manuel Gomez Caceres, <josemanuel.gomezc@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares
Examples

```r
Not run:
interactive.binomial()

End(Not run)
```

Description

Interactive function for chisquared distribution calculus.

Usage

```r
interactive.chisquared()
```

Details

The user provides the datasets when the function needs it. After that, the function will ask what is the correct result for this dataset. The function itself will provide the chisquared distribution formule, apart from the chisquared_ help document.

Value

An interactive process to calculate the chisquared distribution

Author(s)

Jose Manuel Gomez Caceres, <josemanuel.gomezc@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

Examples

```r
Not run:
interactive.chisquared()

End(Not run)
```
**interactive.covariance**

*User Interactive Covariance Calculus*

**Description**

Interactive function for covariance calculus.

**Usage**

`interactive.covariance()`

**Details**

The user provides the datasets when the function needs it. After that, the function will ask what is the correct result for this dataset. The function itself will provide the covariance formula, apart from the covariance help document.

**Value**

An interactive process to calculate the covariance

**Author(s)**

Jose Manuel Gomez Caceres, <josemanuel.gomezc@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

**Examples**

```r
Not run:
interactive.covariance()
End(Not run)
```

---

**interactive.cv**

*User Interactive Coefficient of Variation Calculus*

**Description**

Interactive function for Coefficient of Variation calculus.

**Usage**

`interactive.cv()`
Details

The user provides the dataset when the function needs it. After that, the function will ask what is the correct result for this dataset. The function itself will provide the coefficient of variation formula, apart from the `cv` help document.

Value

An interactive process to calculate the average absolute deviation

Author(s)

Jose Manuel Gomez Caceres, <josemanuel.gomezc@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

Examples

```r
Not run:
interactive.cv()
End(Not run)
```

**interactive.fisher**  
*User Interactive F Fisher Distribution Calculus*

Description

Interactive function for fisher distribution calculus.

Usage

`interactive.fisher()`

Details

The user provides the datasets when the function needs it. After that, the function will ask what is the correct result for this datasets. The function itself will provide the fisher distribution formula, apart from the fisher help document.

Value

An interactive process to calculate the fisher distribution
Author(s)

Jose Manuel Gomez Caceres, <josemanuel.gomezc@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

Examples

```r
Not run:
interactive.fisher()

End(Not run)
```

---

interactive.geometricMean

*User Interactive Geometric Mean Calculus*

Description

Interactive function for geometric mean calculus.

Usage

```r
interactive.geometricMean()
```

Details

The user provides the dataset when the function needs it. After that, the function will ask what is the correct result for this dataset. The function itself will provide the geometric mean formula, apart from the geometricMean_ help document.

Value

An interactive process to calculate the geometric mean.

Author(s)

Dennis Monheimius, <dennis.monheimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares
Examples

```r
Not run:
interactive.geometricMean()

End(Not run)
```

---

**interactive.harmonicMean**

*User Interactive Harmonic Mean Calculus*

**Description**

Interactive function for harmonic mean calculus.

**Usage**

```r
interactive.harmonicMean()
```

**Details**

The user provides the dataset when the function needs it. After that, the function will ask what is the correct result for this dataset. The function itself will provide the harmonic mean formula, apart from the harmonicMean_ help document.

**Value**

An interactive process to calculate the harmonic mean

**Author(s)**

Jose Manuel Gomez Caceres, <josemanuel.gomezc@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

**Examples**

```r
Not run:
interactive.harmonicMean()

End(Not run)
```
interactive.laplace  User Interactive Laplace’s Rule Calculus

Description
Interactive function for Laplace’s rule calculus.

Usage
interactive.laplace()

Details
The user provides the values when the function needs it. After that, the function will ask what is the correct result for this data. The function itself will provide the Laplace’s rule formula, apart from the laplace_help document.

Value
An interactive process to calculate the Laplace’s rule.

Author(s)
Jose Manuel Gomez Caceres, <josemanuel.gomezc@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

Examples

## Not run:
interactive.laplace()

## End(Not run)

interactive.mean  User Interactive Mean Calculus

Description
Interactive function for arithmetic mean calculus.

Usage
interactive.mean()
interactive.median

Details
The user provides the dataset when the function needs it. After that, the function will ask what is the correct result for this dataset. The function itself will provide the arithmetic mean formula, apart from the mean help document.

Value
An interactive process to calculate the arithmetic mean.

Author(s)
Dennis Monheimius, <dennis.monhemius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcalá de Henares

Examples
{
  ## Not run:
  interactive.mean()

  ## End(Not run)
}

interactive.median  User Interactive Median Calculus

Description
Interactive function for median calculus.

Usage
interactive.median()

Details
The user provides the dataset when the function needs it. After that, the function will ask what is the correct result for this dataset. The function itself will provide the median formula, apart from the median help document.

Value
An interactive process to calculate the median
Author(s)

Dennis Monheimius, <dennis.monheimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcalá de Henares

Examples

```r
Not run:
interactive.mode()
```
```r
End(Not run)
```

**interactive.mode**  
*User Interactive Mode Calculus*

**Description**  
Interactive function for mode calculus.

**Usage**  
`interactive.mode()`

**Details**  
The user provides the dataset when the function needs it. After that, the function will ask what is the correct result for this dataset.

**Value**  
An interactive process to calculate the mode.

**Author(s)**  
Dennis Monheimius, <dennis.monheimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcalá de Henares

**Examples**

```r
Not run:
interactive.mode()
```
```r
End(Not run)
```
**interactive.normal**  
*User Interactive Normal Distribution Calculus*

**Description**
Interactive function for normal distribution calculus.

**Usage**

```r
interactive.normal()
```

**Details**
The user provides the values when the function needs it. After that, the function will ask what is the correct result for this data. The function itself will provide the normal distribution formula, apart from the normal\_help document.

**Value**
An interactive process to calculate the normal distribution.

**Author(s)**
Jose Manuel Gomez Caceres, <josemanuel.gomezc@edu.uah.es>
Juan Jose Cuadrado, <jjcguah.es>
Universidad de Alcala de Henares

**Examples**

```r
Not run:
interactive.normal()
```

```r
End(Not run)
```

---

**interactive.pearson**  
*User Interactive Pearson Correlation Calculus*

**Description**
Interactive function for pearson correlation calculus.

**Usage**

```r
interactive.pearson()
```
**Details**

The user provides the datasets when the function needs it. After that, the function will ask what is the correct result for this dataset. The function itself will provide the pearson correlation formula, apart from the pearson help document.

**Value**

An interactive process to calculate the pearson correlation.

**Author(s)**

Jose Manuel Gomez Caceres, <josemanuel.gomezc@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

**Examples**

```r
Not run:
interactive.pearson()

End(Not run)
```

---

**interactive.percentile**

*User Interactive Percentile Calculus*

**Description**

Interactive function for percentiles calculus.

**Usage**

`interactive.percentile()`

**Details**

The user provides the dataset when the function needs it. After that, the function will ask what is the correct result for this dataset. The function itself will provide the formula.

**Value**

An interactive process to calculate the percentiles
interactive.poisson

Author(s)

Dennis Monheimius, <dennis.monheimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

Examples

```r
Not run:
interactive.percentile()

End(Not run)
```

interactive.poisson    User Interactive Poisson Distribution Calculus

Description

Interactive function for Poisson distribution calculus.

Usage

`interactive.poisson()`

Details

The user provides the values when the function needs it. After that, the function will ask what is the correct result for this data. The function itself will provide the Poisson distribution formula, apart from the poisson_help document.

Value

An interactive process to calculate the Poisson distribution.

Author(s)

Jose Manuel Gomez Caceres, <josemanuel.gomezc@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

Examples

```r
Not run:
interactive.poisson()

End(Not run)
```
interactive.quartile  User Interactive Quartiles Calculus

Description

Interactive function for quartiles calculus.

Usage

interactive.quartile()

Details

The user provides the dataset when the function needs it. After that, the function will ask what is the correct result for this dataset. The function itself will provide the formula.

Value

An interactive process to calculate the quartiles

Author(s)

Dennis Monheimius, <dennis.monhemimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcalá de Henares

Examples

```r
Not run:
interactive.quartile()

End(Not run)
```

interactive.relative_acum_frecuency  User Interactive Relative Accumulated Frequency Calculus

Description

Interactive function for relative accumulated frequency calculus.

Usage

interactive.relative_acum_frecuency()
interactive.relative_frequency

Details

The user provides the dataset when the function needs it. After that, the function will ask what is the correct result for this dataset. The function itself will provide the formula.

Value

An interactive process to calculate the relative accumulated frequency

Author(s)

Dennis Monheimius, <dennis.monheimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

Examples

```r
Not run:
interactive.relative_acum_frequency()

End(Not run)
```

```r
interactive.relative_frequency

User Interactive Relative Frequency Calculus
```

Description

Interactive function for relative frequency calculus.

Usage

`interactive.relative_frequency()`

Details

The user provides the dataset when the function needs it. After that, the function will ask what is the correct result for this dataset. The function itself will provide the formula.

Value

An interactive process to calculate the relative frequency
interactive.standardDeviation

Author(s)
Dennis Monheimius, <dennis.monheimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

Examples

```r
Not run:
interactive.relative_frequency()

End(Not run)
```

### interactive.standardDeviation

**User Interactive Standard Deviation Calculus**

Description

Interactive function for standard deviation calculus.

Usage

```r
interactive.standardDeviation()
```

Details

The user provides the dataset when the function needs it. After that, the function will ask what is the correct result for this dataset. The function itself will provide the standard deviation formula, apart from the standardDeviation_help document.

Value

An interactive process to calculate the standard deviation

Author(s)
Dennis Monheimius, <dennis.monheimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>

References

interactive.tstudent

Examples

## Not run:
interactive.standardDeviation()

## End(Not run)

interactive.tstudent  User Interactive T-Student Distribution Calculus

Description

Interactive function for T-Student distribution calculus.

Usage

interactive.tstudent()

Details

The user provides the values when the function needs it. After that, the function will ask what is the correct result for this data. The function itself will provide the T-Students distribution formula, apart from the tstudent help document.

Value

An interactive process to calculate the T-Student distribution.

Author(s)

Jose Manuel Gomez Caceres, <josemanuel.gomezc@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

Examples

## Not run:
interactive.tstudent()

## End(Not run)
**interactive.variance**  *User Interactive Variance Calculus*

**Description**

Interactive function for variance calculus.

**Usage**

```r
interactive.variance()
```

**Details**

The user provides the dataset when the function needs it. After that, the function will ask what is the correct result for this dataset. The function itself will provide the variance formula, apart from the variance help document.

**Value**

An interactive process to calculate the average absolute deviation

**Author(s)**

Dennis Monheimius, <dennis.monhemimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>

Universidad de Alcala de Henares

**Examples**

```r
Not run:
interactive.variance()
End(Not run)
```

---

**laplace_**  *Laplace’s Rule Calculus Function*

**Description**

This function calculates the Laplace’s rule of experiment.

**Usage**

```r
laplace_(x,y)
```
Arguments

\begin{itemize}
  \item \textit{x} Should be a vector
  \item \textit{y} Should be a vector
\end{itemize}

Details

To calculate the Laplace’s rule, the user should give two vector (unfavorable cases/favorable cases). The result is the quotient between the number of favorable cases to A, and that of all possible results of the experiment. The Laplace’s rule formula is the following:

\[
\text{LaPlace Rule} = \frac{\text{casos favorables}}{\text{casos posibles}}
\]

Value

Numeric, the pearson correlation.

Note

A vector is created by \texttt{c()}, like \texttt{c(1,2,3,4,5)} creates a vector with the numbers: 1,2,3,4,5

Author(s)

Jose Manuel Gomez Caceres, <josemanuel.gomez@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

Examples

\begin{verbatim}
#data creation
data = 3
data2 = c(1,2,3,4,5,6)
laplace_(data, data2)
\end{verbatim}
meanC

Mean Function Developed in C

Description

This function calculates the arithmetic mean of a numbers vector.

Usage

meanC(x)

Arguments

x Should be a numbers vector
Details

To calculate the arithmetic mean of a dataset, the user should give a numbers vector. The result is the addition of all vector elements divided by the number of elements. The arithmetic mean formula is the following:

\[
\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n} = \frac{X_1 + X_2 + \ldots + X_n}{n}
\]

Value

A numeric, the arithmetic mean of the numbers vector.

Note

A vector is created by c(), like c(1,2,3,4,5) creates a vector with the numbers: 1,2,3,4,5

Author(s)

Dennis Monheimius, <dennis.monheimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

Examples

```r
#data creation
test_vector = c(1:10)
meanC(test_vector)
```

Description

This function calculates the arithmetic mean of a numbers vector.

Usage

```r
mean_(x)
```
**median_**

**Arguments**

- `x` Should be a numbers vector

**Details**

To calculate the arithmetic mean of a dataset, the user should give a numbers vector. The result is the addition of all vector elements divided by the number of elements. The arithmetic mean formula is the following:

\[
\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n} = \frac{X_1 + X_2 + \ldots + X_n}{n}
\]

**Value**

A numeric, the arithmetic mean of the numbers vector.

**Note**

A vector is created by `c()`, like `c(1,2,3,4,5)` creates a vector with the numbers: 1,2,3,4,5

**Author(s)**

Dennis Monheimius, <dennis.monheimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

**Examples**

```r
vector <- c(2,4,6,8,10,12,14,16,18)
result = mean_(vector)
result
```

---

**median_**

*Median Calculus Function*

**Description**

This function calculates the median of a numbers vector.
Usage

median_(x)

Arguments

x  Should be a numbers vector

Details

To calculate the median, the user should give a numbers vector. The result is the value separating
the higher half from the lower half of the dataset, it may be thought of as the middle value. The
median formula is the following:

\[
\text{Median} = \frac{1}{2}(n + 1)\text{th value}
\]

Value

A numeric, the median of the numbers vector.

Note

A vector is created by c(), like c(1,2,3,4,5) creates a vector with the numbers: 1,2,3,4,5

Author(s)

Dennis Monheimius, <dennis.monhemius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

Examples

{
    result = median_(c(1,3,2,5,12,4,4,2,9))
    result
}
Description

This function calculates the mode of a numbers vector.

Usage

\textit{mode\_(x)}

Arguments

\texttt{x} \quad \text{Should be a numbers vector}

Details

To calculate the mode of a dataset, the user should give a numbers vector. The result is the numeric value that appears most often. In other words, it’s the value that is most likely to be sampled. The mode formula is the following:

\[
\text{Mode} = l_1 + \left( \frac{f_0 - f_{-1}}{2f_0 - f_{-1} - f_1} \right) \times c
\]

Value

Numeric, the mode of the numbers vector.

Note

A vector is created by \texttt{c()}, like \texttt{c(1,2,3,4,5)} creates a vector with the numbers: 1,2,3,4,5

Author(s)

Dennis Monheimius, \texttt{dennis.monheimius@edu.uah.es}
Eduardo Benito, \texttt{eduardo.benito@edu.uah.es}
Juan Jose Cuadrado, \texttt{jjcg@uah.es}
Universidad de Alcala de Henares

Examples

{ }

\texttt{
#data creation
data = c(1,2,2,3,4)

mode\_(data)
}
Normal Distribution Calculus Function

Description

This function calculates the normal distribution of experiment.

Usage

\[ \text{normal}_\text{ (x)} \]

Arguments

\( x \)  
Should be a numbers.

Details

To calculate the normal distribution, the user should give a number. The result is a type of continuous probability distribution for a real-valued random variable. The normal distribution formula is the following:

\[
\text{Normal Distribution} = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \, dx
\]

Value

Numeric, the normal distribution.

Note

The variable is a number. Example: \( x < -0.1 \)

Author(s)

Jose Manuel Gomez Caceres, <josemanuel.gomezc@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares
Examples

```r
#data creation
x = 0.1

normal_(x)
```

---

## Pearson Correlation Calculus Function

### Description

This function calculates the pearson correlation of two vectors of numbers.

### Usage

```r
pearson_(x, y)
```

### Arguments

- `x`: Should be a vector
- `y`: Should be a vector

### Details

To calculate the pearson correlation, the user should give two vectors of numbers. The result is the covariance of the two vectors of numbers divided by the product of their standard deviations. The pearson correlation formula is the following:

\[
\text{Pearson Correlation} = \frac{\text{Cov}(x, y)}{S_x \times S_y}
\]

### Value

Numeric, the pearson correlation of two vectors of numbers.

### Note

A vector is created by `c()`, like `c(1,2,3,4,5)` creates a vector with the numbers: 1,2,3,4,5
Author(s)

Jose Manuel Gomez Caceres, <josemanuel.gomezc@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

Examples

# data creation
data = c(1,4,3,3,2,5,7,12,1,2,3,12)
data2 = c(1,2,4,4,6,5,11,2,10,5,6,1)
pearson_(data, data2)

---

percentile_  Percentile Calculus Function

Description

This function calculate the percentiles of a vector of numbers

Usage

percentile_(x, p)

Arguments

x  Should be a vector
p  Should be a number, 0 => y <= 1

Details

To calculate the percentiles, the user should give a vector. This function divide the dataset in 100 parts as equal as possible. The formula is the following:

\[
P_i = \begin{cases} 
\frac{\text{elemento}(E + 1)}{2} & \text{para } D \neq 0 \\
\frac{\text{elemento}(E) + \text{elemento}(E+1)}{2} & \text{para } D = 0
\end{cases}
\]

Value

A vector sorted with the elements divided by 100 parts
Note

A vector is created by `c()`, like `c(1,2,3,4,5)` creates a vector with the numbers: 1,2,3,4,5

Author(s)

Dennis Monheimius, <dennis.monheimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

Examples

```r
{
 #data creation
 data = c(1,4,3,3,2,5,7,12,1,2,3,12)
 percentile_(data,0.3)
}
```

---

**poisson_**

Poisson Distribution Calculus Function

Description

This function calculates the Poisson distribution of experiment.

Usage

```r
poisson_(k, lam)
```

Arguments

- `k` Should be a numbers
- `lam` Should be a numbers

Details

To calculate the Poisson distribution, the user should give two number ( the number of times the phenomenon and the number of occurrences). The result is a discrete probability distribution that expresses, from a mean frequency of occurrence, the probability that a certain number of events
will occur during a certain period of time. The Poisson distribution formula is the following:

\[
\text{Poisson Distribution} \quad = \frac{\lambda^x e^{-\lambda}}{X!}
\]

Value

Numeric, the Pearson correlation of two numbers.

Note

Each variable is a number. Example: lam <- 2 | k <- 3

Author(s)

Jose Manuel Gomez Caceres, <josemanuel.gomezc@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

Examples

```r
data creation
lam = 2
k = 3
poisson_(k,lam)
```

Description

Calculates the 3 Quartiles of a vector of data

Usage

`quartile_(x)`

Arguments

`x` Should be a vector
Details
To calculate the quartiles, the user should give a vector. This function divide the dataset in 4 parts as equal as possible. The formula is the following:

\[ Q_i = \frac{i(N)}{4} \]

Value
A vector sorted with the elements divided by 4 parts

Note
A vector is created by `c()`, like `c(1,2,3,4,5)` creates a vector with the numbers: 1,2,3,4,5

Author(s)
Dennis Monheimius, <dennis.monheimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

Examples
```
#data creation
data = c(1:20)
quartile_(data)
```

Description
This function calculates the standard deviation of a numbers vector.

Usage
```
standardDeviation_(x)
```

Arguments

\( x \) Should be a numbers vector
Details

To calculate the standard deviation, the user should give a numbers vector. The result is the square root of the sum of the differences between each vector element and the mean squared divided by the number of elements. The standard deviation formula is the following:

\[ s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2} \]

Value

Numeric, the standard deviation of the numbers vector.

Note

A vector is created by `c()`, like `c(1,2,3,4,5)` creates a vector with the numbers: 1,2,3,4,5

Author(s)

Dennis Monheimius, <dennis.monhemimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

Examples

```r
data creation
data = c(1,4,3,2,5,7,12,1,2,3,12)

standardDeviation_(data)
```

Description

This function calculates the T-Student distribution of experiment.

Usage

`tstudent_`(x,u,s,n)
Arguments

- **x** Should be a number
- **u** Should be a number
- **s** Should be a number
- **n** Should be a number

Details

To calculate the T-Student distribution, the user should give four number (sample mean, population mean, population standard deviation and sample size). The result is a probability distribution that arises from the problem of estimating the mean of a normally distributed population when the sample size is small. The T-Student distribution formula is the following:

\[
\text{T-Student Distribution} = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}
\]

Value

Numeric, the T-Student distribution.

Note

Each variable is a number. Example: \(x \leftarrow 2 \mid y \leftarrow 4\)

Author(s)

Jose Manuel Gomez Caceres, <josemanuel.gomezc@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

Examples

```r
data creation
x = 52.9
u = 50
s = 3
n = 10

tstudent_(x,u,s,n)
```
Variance Calculus Function

Description
This function calculates the variance of a numbers vector.

Usage
variance_(x)

Arguments
x  Should be a numbers vector

Details
To calculate the variance, the user should give a numbers vector. The result is the expectation of the squared deviation of all numbers vector from its mean. The variance formula is the following:

\[
\text{Variance} = \frac{\sum (X - \bar{X})^2}{N - 1}
\]

Value
Numeric, the variance of the numbers vector.

Note
A vector is created by c(), like c(1,2,3,4,5) creates a vector with the numbers: 1,2,3,4,5

Author(s)
Dennis Monheimius, <dennis.monheimius@edu.uah.es>
Eduardo Benito, <eduardo.benito@edu.uah.es>
Juan Jose Cuadrado, <jjcg@uah.es>
Universidad de Alcala de Henares

Examples
#data creation
data = c(1,4,3,3,2,5,7,12,1,2,3,12)

variance_(data)
Index

* ~absoluta
  averageDeviation_. 3
  explain.averageDeviation, 12
  frequency_abs, 35
  frequency_absolute_acum, 36
  interactive.averageDeviation, 45
* ~absolute
  averageDeviation_. 3
  explain.absolute_acum_frequency, 10
  explain.absolute_frecuency, 11
  explain.averageDeviation, 12
  frequency_abs, 35
  frequency_absolute_acum, 36
  interactive.absolute_acum_frequency, 44
  interactive.absolute_frequency, 44
  interactive.averageDeviation, 45
* ~accumulated
  explain.absolute_acum_frequency, 10
  explain.relative_acum_frequency, 29
  frequency_absolute_acum, 36
  frequency_relative_acum, 39
  interactive.absolute_acum_frequency, 44
  interactive.relative_acum_frequency, 58
* ~acumulada
  explain.absolute_acum_frequency, 10
  explain.relative_acum_frequency, 29
  frequency_absolute_acum, 36
  frequency_relative_acum, 39
* ~arithmetic.mean
  mean_. 65
  meanC, 64
* ~armonica
  explain.harmonicMean, 19
  harmonicMean_. 42
  interactive.harmonicMean, 51
* ~average
  averageDeviation_. 3
  explain.averageDeviation, 12
  interactive.averageDeviation, 45
* ~binomial
  binomial_. 4
  explain.binomial, 13
  interactive.binomial, 46
* ~chicuadrado
  chisquared_. 6
  explain.chisquared, 14
  interactive.chisquared, 47
* ~chisquared
  chisquared_. 6
  explain.chisquared, 14
* ~chisquared
  interactive.chisquared, 47
* ~coefficient
  cv_. 8
  explain.cv, 16
  interactive.cv, 48
* ~coeficiente
  cv_. 8
  explain.cv, 16
  interactive.cv, 48
* ~coger
  getUserAction, 41
* ~correlacion
  explain.pearson, 25
  pearson_. 70
* ~correlaction
  explain.pearson, 25
  pearson_. 70
* ~covariance
  explain.covariance, 15
* ~covarianza
  covariance_, 7
  explain.covariance, 15
  interactive.covariance, 48
  interactive.pearson, 55
* ~distribucion
  binomial_, 4
  explain.binomial, 13
  explain.fisher, 17
  explain.normal, 24
  explain.poisson, 27
  explain.tstudent, 32
  fisher_, 34
  interactive.binomial, 46
  interactive.fisher, 49
  interactive.normal, 55
  interactive.poisson, 57
  interactive.tstudent, 61
  normal_, 69
  poisson_, 72
  tstudent_, 75
* ~explicada
  explain.averageDeviation, 12
  explain.binomial, 13
  explain.chisquared, 14
  explain.median, 22
  explain.mode, 23
  explain.normal, 24
  explain.poisson, 27
  explain.percentile, 26
  explain.relative_acum_frequency, 29
  explain.relative_frequency, 30
  explain.tstudent, 32
  explain.variance, 33
* ~draw
  drawVector, 9
* ~explained
  explain.averageDeviation, 12
  explain.standardDeviation, 31
* ~explain
  explain.absolute_acum_frequency, 10
  explain.absolute_frequency, 11
  explain.binomial, 13
  explain.chisquared, 14
  explain.covariance, 15
  explain.cv, 16
  explain.fisher, 17
  explain.geometricMean, 18
  explain.harmonicMean, 19
  explain.laplace, 20
  explain.mean, 21
  explain.median, 22
  explain.mode, 23
  explain.normal, 24
  explain.poisson, 27
  explain.percentile, 26
  explain.poission, 27
  explain.quartile, 28
  explain.relative_frequency, 30
  explain.tstudent, 32
  explain.variance, 33
explain.covariance, 15
explain.cv, 16
explain.fisher, 17
explain.geometricMean, 18
explain.harmonicMean, 19
explain.laplace, 20
explain.mean, 21
explain.median, 22
explain.mode, 23
explain.normal, 24
explain.pearson, 25
explain.poisson, 27
explain.standardDeviation, 31
explain.tstudent, 32
explain.variance, 33
* ~fisher
  explain.fisher, 17
  interactive.fisher, 49
* ~frecuencia
  frequency_abs, 35
  frequency_absolute_acum, 36
  frequency_relative, 37
  frequency_relative_acum, 39
  interactive.absolute_frecuency, 44
  interactive.relative_frecuency, 59
* ~frecuencia
  explain.absolute_acum_frecuency, 10
  explain.absolute_frecuency, 11
  explain.relative_acum_frecuency, 29
  explain.relative_frecuency, 30
  frequency_abs, 35
  frequency_absolute_acum, 36
  frequency_relative, 37
  frequency_relative_acum, 39
  interactive.absolute_acum_frecuency, 44
  interactive.absolute_frecuency, 44
  interactive.relative_acum_frecuency, 58
  interactive.relative_frecuency, 59
* ~geometrica
  explain.geometricMean, 18
  geometricMean_, 40
  interactive.geometricMean, 50
* ~geometric
  explain.geometricMean, 18
  geometricMean_, 40
  interactive.geometricMean, 50
* ~get
  getUserAction, 41
* ~harmonic
  explain.harmonicMean, 19
  harmonicMean_, 42
  interactive.harmonicMean, 51
* ~imagenes
  initImages, 43
* ~images
  initImages, 43
* ~iniciar
  initImages, 43
* ~init
  initImages, 43
* ~interactiva
  interactive.averageDeviation, 45
  interactive.binomial, 46
  interactive.chisquared, 47
  interactive.covariance, 48
  interactive.cv, 48
  interactive.fisher, 49
  interactive.geometricMean, 50
  interactive.harmonicMean, 51
  interactive.laplace, 52
  interactive.mean, 52
  interactive.median, 53
  interactive.mode, 54
  interactive.normal, 55
  interactive.pearson, 55
  interactive.poisson, 57
  interactive.standardDeviation, 60
  interactive.tstudent, 61
  interactive.variance, 62
* ~interactiva
  interactive.absolute_acum_frecuency, 44
  interactive.absolute_frecuency, 44
  interactive.averageDeviation, 45
  interactive.binomial, 46
  interactive.chisquared, 47
  interactive.covariance, 48
  interactive.cv, 48
  interactive.fisher, 49
  interactive.geometricMean, 50
  interactive.harmonicMean, 51
  interactive.laplace, 52
  interactive.mean, 52
  interactive.median, 53
interactive.mode, 54
interactive.normal, 55
interactive.pearson, 55
interactive.percentile, 56
interactive.poisson, 57
interactive.quartile, 58
interactive.relative_acum_frequency, 58
interactive.relative_frequency, 59
interactive.standardDeviation, 60
interactive.tstudent, 61
interactive.variance, 62

* ~interactivo
  interactive.geometricMean, 50
  interactive.mean, 52

* ~laplace
  explain.laplace, 20
  interactive.laplace, 52
  laplace_, 62

* ~meanC
  meanC, 64

* ~mean
  explain.geometricMean, 18
  explain.harmonicMean, 19
  explain.mean, 21
  geometricMean_, 40
  harmonicMean_, 42
  interactive.geometricMean, 50
  interactive.harmonicMean, 51
  interactive.mean, 52
  mean_, 65

* ~media.aritmetica
  mean_, 65
  meanC, 64

* ~media.explícada
  explain.mean, 21

* ~media.interactiva
  interactive.mean, 52

* ~mediaC
  meanC, 64

* ~mediana.explícada
  explain.median, 22

* ~mediana.interactiva
  interactive.median, 53

* ~mediana
  median_, 66

* ~median
  explain.median, 22

interactive.median, 53
median_, 66

* ~media
  explain.geometricMean, 18
  explain.harmonicMean, 19
  geometricMean_, 40
  harmonicMean_, 42
  interactive.geometricMean, 50
  interactive.harmonicMean, 51
  mean_, 65

* ~moda.explícada
  explain.mode, 23

* ~moda.interactiva
  interactive.mode, 54

* ~moda
  mode_, 68

* ~mode
  explain.mode, 23
  interactive.mode, 54
  mode_, 68

* ~normal
  explain.normal, 24
  interactive.normal, 55
  normal_, 69

* ~pearson
  explain.pearson, 25
  pearson_, 70

* ~percentiles
  interactive.percentile, 56

* ~percentile
  explain.percentile, 26
  interactive.percentile, 56
  percentile_, 71

* ~percentil
  interactive.percentile, 56
  percentile_, 71

* ~pintar
drawVector, 9

* ~poisson
  explain.poisson, 27
  interactive.poisson, 57
  poisson_, 72

* ~quantiles
  interactive.quartile, 58

* ~quantile
  quartile_, 73

* ~quartile
  explain.quartile, 28
INDEX

frequency_relative_acum, 39

geometricMean, 40
getUserAction, 41

harmonicMean, 42
harmonicMean (harmonicMean), 42

initImages, 43
interactive.absolute_acum_frecuency, 44
interactive.absolute_frecuency, 44
interactive.averageDeviation, 45
interactive.binomial, 46
interactive.chisquared, 47
interactive.covariance, 48
interactive.cv, 48
interactive.fisher, 49
interactive.geometricMean, 50
interactive.harmonicMean, 51
interactive.laplace, 52
interactive.mean, 52
interactive.median, 53
interactive.mode, 54
interactive.normal, 55
interactive.pearson, 55
interactive.percentile, 56
interactive.poisson, 57
interactive.quartile, 58
interactive.relative_acum_frecuency, 58
interactive.relative_frecuency, 59
interactive.standardDeviation, 60
interactive.tstudent, 61
interactive.variance, 62

laplace, 62
LearningRlab, 64

mean, 65
meanC, 64
median, 66
mode, 68

normal, 69

pearson, 70
percentile, 71
poisson, 72