Package ‘LinkedGASP’

December 9, 2018

Type Package
Title Linked Emulator of a Coupled System of Simulators
Version 1.0
Date 2018-11-24
Author Ksenia N. Kyzyurova, kseniak.ucoz.net
Maintainer Ksenia N. Kyzyurova <ksenia.kyzyurova@gmail.com>
Depends nloptr, spBayes
Suggests MASS

Description Prototypes for construction of a Gaussian Stochastic Process emulator (GASP) of a computer model. This is done within the objective Bayesian implementation of the GASP. The package allows for construction of a linked GASP of the composite computer model. Computational implementation follows the mathematical exposition given in publication: Ksenia N. Kyzyurova, James O. Berger, Robert L. Wolpert. Coupling computer models through linking their statistical emulators. SIAM/ASA Journal on Uncertainty Quantification, 6(3): 1151-1171, (2018).<DOI:10.1137/17M1157702>.

License GPL (>= 3)
NeedsCompilation no
Repository CRAN
Date/Publication 2018-12-09 16:50:03 UTC

R topics documented:

emp_GASP_plot .. 2
eval_GASP_RFP ... 4
eval_TGASP .. 6
eval_type1_GASP ... 7
eval_type2_GASP ... 8
GASP_plot ... 9
link .. 10
NGASPmetrics ... 12
TGASPmetrics ... 14
TGASP_plot ... 15
emp_GASP_plot

Description

Function plots the empirical true linked emulator in case of one-dimensional input.

Usage

emp_GASP_plot(em, fun, data, emul_type, exp.ql, exp.qu, labels, ylab, xlab, ylim, col_CI_area, col_points, col_fun, col_mean, points)

Arguments

em the returned output from the function eval_type1_GASP(...) or eval_type2_GASP(...).
fun Simulator function. Currently only one-dimensional input is supported.
data Training data and smoothness. The same as supplied to eval_GASP_RFP(...) for construction of the GASP.
emul_type A text string which provides description of an emulator.
exp.ql Quantile 0.025
exp.qu Quantile 0.975
labels As in standard R plot.
ylab As in standard R plot.
xlab As in standard R plot.
ylim As in standard R plot.
col_CI_area Color of a credible area.
col_points Color of the training points.
col_fun Color of a simulator function.
col_mean Color of the emulator of the GASP mean.
points Default is FALSE. To plot or not the training points.

Value

Plot

Author(s)

Ksenia N. Kyzyurova, kseniak.ucoz.net
Examples

```r
## Function f1 is a simulator
f1 <- function(x)(sin(pi*x))
## Function f2 is a simulator
f2 <- function(x)(cos(5*x))

## Function f2(f1) is a simulator of a composite model
f2f1 <- function(x)f2(f1(x))

## One-dimensional inputs are x1
x1 <- seq(-1, 1, 0.01)

## The following contains the list of data inputs (training) and outputs (fD) together with the
## assumed fixed smoothness of a computer model output.
data.f1 <- list(training = x1, fD = f1(x1), smooth = 1.99)

## Evaluation of GASP parameters
f1_MLEs = eval_GASP_RFP(data.f1, list(function(x){x^0}, function(x){x^1}), 1, FALSE)

## Evaluate the emulator
xN = seq(-1, 1, 0.01)
GASP_type2.f1 <- eval_type2_GASP(as.matrix(xN), f1_MLEs)

par(mfrow = c(1, 1))
par(mar = c(6.1, 6.1, 5.1, 2.1))
ylim = c(-1.5, 1.5)
GASP_plot(GASP_type2.f1, data.f1,"Type 2 GASP"," f", xlab = "x",
ylim = ylim, plot_training = TRUE)

s = GASP_type2.f1$mu
s.var = diag(GASP_type2.f1$var)
xN = seq(-0.95, 0.95, length = 6)*f1(x1)
data.f2 <- list(training = xN, fD = f2(xN), smooth = 2) # linking requires this emulator
## to have smoothness parameter equal to 2
f2_MLEs = eval_GASP_RFP(data.f2, list(function(x){x^0}, function(x){x^1}), 1, FALSE)

GASP_type1.f2 <- eval_type1_GASP(as.matrix(seq(-3.5, 3.5, .01)), f2_MLEs)
GASP_type2.f2 <- eval_type2_GASP(as.matrix(seq(-1, 1, .01)), f2_MLEs)
TGASP.f2 <- eval_TGASP(as.matrix(seq(-1, 1, .01)), f2_MLEs)

ylim = c(-1.5, 1.5)
# labels = c(expression(phantom(x)*phantom(x)*phantom(x)*f(x[1]))),
# expression(f(x[2])*phantom(x)*phantom(x)),
# expression(f(x[3])),expression(f(x[4])),
# expression(f(x[5])),expression(f(x[6])))
par(mar = c(6.1, 6.1, 5.1, 2.1))
GASP_plot(GASP_type2.f2, f2, data.f2, "Type 2 GASP", labels = xN, xlab = "z", ylab = " g",
ylim = ylim, plot_training = TRUE)
```
le <- link(f1_MLEs, f2_MLEs, as.matrix(xn))

Construct an empirical emulator
n.samples = 100
em2.runs <- mat.or.vec(n.samples, length(s))
library(MASS)
for(i in 1:n.samples) {
 GASP = eval_type2_GASP(as.matrix(mvrnorm(1, s, diag(s.var))), f2_MLEs)
 em2.runs[i,] <- mvrnorm(1, GASP$mu, GASP$var)
}

Plot the empirical GASP emulator
data.f2f1 <- list(training = x1, f0 = f2f1(x1), smooth = 2)
par(mar = c(6.1, 6.1, 5.1, 2.1))
emp_GASP_plot(le = em2.runs, data.f2f1, "Linked", apply(em2.runs, 2, quantile, probs = 0.025),
 apply(em2.runs, 2, quantile, probs = 0.975),
 ylab = expression("g" ~ scriptscriptstyle("o" ~ "f"), xlab = "x, input", ylim = ylim)

eval_GASP_RFP

Evaluation of parameters of a Gaussian stochastic process emulator of a computer model.

Description

This function evaluates parameters of a Gaussian stochastic process emulator of a computer model based on a few observations which are available from the simulator of a computer model.

Usage

eval_GASP_RFP(data, basis, corr.cols, nugget)

Arguments

- **data**: list which consists of three objects: training input values (which may be multivariate, along several dimensions), corresponding output values of a simulator (scalar) and a vector of smoothness parameter(s) along each input direction.
- **basis**: A set of functions in the mean of a Gaussian process. Typically assumed to be linear in one or several dimensions.
- **corr.cols**: specifies which input directions must be included in the specification of a correlation function.
- **nugget**: Parameter which accounts for possible small stochasticity in the output of a computer model. Default is FALSE.

Details

See examples which illustrate inputs specification to the function.
eval_GASP_RFP

Value

Function returns a list of objects, including estimates of parameters, which is subsequently may be used for construction of a GASP approximation with the estimated parameters and the data involved.

- **delta**: Estimates of range parameters in the correlation function.
- **eta**: Estimates of a nugget.
- **sigma.sq**: Estimates of variance.
- **data**: Input parameter returned for convenience.
- **nugget**: Input parameter returned for convenience.
- **basis**: Input parameter returned for convenience.
- **corr.cols**: Input parameter returned for convenience.

Author(s)

Ksenia N. Kyzyurova, kseniak.ucoz.net.

References

Ksenia N. Kyzyurova, James O. Berger, and Robert L. Wolpert. Coupling computer models through linking their statistical emulators. SIAM/ASA Journal on Uncertainty Quantification, 6(3): 1151-1171, 2018

Examples

```r
## Function f1 is a simulator
f1 <- function(x) {sin(pi*x)}

## One-dimensional inputs are x1
x1 <- seq(-1,1,.37)

## data.f1 contains the list of data inputs (training) and outputs (fD) together with the assumed fixed smoothness of a computer model output. This corresponds to the smoothness in a product power exponential correlation function used for construction of the emulator.
data.f1 <- list(training = x1, fD = f1(x1), smooth = 1.99)

## Evaluation of GASP parameters
f1_MLEs = eval_GASP_RFP(data.f1, list(function(x){x^0}, function(x){x^1}), 1, FALSE)
```
Description

This function evaluates the third GASP of a computer model within objective Bayesian (OB) implementation of the GASP, resulting in T-GASP.

Usage

eval_TGASP(input, GASPparams)

Arguments

input Input values (the same dimension as training input data in the next argument GASPparams)
GASPparams The output of the function eval_GASP_RFP.

Value

Function returns a list of three objects

x Inputs.
mu Mean of an emulator.
var Covariance matrix of an emulator.

Author(s)

Ksenia N. Kyzyurova, kseniak.ucoz.net.

Examples

```r
## Function f2 is a simulator
f2 <- function(x){cos(5*x)}

## One-dimensional inputs x2
x2 = seq(-0.95, 0.95, length = 6)
data.f2 <- list(training = x2, f0 = f2(x2), smooth = 2)

## Evaluation of GASP parameters
f2_MLEs = eval_GASP_RFP(data.f2, list(function(x){x^0}, function(x){x^1}), 1, FALSE)

## Evaluation of a T-GASP emulator
TGASP_f2 <- eval_TGASP(as.matrix(seq(-1, 1, 0.01)), f2_MLEs)
```
The first type of an emulator of a computer model

Description

This function evaluates the first GASP of a computer model using maximum a posteriori estimates (MAP) of parameters of the GASP.

Usage

eval_type1_GASP(input, GASPparams)

Arguments

input input values (the same dimension as training input data in the next argument GASPparams)
GASPparams The output of the function eval_GASP_RFP.

Details

See examples which illustrate inputs specification to the function.

Value

Function returns a list of three objects

x Inputs.
mu Mean of an emulator.
var Covariance matrix of an emulator.

Author(s)

Ksenia N. Kyzyurova, kseniak.ucoz.net.

Examples

```r
## Function f1 is a simulator
f1 <- function(x)(sin(pi*x))

## One-dimensional inputs are x1
x1 <- seq(-1,1,.37)

## The following contains the list of data inputs (training) and outputs (fD) together with the
## assumed fixed smoothness of a computer model output.
data.f1 <- list(training = x1, fD = f1(x1), smooth = 1.99)

## Evaluation of GASP parameters
def1_MLEs = eval_GASP_RFP(data.f1,list(function(x){x*0},function(x){x^1}),1,TRUE)
```
Evaluate the emulator

```r
xn = seq(-1,1,0.01)
GASP_type1_f1 <- eval_type1_GASP(as.matrix(xn),f1_MLEs)
```

The second type of an emulator of a computer model

Description

This function evaluates the second GASP of a computer model within partial objective Bayesian (POB) implementation of the GASP.

Usage

```r
eval_type2_GASP(input, GASPParams)
```

Arguments

- **input**: input values (the same dimension as training input data in the next argument GASPParams)
- **GASPParams**: The output of the function `eval_GASP_RFP`.

Details

See examples which illustrate inputs specification to the function.

Value

Function returns a list of three objects:

- **x**: Inputs.
- **mu**: Mean of an emulator.
- **var**: Covariance matrix of an emulator.

Author(s)

Ksenia N. Kzyurova, kseniak.ucoz.net.

Examples

```r
## Function f2 is a simulator
f2 <- function(x){cos(5*x)}

## One-dimensional inputs x2
x2 = seq(-0.95,0.95,length = 6)
data.f2 <- list(training = x2,fD = f2(x2), smooth = 2)
```
GASP_plot

Description

Function allows to plot the GASP in case of one-dimensional input.

Usage

```r
GASP_plot(em, fun, data, emul_type, labels, yax, ylab, xlab, ylim,
col_CI_area, col_points, col_fun, col_mean, plot_training = FALSE, plot_fun = TRUE)
```

Arguments

- `em`: the returned output from the function `eval_type1_GASP(...)` or `eval_type2_GASP(...)`.
- `fun`: Simulator function. Currently only one-dimensional input is supported.
- `data`: Training data and smoothness. The same as supplied to `eval_GASP_RFP(...)` for construction of the GASP.
- `emul_type`: A text string which provides description of an emulator.
- `labels`: As in standard R plot.
- `yax`: As in standard R plot.
- `ylab`: As in standard R plot.
- `xlab`: As in standard R plot.
- `ylim`: As in standard R plot.
- `col_CI_area`: Color of a credible area.
- `col_points`: Color of the training points.
- `col_fun`: Color of a simulator function.
- `col_mean`: Color of the emulator of the GASP mean.
- `plot_training`: (Not) to plot the training points. Default is FALSE.
- `plot_fun`: (Not) to plot the simulator function. Default is TRUE.

Value

Plot
Note

The function requires further development to be automated for visualization along a single dimension out of multiple dimensions and along two dimensions out of multiple dimensions.

Author(s)

Ksenia N. Kyzyurova, kseniak.ucoz.net

Examples

```r
## Function f1 is a simulator
f1 <- function(x)(sin(pi*x))
## One-dimensional inputs are x1
x1 <- seq(-1,1,.37)

## The following contains the list of data inputs (training) and outputs (fD) together with the
## assumed fixed smoothness of a computer model output.
data.f1 <- list(training = x1,fD = f1(x1), smooth = 1.99)

## Evaluation of GASP parameters
f1_MLEs = eval_GASP_RFP(data.f1,list(function(x){x^0},function(x){x^1}),1,FALSE)

## Evaluate the emulator
xn = seq(-1,1,.01)
GASP_type1_f1 <- eval_type1_GASP(as.matrix(xn),f1_MLEs)

## Plot the emulator
par(mfrow = c(1,1))
par(mar = c(6,1,6,1,5,1,2,1))
ylim = c(-5,5)
GASP_plot(GASP_type1_f1,fun = f1,data = data.f1,"",ylim = ylim, plot_training = TRUE)
```

Description

Function constructs a linked GASP emulator of a composite computer model f2(f1).

Usage

```r
link(f1_MLEs, f2_MLEs, test_input)
```

Arguments

- `f1_MLEs`: Parameters of the emulator of a simulator f1.
- `f2_MLEs`: Parameters of the emulator of a simulator f2.
- `test_input`: Testing inputs.
Details

See examples which illustrate inputs specification to the function.

Value

Four types of the linked GASP.

- **em1**: Type 1 emulator, which uses MAP estimates of parameters.
- **em2**: Type 2 emulator within partial objective Bayesian (POB) implementation.
- **emT**: T-GASP emulator within objective Bayesian (OB) implementation.
- **em3**: Approximated T-GASP emulator with the Gaussian distribution.

Author(s)

Ksenia N. Kyzyurova, kseniak.ucoz.net

References

Ksenia N. Kyzyurova, James O. Berger, and Robert L. Wolpert. Coupling computer models through linking their statistical emulators. SIAM/ASA Journal on Uncertainty Quantification, 6(3): 1151-1171, 2018

Examples

```r
## Function f1 is a simulator
f1 <- function(x) {sin(pi * x)}
## Function f2 is a simulator
f2 <- function(x) {cos(5 * x)}

## Function f2(f1) is a simulator of a composite model
f2f1 <- function(x) {f2(f1(x))}

## One-dimensional inputs are x1
x1 <- seq(-1, 1, .37)

## The following contains the list of data inputs (training) and outputs (fD) together with
## the assumed fixed smoothness of a computer model output.
data.f1 <- list(training = x1, fD = f1(x1), smooth = 1.99)

## Evaluation of GASP parameters
f1_MLEs = eval_GASP_RFP(data.f1, list(function(x){x^0},function(x){x^1}), 1, FALSE)

## Evaluate the emulator
xn = seq(-1, 1, .01)
GASP_type2_f1 <- eval_type2_GASP(as.matrix(xn), f1_MLEs)

par(mfrow = c(1, 1))
par(mar = c(6.1, 6.1, 5.1, 2.1))
ylim = c(-1.5, 1.5)
GASP_plot(GASP_type2_f1, f1, data.f1, "Type 2 GASP", ylab = "f", xlab = "x",)
```
ylim = ylim, plot_training = TRUE)

s = GASP_type2_f1$mu
s.var = diag(GASP_type2_f1$var)

x2 = seq(-0.95, 0.95, length = 6)#f1(x1)
data.f2 <- list(training = x2, fD = f2(x2), smooth = 2) # linking requires this emulator # to have smoothness parameter equal to 2

f2_MLEs = eval_GASP_RFP(data.f2, list(function(x){x^0}, function(x)(x^1)), 1, FALSE)

GASP_type1_f2 <- eval_type1_GASP(as.matrix(seq(-3.5, 3.5, 0.1)), f2_MLEs)
GASP_type2_f2 <- eval_type2_GASP(as.matrix(seq(-1, 1, 0.01)), f2_MLEs)
TGASP_f2 <- eval_TGASP(as.matrix(seq(-1, 1, 0.01)), f2_MLEs)

ylim = c(-1.5, 1.5)
labels = c(expression(phantom(x)*phantom(x)*phantom(x)*f(x[1])),
expression(f(x[2])*phantom(x)*phantom(x)*phantom(x)),
expression(f(x[3])), expression(f(x[4])),
expression(f(x[5])), expression(f(x[6])))

par(mar = c(6.1, 6.1, 5.1, 2.1))
GASP_plot(GASP_type2_f2, f2, data.f2, "Type 2 GASP", labels = x2, xlab="z", ylab = "g", ylim = ylim, plot_training = TRUE)

le <- link(f1_MLEs, f2_MLEs, as.matrix(xn))

Plot second type of the linked GASP
data.f2f1 <- list(training = x1, fD = f2f1(x1), smooth = 2)

par(mar = c(6.1, 6.1, 5.1, 2.1))
GASP_plot(lesem2, f2f1, data.f2f1, "Linked", labels = x1,
ylab = expression("g" ~ scriptscriptstyle(o) ~ "f"), xlab = "x", ylim = ylim)

NGASPMetrics

GASP performance assessment measures

Description

Evaluates frequentist performance of the GASP.

Usage

NGASPMetrics(GASP, true_output, ref_output)

Arguments

<table>
<thead>
<tr>
<th>GASP</th>
<th>GASP emulator.</th>
</tr>
</thead>
<tbody>
<tr>
<td>true_output</td>
<td>Output from the simulator.</td>
</tr>
<tr>
<td>ref_output</td>
<td>Heuristic emulator output.</td>
</tr>
</tbody>
</table>
Value

List of performance measures.

- **RMSPE_base**: Root mean square predictive error with respect to the heuristic emulator output.
- **RMSPE**: Root mean square predictive error for the emulator output.
- **ratio**: Ratio of RMSPE_base to RMSPE. Ratio = RMSPE_base/RMSPE
- **CIs**: 95% central credible intervals.
- **emp_cov**: 95% empirical coverage within the CIs.
- **length_CIs**: Average length of 95% central credible intervals.

Author(s)

Ksenia N. Kyzyurova, ksenia.ucoz.net

References

Ksenia N. Kyzyurova, James O. Berger, and Robert L. Wolpert. Coupling computer models through linking their statistical emulators. SIAM/ASA Journal on Uncertainty Quantification, 6(3): 1151-1171, 2018

Examples

```r
## Function f1 is a simulator
f1<-function(x)(sin(pi*x))

## One-dimensional inputs are x1
x1<-seq(-1,1,.37)

## The following contains the list of data inputs (training) and outputs (fD) together with the assumed fixed smoothness of a computer model output.
data.f1 <- list(training = x1,fD = f1(x1), smooth = 1.99)

## Evaluation of GASP parameters
f1_MLEs = eval_GASP_RFP(data.f1,list(function(x){x^0},function(x){x^1}),1,FALSE)

## Evaluate the emulator
xn = seq(-1,1,.01)
GASP_type2_f1 <- eval_type2_GASP(as.matrix(xn),f1_MLEs)

## Plot the emulator
par(mar = c(6.1, 6.1, 5.1, 2.1))
GASP_pplot(GASP_type2_f1,data = data.f1,emul_type = "",ylim = ylim, plot_training = TRUE)

## Measure performance of an emulator
NGASPmetrics(GASP_type2_f1,f1(xn),mean(f1(xn)))
```
TGASPMetrics

Performance measurement of a T-GASP

Description

Evaluates frequentist performance of a T-GASP.

Usage

TGASPMetrics(TGASP, true_output, ref_output)

Arguments

- **TGASP**: TGASP emulator (in the paper this is done within an objective Bayesian implementation - OB emulator.)
- **true_output**: Output from the simulator.
- **ref_output**: Heuristic emulator output.

Details

See examples which illustrate the use of the function.

Value

List of performance measures.

- **RMSPE_base**: Root mean square predictive error with respect to the heuristic emulator output.
- **RMSPE**: Root mean square predictive error for the emulator output
- **ratio**: ratio of RMSPE_base to RMSPE. Ratio = RMSPE_base/RMSPE
- **CI_s**: 95% central credible intervals
- **emp_cov**: 95% empirical coverage within the CIs
- **length_CIs**: Average length of 95% central credible intervals

Author(s)

Ksenia N. Kyzyurova, ksenia.ucoz.net

References

Ksenia N. Kyzyurova, James O. Berger, and Robert L. Wolpert. Coupling computer models through linking their statistical emulators. SIAM/ASA Journal on Uncertainty Quantification, 6(3): 1151-1171, 2018
Examples

```r
## Function f1 is a simulator
f1 <- function(x)(sin(pi*x))

## One-dimensional inputs are x1
x1 <- seq(-1,1,0.37)

## The following contains the list of data inputs (training) and outputs (fD) together with
## the assumed fixed smoothness of a computer model output.
data.f1 <- list(training = x1,fD = f1(x1)), smooth = 1.99)

## Evaluation of GASP parameters
f1_mles <- eval_GASP_RFP(data.f1,list(function(x){x^0},function(x){x^1}),1,FALSE)

## Evaluate the emulator
xn = seq(-1,1,.01)
TGASP_f1 <- eval_TGASP(as.matrix(xn),f1_mles)

## Plot the emulator
par(mfrow = c(1,1))
par(mar = c(6.1, 6.1, 5.1, 2.1))
ylim = c(-1.5,1.5)
TGASP_plot(TGASP_f1,f1(xn),ylim = ylim)

## Measure the performance of the emulator
TGASPmetrics(TGASP_f1,f1(xn),mean(f1(xn)))
```

Description

Function allows to plot the TGASP in case of one-dimensional input. Black-and-white version.

Usage

`TGASP_plot(tem, fun, data, labels, ylim, points)`

Arguments

- `tem` (TGasP emulator).
- `fun` (Simulator function).
- `data` (Training data and smoothness. The same as supplied to eval_GASP_RFP(...) for construction of a GASP).
- `labels` (As in standard R plot).
- `ylim` (As in standard R plot).
- `points` (Not) to plot the training points.
Details
See examples.

Value
Plot

Note
The function requires further development to be automated for visualization along a single dimension out of multiple dimensions and along two dimensions out of multiple dimensions.

This function needs to be automated to allow for fast visualization of a single emulator (with no comparison to the actual simulator function), etc.

Author(s)
Ksenia N. Kyzyurova, kseniak.ucoz.net

Examples

```r
## Function f1 is a simulator
f1 <- function(x)(sin(pi*x))

## One-dimensional inputs are x1
x1 <- seq(-1,1,.37)

## The following contains the list of data inputs (training) and outputs (fD) together with
## the assumed fixed smoothness of a computer model output.
data.f1 <- list(training = x1,fD = f1(x1), smooth = 1.99)

## Evaluation of GASP parameters
f1_MLEx <- eval_GASP_RFP(data.f1,list(function(x){x^0},function(x){x^1}),1,FALSE)

## Evaluate the emulator
xN <- seq(-1,1,.01)
TGASP.f1 <- eval_TGASP(as.matrix(xN),f1_MLEx)

## Plot the emulator
par(mfrow = c(1,1))
par(mar = c(6.1, 6.1, 5.1, 2.1))
ylim = c(-1.5,1.5)
TGASP_plot(TGASP_f1,f1,data.f1,ylim = ylim)
```
Index

*Topic models
 eval_GASP_RFP, 4
 eval_TGASP, 6
 eval_type1_GASP, 7
 eval_type2_GASP, 8
 link, 10

*Topic print
 emp_GASP_plot, 2
 GASP_plot, 9
 TGASP_plot, 15

*Topic utilities
 NGASPmetrics, 12
 TGASPmetrics, 14

emp_GASP_plot, 2
eval_GASP_RFP, 4
eval_TGASP, 6
eval_type1_GASP, 7
eval_type2_GASP, 8

GASP_plot, 9

link, 10

NGASPmetrics, 12

TGASP_plot, 15
TGASPmetrics, 14