Title Locally Sparse Estimator of Generalized Varying Coefficient Model for Asynchronous Longitudinal Data

Version 1.1

Description Locally sparse estimator of generalized varying coefficient model for asynchronous longitudinal data by kernel-weighted estimating equation.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.1.1

Imports fda, Matrix, psych, splines, stats

NeedsCompilation no

Author Rou Zhong [aut, cre], Jingxiao Zhang [aut]

Maintainer Rou Zhong <zhong_rou@163.com>

Repository CRAN

Date/Publication 2022-03-27 23:10:12 UTC

R topics documented:

LocKer

LocKer Locally sparse estimator of generalized varying coefficient model for asynchronous longitudinal data.

Description

Locally sparse estimator of generalized varying coefficient model for asynchronous longitudinal data by kernel-weighted estimating equation. The function is suitable for generalized varying coefficient model with one covariate.
Usage

LocKer(
 X,
 Y,
 family,
 X_obser_num,
 Y_obser_num,
 X_obser,
 Y_obser,
 timeint,
 L_list,
 roupen_para_list,
 lambda_list,
 absTol_list,
 nfold = 5,
 d = 3
)

Arguments

X A list of n vectors, where n is the sample size. Each entry contains the measurements of the covariate for each subject at the observation time correspond to X_obser.

Y A list of n vectors, where n is the sample size. Each entry contains the measurements of the response for each subject at the observation time correspond to Y_obser.

family A character string representing the distribution family of the response. The value can be "Gaussian", "binomial", "poisson".

X_obser_num A vector denoting the observation size of the covariate for each subject.

Y_obser_num A vector denoting the observation size of the response for each subject.

X_obser A list of n vectors, where n is the sample size. Each entry contains the observation times of the covariate for each subject.

Y_obser A list of n vectors, where n is the sample size. Each entry contains the observation times of the response for each subject.

timeint A vector of length two denoting the supporting interval.

L_list A vector denoting the candidates for the number of B-spline basis functions. The best L is chosen by cross-validation.

roupen_para_list A vector denoting the candidates for the roughness parameters. The best roughness parameter is chosen by EBIC together with sparseness parameter.

lambda_list A vector denoting the candidates for the sparseness parameter. The best sparseness parameter is chosen by EBIC together with roughness parameter.

absTol_list A vector denoting the threshold of the norm for coefficient function on each sub-interval. The vector is related to L_list, with the same length as L_list.
nfold An integer denoting the number of fold for the selection of L by cross-validation. (default: 5)

d An integer denoting the degree of B-spline basis functions. (default: 3)

Value

A list containing the following components:

- `beta0fd_est`: A functional data object denoting the estimated intercept function.
- `betafd_est`: A functional data object denoting the estimated coefficient function.
- `time`: A scalar denoting the computation time.
- `L`: An integer denoting the selected number of B-spline basis function.
- `roupen_select`: A scalar denoting the selected roughness parameter.
- `lambda_select`: A scalar denoting the selected sparseness parameter.
- `EBIC`: A matrix denoting the EBIC scores for various roughness parameters and sparseness parameters belongs to the candidates when using the selected L.

Examples

```r
### Generate data
n <- 200
beta0 <- function(x){cos(2 * pi * x)}
beta <- function(x){sin(2 * pi * x)}
Y_rate <- 15
X_rate <- 15
Y_obser_num <- NULL
X_obser_num <- NULL
Y_obser <- list()
X_obser <- list()
for(i in 1:n){
  Y_obser_num[i] <- stats::rpois(1, Y_rate) + 1
  Y_obser[[i]] <- stats::runif(Y_obser_num[i], 0, 1)
  X_obser_num[i] <- stats::rpois(1, X_rate) + 1
  X_obser[[i]] <- stats::runif(X_obser_num[i], 0, 1)
}
## The covariate functions Xi(t)
X_basis <- fda::create.bspline.basis(c(0, 1), nbasis = 74, norder = 5,
  breaks = seq(0, 1, length.out = 71))
a <- matrix(0, nrow = n, ncol = 74)
X <- list()
XY <- list() # X at the observation time of Y
muY <- list()
for(i in 1:n){
  a[i,] <- stats::rnorm(74)
  Xi_B <- splines::bs(X_obser[[i]], knots = seq(0, 1, length.out = 71)[-c(1, 71)],
    degree = 4, intercept = TRUE)
  X[[i]] <- Xi_B %*% a[i,]
  Yi_B <- splines::bs(Y_obser[[i]], knots = seq(0, 1, length.out = 71)[-c(1, 71)],
    degree = 4, intercept = TRUE)
  XY[[i]] <- Yi_B %*% a[i,]
}```
muY[[i]] <- beta0(Y_obser[[i]]) + XY[[i]] * beta(Y_obser[[i]])
}
Y <- list()
errY <- list()
for(i in 1:n){
  errY[i] <- stats::rnorm(Y_obser_num[i], mean = 0, sd = 1)
  Y[i] <- muY[i] + errY[i]
}
L_list <- 20
absTol_list <- 10^(-3)
roupen_para_list <- 1.5 * 10^(-3)
lambda_list <- c(0, 0.001, 0.002)
LocKer_list <- LocKer(X, Y, family = "Gaussian", X_obser_num, Y_obser_num, X_obser, Y_obser, timeint = c(0, 1), L_list, roupen_para_list, lambda_list, absTol_list)
Index

LocKer, 1