Package ‘LongCART’

April 25, 2020

Type Package

Title Recursive Partitioning for Longitudinal Data and Right Censored Data Using Baseline Covariates

Version 2.0

Date 2020-04-24

Author Madan G Kundu

Maintainer Madan G Kundu <madan_g.kundu@yahoo.com>

Depends R (>= 3.4.0), nlme, rpart, survival, magic, survminer

Imports Formula

Description Constructs tree for continuous longitudinal data and survival data using baseline covariates as partitioning variables according to the ‘LongCART’ and ‘SurvCART’ algorithm, respectively.

License GPL (>= 2)

URL https://www.r-project.org

BugReports https://github.com/madanstat/LongCART/issues

NeedsCompilation no

Repository CRAN

Date/Publication 2020-04-24 23:10:02 UTC

R topics documented:

ACTG175 ... 2
GBSG2 .. 3
KMPlot.SurvCART .. 4
LongCART ... 5
plot.SurvCART ... 8
plotLongCART .. 9
StabCat ... 11
StabCat.surv ... 13
StabCont ... 14
Description

ACTG 175 was a randomized clinical trial to compare monotherapy with zidovudine or didanosine with combination therapy with zidovudine and didanosine or zidovudine and zalcitabine in adults infected with the human immunodeficiency virus type I whose CD4 T cell counts were between 200 and 500 per cubic millimeter.

Usage

data(ACTG175)

Format

A data frame with 6417 observations from 2139 patients on the following 24 variables.

- **pidnum** patient ID number
- **age** age in years at baseline
- **wtkg** weight in kg at baseline
- **hemo** hemophilia (0=no, 1=yes)
- **homo** homosexual activity (0=no, 1=yes)
- **drugs** history of intravenous drug use (0=no, 1=yes)
- **karnof** Karnofsky score (on a scale of 0-100)
- **oprior** non-zidovudine antiretroviral therapy prior to initiation of study treatment (0=no, 1=yes)
- **z30** zidovudine use in the 30 days prior to treatment initiation (0=no, 1=yes)
- **zprior** zidovudine use prior to treatment initiation (0=no, 1=yes)
- **preanti** number of days of previously received antiretroviral therapy
- **race** race (0=white, 1=non-white)
- **gender** gender (0=female, 1=male)
- **str2** antiretroviral history (0=naive, 1=experienced)
- **strat** antiretroviral history stratification (1: antiretroviral naive, 2: greater than 1 but less than 52 weeks of prior antiretroviral therapy, 3: greater than 52 weeks)
- **symptom** symptomatic indicator (0=asymptomatic, 1=symptomatic)
treat treatment indicator (0=zidovudine only, 1=other therapies)
offtrt indicator of off-treatment before 96 weeks (0=no,1=yes)
r missing CD4 T cell count at 96 weeks (0=missing, 1=observed)
cens indicator of observing the event in days
days number of days until the first occurrence of: (i) a decline in CD4 T cell count of at least 50
(ii) an event indicating progression to AIDS, or (iii) death.
arms treatment arm (0=zidovudine, 1=zidovudine and didanosine, 2=zidovudine and zalcitabine,
3=didanosine)
time time in weeks
cd4 CD4 T cell count

References
Hammer, S.M., et al. (1996), A trial comparing nucleoside monotherapy with combination therapy
in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic millimeter. New England
Journal of Medicine, 335:1081-1090.

GBSG2 German Breast Cancer Study Group 2 (source: TH.data package)

Description
A data frame containing the observations from the GBSG2 study.

Usage
data(GBSG2)

Format
A data frame with 686 observations on the following 10 variables.
horTh hormonal therapy, a factor with levels no yes
age age in years
menostat menopausal status, a factor with levels Pre Post
tsize tumor size (in mm)
tgrade an ordered factor with levels I < II < III
pnodes number of positive nodes
progr rec progesterone receptor (in fmol).
estrec estrogen receptor (in fmol).
time recurrence free survival time (in days).
cens censoring indicator (0- censored, 1- event).
References

Examples

data(GBSG2)

KMPlot.SurvCART KM plot for SurvCART object

Description

Generates KM plot for sub-groups (i.e., terminal nodes) associated with survival tree generated by SurvCART()

Usage

KMPlot.SurvCART(x, scale.time = 1, type = 1, ...)

Arguments

x a fitted object of class "SurvCART", containing a survival tree.

scale.time Divides the time variable by the factor of scale.time. For example, if times are collected in days, then to plot time in years, specify 365.25.

type 1 for KM plot of survival probabilities, 2 for KM plot of censoring probabilities

... arguments to be passed to or from other methods.

Author(s)

Madan Gopal Kundu <madan_g.kundu@yahoo.com>

References

See Also

text.SurvCART, plot.SurvCART, SurvCART, StabCat.surv, StabCont.surv
Examples

```r
#--- Get the data
data(GBSG2)

#numeric coding of character variables
GBSG2$horTh1<- as.numeric(GBSG2$horTh)
GBSG2$tgrade1<- as.numeric(GBSG2$tgrade)
GBSG2$menostat1<- as.numeric(GBSG2$menostat)

#Add subject id
GBSG2$subjid<- 1:nrow(GBSG2)

#--- Run SurvCART() with time-to-event distribution: exponential, censoring distribution: None
out<- SurvCART(data=GBSG2, patid="subjid", censorvar="cens", timevar="time",
gvars=c("horTh1", "age", "menostat1", "tsize", "tgrade1", "pnodes", "progres", "estrec"),
tgvars=c(0,1,0,1,0,1,1),
event.ind=1, alpha=0.05, minsplit=80, minbucket=40, print=TRUE)

#--- Plot tree
par(xpd = TRUE)
plot(out, compress = TRUE)
text(out, use.n = TRUE)

#Plot KM plot of survival probabilities for sub-groups identified by tree
KMPlot.SurvCART(out, scale.time=365.25, type=1)

#Plot KM plot of censoring probabilities for sub-groups identified by tree
KMPlot.SurvCART(out, scale.time=365.25, type=1)
```

LongCART

Longitudinal CART with continuous response via binary partitioning

Description

Recursive partitioning for linear mixed effects model with continuous univariate response variables per LonCART algorithm based on baseline partitioning variables (Kundu and Harezlak, 2019).

Usage

```r
LongCART(data, patid, fixed, gvars, tgvars, minsplit=40,
          minbucket=20, alpha=0.05, coef.digits=2, print.lme=FALSE)
```

Arguments

- `data` name of the dataset. It must contain variable specified for patid (indicating subject id), all the variables specified in the formula and the baseline partitioning variables.
- `patid` name of the subject id variable.
fixed is a two-sided linear formula object describing the fixed-effects part of the model, with the response on the left of a ~ operator and the terms, separated by + operators, on the right. Model with -1 to the end of right side indicates no intercept. For model with no fixed effect beyond intercept, please specify only 1 right to the ~ operator.

gvars is list of partitioning variables of interest. Value of these variables should not change over time. Regarding categorical variables, only numerically coded categorical variables should be specified. For nominal categorical variables or factors, please first create corresponding dummy variable(s) and then pass through gvars.

tgvars is types (categorical or continuous) of partitioning variables specified in gvar. For each of continuous partitioning variables, specify 0 and for each of the categorical partitioning variables, specify 1. Length of tgvars should match to the length of gvars.

minsplits the minimum number of observations that must exist in a node in order for a split to be attempted.

minbucket is the minimum number of observations in any terminal node.

alpha is alpha (i.e., nominal type I error) level for parameter instability test

coef.digits is decimal points for displaying coefficients in the tree structure.

print.lme is if TRUE, then summary of fitted model from lme() will be printed for each node.

Details

Construct regression tree based on heterogeneity in linear mixed effects models of following type:

\[Y_{i(t)} = W_{i(t)} \theta + b_i + \epsilon_{it} \]

where \(W_{i(t)} \) is the design matrix, \(\theta \) is the parameter associated with \(W_{i(t)} \) and \(b_i \) is the random intercept. Also, \(\epsilon_{it} \sim N(0, \sigma^2) \) and \(b_i \sim N(0, \sigma_u^2) \).

Value

Treeout contains summary information of tree fitting for each terminal nodes and non-terminal nodes. Columns of Treeout include "ID", the (unique) node numbers that follow a binary ordering indexed by node depth, \(n \), the number of observations reaching the node, \(yval \), the fitted model of the response at the node, \(var \), a factor giving the names of the variables used in the split at each, \(index \), the cut-off value of splitting variable for binary partitioning, \(p \) (Instability), the p-value for parameter instability test for the splitting variable, \(loglik \), the log-likelihood of the node, \(improve \), the improvement in deviance given by this split, and \(Terminal \), indicator (True or False) of terminal node.

\(p \) is number of fixed parameters

AIC.tree is AIC of the tree-structured model

AIC.root is AIC at the root node (i.e., without tree structure)

improve.AIC is improvement in AIC due to tree structure (AIC.tree - AIC.root)

logLik.tree is log-likelihood of the tree-structured model

logLik.root is log-likelihood at the root node (i.e., without tree structure)
LongCART

Deviance \(2*(\text{logLik.tree-logLik.root}) \)
LRT.df degrees of freedom for likelihood ratio test comparing tree-structured model with the model at root node.
LRT.p p-value for likelihood ratio test comparing tree-structured model with the model at root node.
subj.class Assigned node for each individual subjects per fitted longitudinal tree
frame rpart compatible object
splits rpart compatible object
cptable rpart compatible object
functions rpart compatible object

Author(s)

Madan Gopal Kundu <madan_g.kundu@yahoo.com>

References

See Also

plotLongCART, textLongCART, StabCat, StabCont

Examples

```r
#--- Get the data
data(ACTG175)

#--- Run LongCART()
gvars=c("gender", "wtkg", "hemo", "homo", "drugs",
       "karnof", "oprior", "z30", "zprior", "race",
       "str2", "symptom", "treat", "offtrt")
tgvars=c(0, 1, 0, 0, 0,
       1, 0, 0, 0, 0,
       0, 0, 0, 0)

out<- LongCART(data=ACTG175, patid="pidnum", fixed=cd4~time,
               gvars=gvars, tgvars=tgvars, alpha=0.05,
               minsplit=100, minbucket=50, coef.digits=2)

#--- Plot tree

par(xpd = TRUE)
plot(out, compress = TRUE)
text(out, use.n = TRUE)
```
plot.SurvCART

Plot an SurvCART Object

Description

Plots an SurvCART object on the current graphics device.

Usage

```r
## S3 method for class 'SurvCART'
plot(x, uniform = FALSE, branch = 1, compress = FALSE,
     nspace = branch, margin = 0, minbranch = 0.3, ...)
```

Arguments

- `x`: a fitted object of class "SurvCART", containing a survival tree.
- `uniform`: similar to `plot.rpart`; if TRUE, uniform vertical spacing of the nodes is used; this may be less cluttered when fitting a large plot onto a page. The default is to use a non-uniform spacing proportional to the error in the fit.
- `branch`: similar to `plot.rpart`; controls the shape of the branches from parent to child node. Any number from 0 to 1 is allowed. A value of 1 gives square shouldered branches, a value of 0 give V shaped branches, with other values being intermediate.
- `compress`: similar to `plot.rpart`; if FALSE, the leaf nodes will be at the horizontal plot coordinates of 1:nleaves. If TRUE, the routine attempts a more compact arrangement of the tree.
- `nspace`: similar to `plot.rpart`; the amount of extra space between a node with children and a leaf, as compared to the minimal space between leaves. Applies to compressed trees only. The default is the value of branch.
- `margin`: similar to `plot.rpart`; an extra fraction of white space to leave around the borders of the tree. (Long labels sometimes get cut off by the default computation).
- `minbranch`: similar to `plot.rpart`; set the minimum length for a branch to minbranch times the average branch length. This parameter is ignored if uniform=TRUE. Sometimes a split will give very little improvement, or even (in the classification case) no improvement at all. A tree with branch lengths strictly proportional to improvement leaves no room to squeeze in node labels.
- `...`: arguments to be passed to or from other methods.

Details

This function is a method for the generic function plot, for objects of class SurvCART. The y-coordinate of the top node of the tree will always be 1.

Value

The coordinates of the nodes are returned as a list, with components x and y.
Author(s)
Madan Gopal Kundu <madan_g.kundu@yahoo.com>

References

See Also
text.SurvCART, SurvCART, KMPlot.SurvCART, StabCat.surv, StabCont.surv

Examples
#--- Get the data
data(GBSG2)

#numeric coding of character variables
GBSG2$horTh1<- as.numeric(GBSG2$horTh)
GBSG2$tgrade1<- as.numeric(GBSG2$tgrade)
GBSG2$menostat1<- as.numeric(GBSG2$menostat)

#Add subject id
GBSG2$subjid<- 1:nrow(GBSG2)

#--- Run SurvCART()
out<- SurvCART(data=GBSG2, patid="subjid", censorvar="cens", timevar="time", event.ind=1,
gvars=c("horTh1", 'age', 'menostat1', 'tsize', 'tgrade1', 'pnodes', 'progres', 'estrec'
),
tgvars=c(0,1,0,1,0,1,1,1),
alpha=0.05, minsplit=80,
minbucket=40, print=TRUE)

#--- Plot tree
par(xpd = TRUE)
plot(out, compress = TRUE)
text(out, use.n = TRUE)

plotLongCART(x, uniform = FALSE, branch = 1, nspace = branch,
margin = 0, minbranch = 0.3, ...)

plotLongCART
Plot an LongCART Object

Description
Plots an LongCART object on the current graphics device.

Usage
plotLongCART(x, uniform = FALSE, branch = 1, nspace = branch,
margin = 0, minbranch = 0.3, ...)
Arguments

- **x**: a fitted object of class "LongCART", containing a linear mixed effects tree.
- **uniform**: similar to plot.rpart; if TRUE, uniform vertical spacing of the nodes is used; this may be less cluttered when fitting a large plot onto a page. The default is to use a non-uniform spacing proportional to the error in the fit.
- **branch**: similar to plot.rpart; controls the shape of the branches from parent to child node. Any number from 0 to 1 is allowed. A value of 1 gives square shouldered branches, a value of 0 give V shaped branches, with other values being intermediate.
- **nspace**: similar to plot.rpart; the amount of extra space between a node with children and a leaf, as compared to the minimal space between leaves. Applies to compressed trees only. The default is the value of branch.
- **margin**: similar to plot.rpart; an extra fraction of white space to leave around the borders of the tree. (Long labels sometimes get cut off by the default computation).
- **minbranch**: similar to plot.rpart; set the minimum length for a branch to minbranch times the average branch length. This parameter is ignored if uniform=TRUE. Sometimes a split will give very little improvement, or even (in the classification case) no improvement at all. A tree with branch lengths strictly proportional to improvement leaves no room to squeeze in node labels.
- ... arguments to be passed to or from other methods.

Details

This function is a method for the generic function plot, for objects of class LongCART. The y-coordinate of the top node of the tree will always be 1.

Value

The coordinates of the nodes are returned as a list, with components x and y.

Author(s)

Madan Gopal Kundu <madan_g.kundu@yahoo.com>

References

See Also

textLongCART, LongCART, StabCat, StabCont
Examples

```r
#--- Get the data
data(ACTG175)

#--- Run LongCART()
gvars=c("gender", "wtkg", "hemo", "homo", "drugs", "karnof", "oprior", "Z30", "zprior", "race", "str2", "symptom", "treat", "offtrt")
tgvars=c(0, 1, 0, 0, 0,
         1, 0, 0, 0, 0,
         0, 0, 0, 0)

out<- LongCART(data=ACTG175, patid="pidnum", fixed=cd4~time,
gvars=gvars, tgvars=tgvars, alpha=0.05,
minsplit=100, minbucket=50, coef.digits=2)

#--- Plot tree
par(xpd = TRUE)
plot(out, compress = TRUE)
text(out, use.n = TRUE)
```

StabCat

parameter stability test for categorical partitioning variable

Description

Performs parameter stability test (Kundu and Harezlak, 2019) with categorical partitioning variable to determine whether the parameters of linear mixed effects model remains same across all distinct values of given categorical partitioning variable.

Usage

```r
StabCat(data, patid, fixed, splitvar)
```

Arguments

- **data**: name of the dataset. It must contain variable specified for patid (indicating subject id) and all the variables specified in the formula and the categorical partitioning variable of interest specified in splitvar. Note that, only numerically coded categorical variable should be specified.
- **patid**: name of the subject id variable.
- **fixed**: a two-sided linear formula object describing the fixed-effects part of the model, with the response on the left of a `~` operator and the terms, separated by `+` operators, on the right. Model with `-1` to the end of right side indicates no intercept. For model with no fixed effect beyond intercept, please specify only 1 right to the `~` operator.
splitvar

The categorical partitioning variable of interest. It’s value should not change over time.

Details

The categorical partitioning variable of interest. It’s value should not change over time.

\[Y_i(t) = W_i(t) \theta + b_i + \epsilon_{it} \]

where \(W_i(t) \) is the design matrix, \(\theta \) is the parameter associated with \(W_i(t) \) and \(b_i \) is the random intercept. Also, \(\epsilon_{it} \sim N(0, \sigma^2) \) and \(b_i \sim N(0, \sigma_u^2) \). Let \(X \) be the baseline categorical partitioning variable of interest. StabCat() performs the following omnibus test

\[H_0: \theta_{(g)} = \theta_0 \text{ vs. } H_1: \theta_{(g)} \neq \theta_0, \text{ for all } g \]

where, \(\theta_{(g)} \) is the true value of \(\theta \) for subjects with \(X = C_g \) where \(C_g \) is the any value realized by \(X \).

Value

\(p \)

It returns the p-value for parameter instability test

Author(s)

Madan Gopal Kundu <madan.g.kundu@yahoo.com>

References

See Also

StabCont, LongCART, plotLongCART, textLongCART

Examples

```r
#--- Get the data
data(ACTG175)

#--- Run StabCat()
out<- StabCat(data=ACTG175, patid="pidnum", fixed=cd4~time, splitvar="gender")
out$pval
```
StabCat.surv

parameter stability test for categorical partitioning variable

Description

Performs parameter stability test (Kundu, 2020) with categorical partitioning variable to determine whether the parameters of exponential time-to-event distribution and exponential censoring distribution remain same across all distinct values of given categorical partitioning variable.

Usage

```
StabCat.surv(data, timevar, censorvar, splitvar,
             time.dist="exponential", cens.dist="NA", event.ind=1, print=FALSE)
```

Arguments

- **data**: name of the dataset. It must contain variable specified for timevar (indicating follow-up times), censorvar (indicating censoring status) and the categorical partitioning variable of interest specified in splitvar. Note that, only numerically coded categorical variable should be specified.
- **timevar**: name of the variable with follow-up times.
- **censorvar**: name of the variable with censoring status.
- **time.dist**: name of time-to-event distribution. It can be one of the following distributions: "exponential", "weibull", "lognormal", or "normal".
- **cens.dist**: name of censoring distribution. It can be one of the following distributions: "exponential", "weibull", "lognormal", "normal" or "NA". If specified "NA", then parameter instability test corresponding to censoring distribution will not be performed.
- **event.ind**: value of the censoring variable indicating event.
- **splitvar**: the categorical partitioning variable of interest. It’s value should not change over time.
- **print**: if TRUE, then additional information including estimated parameters, score function and its variance will be printed.

Details

StabCat.surv() performs the following omnibus test

\[H_0: \lambda_{(g)} = \lambda_0 \] vs. \[H_1: \lambda_{(g)} \neq \lambda_0 \] for all \(g \)

where, \(\theta_{(g)} \) is the true value of \(\theta \) for subjects with \(X=C_g \). \(\theta \) includes all the parameters of time to event distribution and also parameters of censoring distribution, if specified. \(C_g \) is the any value realized by categorical partitioning variable \(X \).

Exponential distribution: \(f(t) = \lambda e^{-\lambda t} \)

Weibull distribution: \(f(t) = \alpha \lambda t^{\alpha-1} e^{-\lambda t^\alpha} \)

Lognormal distribution: \(f(t) = \frac{1}{t \sqrt{2\pi \sigma^2}} e^{-\frac{1}{2} \left(\frac{\log(t) - \mu}{\sigma}\right)^2} \)

Normal distribution: \(f(t) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{1}{2} \left(\frac{t - \mu}{\sigma}\right)^2} \)
StabCont

Value

- **pval**: p-value for parameter instability test
- **type**: 1, if event times are more heterogeneous; 2, if censoring times are more heterogeneous.

Author(s)

Madan Gopal Kundu <madan_g.kundu@yahoo.com>

References

See Also

StabCont.surv, SurvCART, plot.SurvCART, text.SurvCART

Examples

```r
#--- time-to-event distribution: exponential, censoring distribution: None
out1<- StabCat.surv(data=lung, timevar="time", censorvar="status", splitvar="sex", event.ind=2)
out1$pval

#--- time-to-event distribution: weibull, censoring distribution: None
StabCat.surv(data=lung, timevar="time", censorvar="status", splitvar="sex",
            time.dist="weibull", event.ind=2)

#--- time-to-event distribution: weibull, censoring distribution: exponential
StabCat.surv(data=lung, timevar="time", censorvar="status", splitvar="sex",
            time.dist="weibull", cens.dist="exponential", event.ind=2)
```

StabCont

parameter stability test for continuous partitioning variable

Description

Performs parameter stability test (Kundu and Harezlak, 2019) with continuous partitioning variable to determine whether the parameters of linear mixed effects model remains same across all distinct values of given continuous partitioning variable.

Usage

StabCont(data, patid, fixed, splitvar)
Arguments

- **data**: name of the dataset. It must contain variable specified for `patid` (indicating subject id) and all the variables specified in the formula and the `StabCont(data, fixed, splitvar)` partitioning variable of interest specified in `splitvar`.
- **patid**: name of the subject id variable.
- **fixed**: a two-sided linear formula object describing the fixed-effects part of the model, with the response on the left of a \(\sim \) operator and the terms, separated by + operators, on the right. Model with \(-1\) to the end of right side indicates no intercept. For model with no fixed effect beyond intercept, please specify only \(1\) right to the \(\sim\) operator.
- **splitvar**: the continuous partitioning variable of interest. It’s value should not change over time.

Details

The continuous partitioning variable of interest. It’s value should not change over time.

\[Y_i(t) = W_i(t)\theta + b_i + \epsilon_{it} \]

where \(W_i(t) \) is the design matrix, \(\theta \) is the parameter associated with \(W_i(t) \) and \(b_i \) is the random intercept. Also, \(\epsilon_{it} \sim N(0, \sigma^2) \) and \(b_i \sim N(0, \sigma_u^2) \). Let \(X \) be the baseline continuous partitioning variable of interest. `StabCont()` performs the following omnibus test

\[H_0: \theta_{(g)} = \theta_0 \text{ vs. } H_1: \theta_{(g)} \neq \theta_0, \text{ for all } g \]

where, \(\theta_{(g)} \) is the true value of \(\theta \) for subjects with \(X = C_g \) where \(C_g \) is the any value realized by \(X \).

Value

- **p**: It returns the p-value for parameter instability test

Author(s)

Madan Gopal Kundu <madan_g.kundu@yahoo.com>

References

See Also

`StabCont, LongCART, plotLongCART, textLongCART`
Examples

```r
#--- Get the data
data(ACTG175)

#--- Run StabCont()
out<- StabCont(data=ACTG175, patid="pidnum", fixed=cd4~time, splitvar="age")
out$pval
```

Description

Performs parameter stability test (Kundu, 2020) with continuous partitioning variable to determine whether the parameters of exponential time-to-event distribution and exponential censoring distribution remain same across all distinct values of given continuous partitioning variable.

Usage

```r
StabCont.surv(data, timevar, censorvar, splitvar,
               time.dist="exponential", cens.dist="NA", event.ind=1, print=FALSE)
```

Arguments

- **data**
 - Name of the dataset. It must contain variable specified for `timevar` (indicating follow-up times), `censorvar` (indicating censoring status) and the categorical partitioning variable of interest specified in `splitvar`. Note that, only numerically coded categorical variable should be specified.

- **timevar**
 - Name of the variable with follow-up times.

- **censorvar**
 - Name of the variable with censoring status.

- **time.dist**
 - Name of time-to-event distribution. It can be one of the following distributions: "exponential", "weibull", "lognormal" or "normal".

- **cens.dist**
 - Name of censoring distribution. It can be one of the following distributions: "exponential", "weibull", "lognormal", "normal" or "NA". If specified "NA", then parameter instability test corresponding to censoring distribution will not be performed.

- **event.ind**
 - Value of the censoring variable indicating event.

- **splitvar**
 - The continuous partitioning variable of interest.

- **print**
 - If TRUE, then additional information including estimated parameters, score function and its variance will be printed.
Details

StabCont.surv() performs the following omnibus test

\[H_0: \theta_{(g)} = \theta_0 \text{ vs. } H_1: \theta_{(g)} \neq \theta_0, \text{ for all } g \]

where, \(\theta_{(g)} \) is the true value of \(\theta \) for subjects with \(X=C_g \). \(\theta \) includes all the parameters of time to event distribution and also parameters of censoring distribution, if specified. \(C_g \) is the any value realized by continuous partitioning variable \(X \).

Exponential distribution: \(f(t) = \lambda \exp(-\lambda t) \)

Weibull distribution: \(f(t) = \alpha \lambda t^{\alpha-1} \exp(-\lambda t^\alpha) \)

Lognormal distribution: \(f(t) = \frac{1}{t} \sqrt{\frac{2\pi}{\sigma^2}} \exp\left[-\frac{1}{2} \left(\frac{\log(t) - \mu}{\sigma^2}\right)^2\right] \)

Normal distribution: \(f(t) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2} \left(\frac{t - \mu}{\sigma^2}\right)^2\right] \)

Value

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pval</td>
<td>p-value for parameter instability test</td>
</tr>
<tr>
<td>type</td>
<td>1, if event times are more heterogeneous; 2, if censoring times are more heterogeneous.</td>
</tr>
</tbody>
</table>

Author(s)

Madan Gopal Kundu <madan_g.kundu@yahoo.com>

References

See Also

StabCont.surv, SurvCART, plot.SurvCART, text.SurvCART

Examples

```r
#--- time-to-event distribution: exponential, censoring distribution: None
out1<- StabCont.surv(data=lung, timevar="time", censorvar="status", splitvar="age", event.ind=2)
out1$pval

#--- time-to-event distribution: weibull, censoring distribution: None
StabCont.surv(data=lung, timevar="time", censorvar="status", splitvar="age",
              time.dist="weibull", event.ind=2)

#--- time-to-event distribution: weibull, censoring distribution: exponential
StabCont.surv(data=lung, timevar="time", censorvar="status", splitvar="age",
              time.dist="weibull", cens.dist="exponential", event.ind=2)
```
SurvCART

Survival CART with time to event response via binary partitioning

Description

Recursive partitioning for linear mixed effects model with survival data per SurvCART algorithm based on baseline partitioning variables (Kundu, 2020).

Usage

SurvCART(data, patid, timevar, censorvar, gvars, tgvars,
 time.dist="exponential", cens.dist="NA", event.ind=1,
 alpha=0.05, minsplit=40, minbucket=20, print=FALSE)

Arguments

data name of the dataset. It must contain variable specified for patid (indicating subject id), all the variables specified in the formula and the baseline partitioning variables.

patid name of the subject id variable.

timevar name of the variable with follow-up times.

censorvar name of the variable with censoring status.

gvars list of partitioning variables of interest. Value of these variables should not change over time. Regarding categorical variables, only numerically coded categorical variables should be specified. For nominal categorical variables or factors, please first create corresponding dummy variable(s) and then pass through gvars.

tgvars types (categorical or continuous) of partitioning variables specified in gvar. For each of continuous partitioning variables, specify 0 and for each of the categorical partitioning variables, specify 1. Length of tgvars should match to the length of gvars.

time.dist name of time-to-event distribution. It can be one of the following distributions: "exponential", "weibull", "lognormal" or "normal".

cens.dist name of censoring distribution. It can be one of the following distributions: "exponential", "weibull", "lognormal", "normal" or "NA". If specified "NA", then parameter instability test corresponding to censoring distribution will not be performed.

event.ind value of the censoring variable indicating event.

alpha alpha (i.e., nominal type I error) level for parameter instability test

minsplit the minimum number of observations that must exist in a node in order for a split to be attempted.

minbucket the minimum number of observations in any terminal node.

print if TRUE, then summary such as number of subjects at risk, number of events, median event time and median censoring time model will be printed for each node.
Details

Construct survival tree based on heterogeneity in time-to-event and censoring distributions.

Exponential distribution: \[f(t)=\lambda \exp(-\lambda t) \]

Weibull distribution: \[f(t)=\alpha \lambda t^{\alpha-1} \exp(-\lambda t^\alpha) \]

Lognormal distribution: \[f(t)=(1/t)\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) \exp\left[-\frac{1}{2}\left(\frac{\log(t)-\mu}{\sigma^2}\right)^2\right] \]

Normal distribution: \[f(t)=(1/\sqrt{2\pi\sigma^2}) \exp\left[-\frac{1}{2}\left(\frac{t-\mu}{\sigma^2}\right)^2\right] \]

Value

Treeout contains summary information of tree fitting for each terminal nodes and non-terminal nodes. Columns of Treeout include "ID", the (unique) node numbers that follow a binary ordering indexed by node depth, \(n \), the number of subjects reaching the node, \(D \), the number of events reaching the node, \(\text{median.T} \), the median survival time at the node, \(\text{median.C} \), the median censoring time at the node, \(\text{var} \), splitting variable, \(\text{index} \), the cut-off value of splitting variable for binary partitioning, \(p \) (Instability), the p-value for parameter instability test for the splitting variable, \(\loglik \), the log-likelihood of the node, \(\text{improve} \), the improvement in deviance given by this split, and \(\text{Terminal} \), indicator (True or False) of terminal node.

logLik.tree log-likelihood of the tree-structured model, based on Cox model including sub-groups as covariates

logLik.root log-likelihood at the root node (i.e., without tree structure), based on Cox model without any covariate

AIC.tree AIC of the tree-structured model, based on Cox model including sub-groups as covariates

AIC.root AIC at the root node (i.e., without tree structure), based on Cox model without any covariate

subj.class Assigned node for each individual subjects per fitted longitudinal tree

frame rpart compatible object

splits rpart compatible object

cptable rpart compatible object

functions rpart compatible object

Author(s)

Madan Gopal Kundu <madan_g.kundu@yahoo.com>

References

See Also

plot.SurvCART, KMPlot.SurvCART, text.SurvCART, StabCat.surv, StabCont.surv
Examples

```r
#--- Get the data
data(GBSG2)

#numeric coding of character variables
GBSG2$horTh1<-'as.numeric(GBSG2$horTh)
GBSG2$tgrade1<-'as.numeric(GBSG2$tgrade)
GBSG2$menostat1<-'as.numeric(GBSG2$menostat)

#Add subject id
GBSG2$subjid<- 1:nrow(GBSG2)

#--- Run SurvCART() with time-to-event distribution: exponential, censoring distribution: None
out<- SurvCART(data=GBSG2, patid="subjid", censorvar="cens", timevar="time",
gvars=c('horTh1', 'age', 'menostat1', 'tsize', 'tgrade1', 'pnodes', 'progres', 'estrec'),
tgvars=c(0,1,0,1,0,1,1),
event.ind=1, alpha=0.05, minsplit=80, minbucket=40, print=TRUE)

#--- Plot tree
par(xpd = TRUE)
plot(out, compress = TRUE)
text(out, use.n = TRUE)

#Plot KM plot for sub-groups identified by tree
KMPlot.SurvCART(out, scale.time=365.25, type=1)

#--- Run SurvCART() with time-to-event distribution: weibull censoring distribution: None
out2<- SurvCART(data=GBSG2, patid="subjid", censorvar="cens", timevar="time",
gvars=c('horTh1', 'age', 'menostat1', 'tsize', 'tgrade1', 'pnodes', 'progres', 'estrec'),
tgvars=c(0,1,0,1,0,1,1),
time.dist="weibull", event.ind=1, alpha=0.05, minsplit=80, minbucket=40, print=TRUE)

#--- Run SurvCART() with time-to-event distribution: weibull censoring distribution: exponential
out<-'SurvCART(data=GBSG2, patid="subjid", censorvar="cens", timevar="time",
gvars=c('horTh1', 'age', 'menostat1', 'tsize', 'tgrade1', 'pnodes', 'progres', 'estrec'),
tgvars=c(0,1,0,1,0,1,1),
time.dist="weibull", cens.dist="exponential", event.ind=1, alpha=0.05, minsplit=80, minbucket=40, print=TRUE)
```

Description

Labels the current plot of the tree generated from SurvCART object with text.
text.SurvCART

Usage

```r
## S3 method for class 'SurvCART'
text(x, splits = TRUE, all = FALSE,
     use.n = FALSE, minlength = 1L, ...)
```

Arguments

- `x`: a fitted object of class "SurvCART", containing a survival tree.
- `splits`: similar to text.rpart; logical flag. If TRUE (default), then the splits in the tree are labeled with the criterion for the split.
- `all`: similar to text.rpart; Logical. If TRUE, all nodes are labeled, otherwise just terminal nodes.
- `use.n`: similar to text.rpart; Logical. If TRUE, adds n to label.
- `minlength`: similar to text.rpart; the length to use for factor labels. A value of 1 causes them to be printed as 'a', 'b', Larger values use abbreviations of the label names. See the labels.rpart function for details.
- `...`: arguments to be passed to or from other methods.

Author(s)

Madan Gopal Kundu <madan_g.kundu@yahoo.com>

References

See Also

`plot.SurvCART, SurvCART, KMPlot.SurvCART, StabCat.surv, StabCont.surv`

Examples

```r
#--- Get the data
data(GBSG2)

#numeric coding of character variables
GBSG2$horTh1 <- as.numeric(GBSG2$horTh)
GBSG2$tgrade1 <- as.numeric(GBSG2$tgrade)
GBSG2$menostat1 <- as.numeric(GBSG2$menostat)

#Add subject id
GBSG2$subjid <- 1:nrow(GBSG2)

#--- Run SurvCART()
out <- SurvCART(data=GBSG2, patid="subjid", censorvar="cens", timevar="time", event.ind=1,
gvars=c("horTh1", 'age', 'menostat1', 'tsize', 'tgrade1', 'pnodes', 'progres', 'estrec'),
tgvars=(0,0,1,0,0,1,1,1),
alpha=0.05, msplit=80,
minbucket=40, print=TRUE)
```
textLongCART

--- Plot tree
par(xpd = TRUE)
plot(out, compress = TRUE)
text(out, use.n = TRUE)

textLongCART
Place text on LongCART tree

Description
Labels the current plot of the tree generated from LongCART object with text.

Usage
```
textLongCART(x, splits = TRUE, all = FALSE,  
use.n = FALSE, minlength = 1L, ...)
```

Arguments
- `x`: a fitted object of class "LongCART", containing a linear mixed effects tree.
- `splits`: similar to plot.rpart; logical flag. If TRUE (default), then the splits in the tree are labeled with the criterion for the split.
- `all`: similar to plot.rpart; Logical. If TRUE, all nodes are labeled, otherwise just terminal nodes.
- `use.n`: similar to plot.rpart; Logical. If TRUE, adds n to label.
- `minlength`: the length to use for factor labels. A value of 1 causes them to be printed as 'a', 'b', Larger values use abbreviations of the label names. See the labels.rpart function for details.
- `...`: arguments to be passed to or from other methods.

Author(s)
Madan Gopal Kundu <madan_g.kundu@yahoo.com>

References

See Also
plotLongCART, LongCART, StabCat, StabCont
Examples

```r
#--- Get the data
data(ACTG175)

#--- Run LongCART()
gvars=c("gender", "wtkg", "hemo", "homo", "drugs", "karnof", "oprior", "z30", "zprior", "race", "str2", "symptom", "treat", "offtrt")
tgvars=c(0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

out<- LongCART(data=ACTG175, patid="pidnum", fixed=cd4~time, gvars=gvars, tgvars=tgvars, alpha=0.05, mnsplit=100, minbucket=50, coef.digits=2)

#--- Plot tree
par(xpd = TRUE)
plot(out, compress = TRUE)
text(out, use.n = TRUE)
```
Index

ACTG175, 2
GBSG2, 3
KMPlot.SurvCART, 4, 9, 19, 21
LongCART, 5, 10, 12, 15, 22
plot (plot.SurvCART), 8
plot.SurvCART, 4, 8, 14, 17, 19, 21
plotLongCART, 7, 9, 12, 15, 22
StabCat, 7, 10, 11, 22
StabCat (StabCat), 11
StabCat.surv, 4, 9, 13, 19, 21
StabCat.surv (StabCat.surv), 13
StabCont, 7, 10, 12, 14, 15, 22
StabCont (StabCont), 14
StabCont.surv, 4, 9, 14, 16, 17, 19, 21
StabCont.surv (StabCont.surv), 16
SurvCART, 4, 9, 14, 17, 18, 21
text (text.SurvCART), 20
text.SurvCART, 4, 9, 14, 17, 19, 20
textLongCART, 7, 10, 12, 15, 22