Package ‘LowRankQP’

May 9, 2022

Version 1.0.5
Date 2022-05-03
Title Low Rank Quadratic Programming
Maintainer John T. Ormerod <john.ormerod@sydney.edu.au>
Description Solves quadratic programming problems where the Hessian is represented as the product of two matrices.
License GPL (>= 2)
NeedsCompilation yes
Author John T. Ormerod [aut, cre],
Matt P. Wand [aut]
Repository CRAN
Date/Publication 2022-05-09 07:30:11 UTC

R topics documented:

LowRankQP ... 1

Index

LowRankQP Solve Low Rank Quadratic Programming Problems

Description

This routine implements a primal-dual interior point method solving quadratic programming problems of the form

\[
\begin{align*}
\min & \quad d^T \alpha + \frac{1}{2} \alpha^T H \alpha \\
\text{such that} & \quad A \alpha = b \\
& \quad 0 \leq \alpha \leq u
\end{align*}
\]

with dual

$$\min \quad \frac{1}{2} \alpha^T H \alpha + \beta^T b + x^T u$$

such that

$$H \alpha + c + A^T \beta - \zeta + x = 0$$

$$x, \zeta \geq 0$$

where $H = V$ if V is square and $H = VV^T$ otherwise.

Usage

```r
LowRankQP(Vmat, dvec, Amat, bvec, uvec, method="PFCF", verbose=FALSE, niter=200)
```

Arguments

- **Vmat**: matrix appearing in the quadratic function to be minimized.
- **dvec**: vector appearing in the quadratic function to be minimized.
- **Amat**: matrix defining the constraints under which we want to minimize the quadratic function.
- **bvec**: vector holding the values of b (defaults to zero).
- **uvec**: vector holding the values of u.
- **method**: Method used for inverting $H+D$ where D is full rank diagonal. If V is square:
 - 'LU': Use LU factorization. (More stable)
 - 'CHOL': Use Cholesky factorization. (Faster)
If V is not square:
 - 'SMW': Use Sherman-Morrison-Woodbury (Faster)
 - 'PFCF': Use Product Form Cholesky Factorization (More stable)
- **verbose**: Display iterations of LowRankQP.
- **niter**: Number of iteration to perform.

Value

- a list with the following components:
 - **alpha**: vector containing the solution of the quadratic programming problem.
 - **beta**: vector containing the solution of the dual of quadratic programming problem.
 - **xi**: vector containing the solution of the dual quadratic programming problem.
 - **zeta**: vector containing the solution of the dual quadratic programming problem.
References

Examples

```
library(LowRankQP)

# Assume we want to minimize: (0 -5 0 0 0) %*% alpha + 1/2 alpha[1:3]^T alpha[1:3]
# under the constraints: A^T alpha = b
# with b = (-8, 2, 0 )^T
# and  (-4 2 0 )
#    (-3 1 -2 )
#    ( 0 0 1 )
#    (-1 0 0 )
#    ( 0 -1 0 )
#    ( 0 0 -1 )
# alpha >= 0
#
# (Same example as used in quadprog)
#
# we can use LowRankQP as follows:
Vmat <- matrix(0,6,6)
dvec <- c(0,-5,0,0,0,0)
Amat <- matrix(c(-4,-3,0,-1,0,0,2,1,0,0,-1,0,0,-2,1,0,0,-1),6,3)
bvec <- c(-8,2,0)
uvec <- c(100,100,100,100,100,100)
LowRankQP(Vmat,dvec,t(Amat),bvec,uvec,method="CHOL")

# Now solve the same problem except use low-rank V
Vmat <- matrix(c(1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0),6,3)
dvec <- c(-5,0,0,0,0,0)
Amat <- matrix(c(-4,-3,0,-1,0,0,2,1,0,0,-1,0,0,-2,1,0,0,-1),6,3)
bvec <- c(-8,2,0)
uvec <- c(100,100,100,100,100,100)
LowRankQP(Vmat,dvec,t(Amat),bvec,uvec,method="SMW")
```
Index

* optimize
 LowRankQP, 1

LowRankQP, 1