Package ‘M2SMF’

November 17, 2019

Title Multi-Modal Similarity Matrix Factorization for Integrative Multi-Omics Data Analysis

Version 2.0

Description A new method to implement clustering from multiple modality data of certain samples, the function M2SMF() jointly factorizes multiple similarity matrices into a shared sub-matrix and several modality private sub-matrices, which is further used for clustering. Along with this method, we also provide function to calculate the similarity matrix and function to evaluate the best cluster number from the original data.

Imports dplyr, MASS, stats
Depends R (>= 3.4.0)
License GPL (>= 2)
Encoding UTF-8
LazyData true
RoxygenNote 7.0.0
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Author Xiaoyao Yin [aut, cre]
Maintainer Xiaoyao Yin <yinxy1992@sina.com>
Repository CRAN
Date/Publication 2019-11-17 05:10:02 UTC

R topics documented:

affinityMatrix .. 2
Cal_NMI .. 3
cost ... 3
dist2bin ... 4
dist2chi ... 5
dist2eu ... 6
initialization .. 6
affinityMatrix

To calculate the similarity matrix

Description

calculate the affinity matrix from the diff matrix with 20 neighbors

Usage

affinityMatrix(Diff, K = 20, sigma = 0.5)

Arguments

Diff A diff matrix
K The number of neighbors in consideration
sigma A parameter to determine the scale

Value

W The similarity matrix

Author(s)

Xiaoyao Yin

Examples

data_list <- simu_data_gen()
Diff <- dist2eu(Standard_Normalization(data_list[[1]]), Standard_Normalization(data_list[[1]]))
simi <- affinityMatrix(Diff, 20, 0.5)
Cal_NMI

\textit{calculate the normalized mutual information.}

\textbf{Description}

calculate the normalized mutual information of two vectors \(x\) and \(y\).

\textbf{Usage}

\[\text{Cal_NMI}(x, y) \]

\textbf{Arguments}

\begin{itemize}
 \item \(x\) \hspace{1cm} A vector
 \item \(y\) \hspace{1cm} A vector as long as \(x\)
\end{itemize}

\textbf{Value}

A number between 0 and 1 indicating the normalized mutual information

\textbf{Author(s)}

Xiaoyao Yin

\textbf{Examples}

\begin{verbatim}
 x <- c(0.1,0.2,0.3,0.4)
y <- c(0.1,0.2,0.3,0.4)
NMI <- Cal_NMI(x,y)
\end{verbatim}

\textbf{cost}

\textit{Calculate the cost}

\textbf{Description}

A function to calculate the cost of the objective function

\textbf{Usage}

\[\text{cost}(\text{new_WL_list, init_list, lambda}) \]

\textbf{Arguments}

\begin{itemize}
 \item \texttt{new_WL_list} \hspace{1cm} A list of matrices factorized from the similarity matrices list WL
 \item \texttt{init_list} \hspace{1cm} A list containing the updated result in this iteration
 \item \texttt{lambda} \hspace{1cm} A parameter to set the relative weight of the group sparsity constraints
\end{itemize}
Value

A number indicating the total cost of the objective function

Author(s)

Xiaoyao Yin

Examples

```r
WL <- simu_data_gen()
WL[[1]] <- affinityMatrix(dist2eu(Standard_Normalization(WL[[1]]), Standard_Normalization(WL[[1]])))
WL[[2]] <- affinityMatrix(dist2eu(Standard_Normalization(WL[[2]]), Standard_Normalization(WL[[2]])))
new_WL_list <- initialize_WL(WL)
k <- 5
lambda <- 0.25
init_list <- initialization(new_WL_list, k)
update_L_list <- update_L(new_WL_list, init_list)
update_alpha_list <- update_alpha(new_WL_list, update_L_list, lambda)
init_list <- update_alpha_list
new_loss <- cost(new_WL_list, init_list, lambda)
```

dist2bin

Calculate the agreement-based measurement

Description

Calculate the agreement-based measurement of two any pair-wise samples \(x_i\) and \(x_j\) for binary variables

Usage

```r
dist2bin(X, C)
```

Arguments

- **X**: A sample-feature matrix with rows as samples and columns as features
- **C**: The same as X

Value

A matrix whose elements at \((i,j)\) is the agreement-based measurement of two any pair-wise samples \(x_i\) and \(x_j\)

Author(s)

Xiaoyao Yin
dist2chi

Examples

```r
data_list <- simu_data_gen()
X <- data_list[[1]]
C <- X
Diff <- dist2bin(X, C)
```

dist2chi
Calculate the chi-squared distance

Description

Calculate the chi-squared distance of two any pair-wise samples x_i and x_j for discrete variables.

Usage

```r
dist2chi(X, C)
```

Arguments

- `X`: A sample-feature matrix with rows as samples and columns as features.
- `C`: The same as `X`.

Value

A matrix whose elements at (i,j) is the chi-squared distance of two any pair-wise samples x_i and x_j.

Author(s)

Xiaoyao Yin

Examples

```r
data_list <- simu_data_gen()
X <- data_list[[1]]
C <- X
Diff <- dist2chi(X, C)
```
dist2eu
Calculate the Euclidean distance

Description

Calculate the Euclidean distance of two any pair-wise samples \(x_i\) and \(x_j\) for continuous variables.

Usage

\[
dist2eu(X, C)
\]

Arguments

- **X**
 A sample-feature matrix with rows as samples and columns as features
- **C**
 The same as X

Value

A matrix whose elements at (i,j) is the Euclidean distance of two any pair-wise samples \(x_i\) and \(x_j\)

Author(s)

Xiaoyao Yin

Examples

```r
data_list <- simu_data_gen()
X <- data_list[[1]]
C <- X
Diff <- dist2eu(X,C)
```

initialization
*initialize the sub-matrix \(C_i\) into \(alpha*Li\) by SVD*

Description

\(Li\) takes the first \(k\) columns of matrix \(d\) in SVD, while \(alpha\) is the mean of all the \(u\) of SVD result in each modality.

Usage

\[
initialization(WL, k)
\]
initialize_WL

Arguments
- **WL**: A list of similarity matrices
- **k**: A parameter to specify the cluster number

Value
A list with N+2 elements, the former N as modality private sub-matrices, the Nth as the shared sub-matrix and the last one as 1

Author(s)
Xiaoyao Yin

Examples

```r
WL <- simu_data_gen()
new_WL_list <- initialize_WL(WL)
k <- 5
init_list <- initialization(new_WL_list,k)
```

Description
Factorize the each of the similarity matrix S_i into $C_i^t(C_i)$ by SVD

Usage

```r
initialize_WL(WL)
```

Arguments
- **WL**: A list of similarity matrices

Value
A list as long as WL with elements satisfying res[[i]]

Author(s)
Xiaoyao Yin

Examples

```r
WL <- simu_data_gen()
new_WL_list <- initialize_WL(WL)
```
M2SMF

The main part for M2SMF and clustering result

Description

jointly factorize multiple matrices into a shared sub-matrix and multiple private sub-matrices

Usage

M2SMF(WL, lambda = 0.25, theta = 10^-4, k)

Arguments

- WL: A list of similarity matrices
- lambda: A parameter to set the relative weight of the group sparsity constraints
- theta: A parameter to determine the convergence
- k: A parameter to specify the cluster number

Value

A list containing the clustering result

- sub_matrices: a list containing all the sub-matrices
- cluster_res: the clustering result which is as long as the number of samples

Author(s)

Xiaoyao Yin

Examples

WL <- simu_data_gen()
res <- M2SMF(WL, 0.25, 10^-4, 5)
new_modularity

Calculate the modularity

Description

A function to calculate the modularity for weighted graph

Usage

new_modularity(init_list, WL)

Arguments

- `init_list`: A list with N+2 elements, the former N as modality private sub-matrices, the Nth as the shared sub-matrix and the last one as the current loss
- `WL`: A list of similarity matrices

Value

A single value indicating the modularity of current factorization and clustering

Author(s)

Xiaoyao Yin

Examples

```r
WL <- simu_data_gen()
WL[[1]] <- affinityMatrix(dist2eu(Standard_Normalization(WL[[1]]),Standard_Normalization(WL[[1]])))
WL[[2]] <- affinityMatrix(dist2eu(Standard_Normalization(WL[[2]]),Standard_Normalization(WL[[2]])))
new_WL_list <- initialize_WL(WL)
init_list <- initialization(new_WL_list,5)
res <- M2SMF(WL,0.25,10^-4,5)
init_list <- res[[1]]
modularity <- new_modularity(init_list,WL)
```

simu_data_gen

Generate simulated data

Description

A function to generate simulated data with two modularities and five clusters

Usage

simu_data_gen()
Value
A list with two elements, which are the sample-feature matrices from different modality

Author(s)
Xiaoyao Yin

Examples
```
data_list <- simu_data_gen()
```

Description
Normalize each column of x to have mean 0 and standard deviation 1.

Usage
```
Standard_Normalization(x)
```

Arguments
- **x**
 A sample-feature matrix with rows as samples and columns as features

Value
A sample-feature matrix with rows as samples and columns as features, each column of the matrix have mean 0 and standard deviation 1

Author(s)
Xiaoyao Yin

Examples
```
data_list <- simu_data_gen()
x <- data_list[[1]]
data_matrix <- Standard_Normalization(x)
```
update_alpha

The function to update alpha

Description

update the sub-matrix alpha to convergence to its local minimum gradually

Usage

```r
update_alpha(WL, update_L_list, lambda)
```

Arguments

- **WL**: A list of similarity matrices
- **update_L_list**: A list with N+2 elements, the former N as modality private sub-matrices, the Nth as the shared sub-matrix and the last one as the current loss
- **lambda**: A parameter to set the relative weight of the group sparsity constraints

Value

A list containing the updated result in this iteration

Author(s)

Xiaoyao Yin

Examples

```r
WL <- simu_data_gen()
WL[[1]] <- affinityMatrix(dist2eu(Standard_Normalization(WL[[1]]), Standard_Normalization(WL[[1]])))
WL[[2]] <- affinityMatrix(dist2eu(Standard_Normalization(WL[[2]]), Standard_Normalization(WL[[2]])))
new_WL_list <- initialize_WL(WL)
k <- 5
lambda <- 0.25
init_list <- initialization(new_WL_list,k)
update_L_list <- update_L(new_WL_list,init_list)
update_alpha_list <- update_alpha(WL, update_L_list, lambda)
```
update_L

the function to update Li, for i=1,2,...,N

Description

update the sub-matrix Li, for i=1,2,...,N to convergence to its local minimum gradually

Usage

update_L(WL, init_list)

Arguments

WL A list of similarity matrices
init_list A list with N+2 elements, the former N as modality private sub-matrices, the Nth as the shared sub-matrix and the last one as 1

Value

A list containing the updated result in this iteration

Author(s)

Xiaoyao Yin

Examples

WL <- simu_data_gen()
WL[[1]] <- affinityMatrix(dist2eu(Standard_Normalization(WL[[1]]), Standard_Normalization(WL[[1]])))
WL[[2]] <- affinityMatrix(dist2eu(Standard_Normalization(WL[[2]]), Standard_Normalization(WL[[2]])))
new_WL_list <- initialize_WL(WL)
k <- 5
init_list <- initialization(new_WL_list,k)
update_L_list <- update_L(WL,init_list)
Index

affinityMatrix, 2

Cal_NMI, 3
cost, 3
dist2bin, 4
dist2chi, 5
dist2eu, 6

initialization, 6
initialize_WL, 7

M2SMF, 8

new_modularity, 9

simu_data_gen, 9
Standard_Normalization, 10

update_alpha, 11
update_L, 12