Package ‘MAMSE’

January 7, 2017

Type Package

Title Calculation of Minimum Averaged Mean Squared Error (MAMSE) Weights

Version 0.2-1

Date 2017-07-07

Author Jean-Francois Plante <jfplante@hec.ca>

Maintainer Jean-Francois Plante <jfplante@hec.ca>

Description Calculates the nonparametric adaptive MAMSE weights for univariate, right-censored or multivariate data. The MAMSE weights can be used in a weighted likelihood or to define a mixture of empirical distribution functions. The package includes functions for the MAMSE weighted Kaplan-Meier estimate and for MAMSE weighted ROC curves.

Depends R (>= 2.4.0)

License GPL-2

NeedsCompilation yes

Repository CRAN

Date/Publication 2017-01-07 16:16:32

R topics documented:

MAMSE-package .. 2
KM ... 4
MAMSE .. 4
MAMSEpo ... 6
Progesterone ... 6
ranked ... 8
roc ... 8
WKME ... 10

Index 13
Description

This package provides algorithms to calculate the nonparametric adaptive MAMSE weights. The MAMSE weights can be used for the weighted likelihood (see references below), or as mixing probabilities to define mixtures of empirical distributions. They provide a framework to borrow strength with minimal assumptions.

Details

Package: MAMSE
Type: Package
Version: 0.2
Date: 2016-01-20
License: GPL-2

Function MAMSE calculates the MAMSE weights for univariate data, right-censored data, or for the copula underlying the distribution of multivariate data. The function WKME is used to compute the MAMSE-weighted Kaplan-Meier estimate with (optional) bootstrap confidence intervals. The function roc calculates MAMSE-weighted ROC curves.

Author(s)

Jean-Francois Plante, <jfplante(at)hec.ca>.
Maintainer: Jean-Francois Plante, <jfplante(at)hec.ca>.

References

MAMSE-package

See Also

MAMSE, WKME, roc.

Examples

```r
set.seed(2009)

# MAMSE weights for univariate data
x=list(rnorm(25), rnorm(250,.1), rnorm(100,-.1))
wx=MAMSE(x)

# Weighted Likelihood estimate for the mean (Normal model)
sum(wx*sapply(x,mean))

#MAMSE weights for copulas
rho=c(.25,.3,.15,.2)
r=2*sin(rho*pi/600)
y=list(0,0,0,0)
for(i in 1:4){
  sig=matrix(c(1,r,r,1),2,2)
  y[[i]]=matrix(rnorm(150),nc=2)
}
wy=MAMSE(y)

# Weighted coefficient of correlation
sum(wy*sapply(y,cor.method="spearman"))[2,]

#MAMSE weights for right-censored data
z=list(0,0,0)
for(i in 1:3){
  zo=rexp(100)
  zc=pmin(rexp(100), rexp(100), rexp(100))
  z[[i]]=cbind(pmin(zo,zc), zo<zc)
}
MAMSE(z,.5,surv=TRUE)

allz=pmin(.5, c(z[[1]][z[[1]][2]==1,1], z[[2]][z[[2]][2]==1,1],
   z[[3]][z[[3]][2]==1,1]))
K=WKME(z,.5,time=sort(unique(c(0,.5, allz, allz-.0001))))
plot(K$time, K$wkme, type='l', col="blue", xlab="x", ylab="P(X<=x)",
ylim=c(0,.5))
lines(K$time, K$km1, col="red")
legend(0,.5,c("Weighted Kaplan-Meier", "Kaplan-Meier"),
   col=c("blue", "red"), lty=c(1,1))

# MAMSE-weighted ROC curve

set.seed(2016)

mh=c(50,25,70,100)
nd=c(40,20,50,80)
```

muh=c(1.5,1.7,1.2)
mud=c(0.2,0.4)

Target curve
FPR=seq(0,1,.01)
TPR=pnorm(qnorm(FPR,mean=muh[1]),mean=mud[1])

simh=list()
simd=list()

for(i in 1:length(FPR)){
 simh[i]=rnorm(FPR[i],mean=muh[i])
 simd[i]=rnorm(FPR[i],mean=mud[i])
}

par(mfrow=c(1,1))
plot(roc(simh,simd),col="red")
lines(roc(simh[1],simd[1]),col="blue")
lines(FPR,TPR,col="gray")
title("Empirical ROC curves")

plot(roc(simh,simd,method="normal"),col="red")
lines(roc(simh[1],simd[1],method="normal"),col="blue")
lines(FPR,TPR,col="gray")
title("Parametric ROC curves")

KM

Functions for use by WKME.

Description

Functions used by WKME to compute the MAMSE-weighted Kaplan-Meier estimate.

MAMSE

Minimum Averaged Mean Squared Error Weights

Description

Computes the MAMSE weights (see references below for their definition).

Usage

MAMSE(x,surv=FALSE,ub=NULL,lb=0,Mint=FALSE,nMC=10000)
Arguments

A list of \(m \) samples. Elements of the list must be vectors of matrices. If they are vectors, the univariate MAMSE weights are computed. Matrices should have \(n \) lines with one \(p \)-dimensional datum per line. The data are automatically transformed into rescaled ranks by the function `ranked`. The MAMSE weights for copulas are then calculated. For survival MAMSE weights, use the argument `surv=TRUE` and provide an \(n \) by 2 matrix where the second column is an indicator (\(\delta \)) of whether the time in column 1 is observed (\(\delta = 1 \)) or censored (\(\delta = 0 \)).

Controls the calculation of the survival MAMSE weights rather than the multivariate version for copulas.

If `surv=TRUE`, the upper bound for the integral of the MAMSE criterion.

If `surv=TRUE`, the lower bound for the integral of the MAMSE criterion.

When MAMSE weights are calculated for copulas, `MCint=TRUE` allows to proceed with Monte Carlo integration. The alternative `MCint=TRUE` will estimate the integral on the grid \(\{1/n, 2/n, \ldots, 1\}^p \) which does not scale well with the number of dimensions \(p \).

When `MCint=TRUE`, \(nMC \) controls the number of samples used to approximate the integral.

Details

Provided a list of samples, this function returns the Minimum Averaged Mean Squared Error weights. The MAMSE weights can be used in a weighted likelihood, or to define mixtures of empirical distributions. In both cases, the methodology is used to infer on Population 1 while borrowing strength from the other samples provided. Refer to the articles below for the exact definition of the MAMSE weights, their asymptotic properties and simulations results, as well as additional information about the weighted likelihood.

Value

A vector of \(p \) elements containing the MAMSE weights for each of the populations.

References

See Also

MAMSE-package, WKME.

Examples

```r
set.seed(2009)

# MAMSE weights for univariate data
x=list(rnorm(25), rnorm(25,.1), rnorm(25,.2))
MAMSE(x)

# MAMSE weights for copulas
y=list(matrix(rnorm(150), nc=2), matrix(rnorm(150), nc=2),
       matrix(rnorm(150), nc=2))
MAMSE(y)
MAMSE(y, MCint=TRUE)

# MAMSE weights for right-censored data
z=list(cbind(rexp(50), rbinom(50,.1,.5), cbind(rexp(50,1.1),
       rbinom(50,1.1), cbind(rexp(50,.9), rbinom(50,1,.5)))
MAMSE(z,3, surv=TRUE)

# For more examples, see help on "MAMSE-package"
```

MAMSEpo

Functions for use by MAMSE.

Description

Functions used by MAMSE to compute the MAMSE weights.

Progesterone

Data sets: Progesterone level for detecting ectopic pregnancies and natural abortions.

Description

Débordès & Plante (2015) extract data from figures in published articles. All papers show the level of progesterone as a diagnostic variable for ectopic pregnancies or natural abortions from other causes. The object Progesterone is a list of lists containing samples from the different papers from which data are obtained.
Usage
data(Progesterone)

Format
List of lists of vectors.

Source
Data were extracted from published figures in Dumps et al. (2002), Florio et al. (2007), Gelder et al. (1991), Grosskinsky et al. (1993), Hanita et al. (2012), Ledger et al. (1994), O’Leary et al. (1996), Peterson et al. (1992), Riss et al. (1989), Stewart et al. (1995), and Witt et al. (1990). All measurements are in nmol/l. Note that the data were extracted from the figures of the paper and as such, contain error due to their conversion back into numbers.

References

See Also

roc, linkhealthy.

ranked

Function used by MAMSE to transform the data into rescaled ranks.

Description

Functions used by MAMSE to convert the data into rescaled ranks. By default, ranked=function(x){ rank(x)/length(x). The user can redefine the function according to other rescalings.

roc

Receiver Operating Characteristic (ROC) Curves

Description

Computes the ROC curve (nonparametric or parametric based on likelihood) for single populations or a weighted ROC curve for lists of populations. The MAMSE weights are used by default for the multiple populations case.

Usage

roc(healthy, diseased, wh=NULL, wd=NULL, FPR=NULL, method="np", smalldiseased=TRUE, AUC=FALSE, nFPR=201)

Arguments

- healthy: A single numeric vector with the values of the diagnostic variable for the healthy group, or a list of m samples (each a numeric vector) from healthy subjects from different populations. When relevant (when MAMSE weights are used), the first sample (healthy[[1]]) is deemed to come from the population of interest and the m-1 other samples are used to borrow strength.
diseased A single numeric vector with the values of the diagnostic variable for the diseased group, or a list of \(m \) samples (each a numeric vector) from diseased subjects from different populations. The number of populations in healthy and diseased must match, and it is assumed that they are presented in the same order (i.e. the \(j^{\text{th}} \) element of both lists are from the same population. When relevant (when MAMSE weights are used), the first sample (\texttt{healthy[[1]]}) is deemed to come from the population of interest and the \(m-1 \) other samples are used to borrow strength.

wh Weights for the healthy population. If \texttt{healthy} is a vector, \(\texttt{wh} \) is a numeric vector of the same length that sums to one and if \(\texttt{wh} \) is \texttt{NULL}, equal weights are given to each datum. If \texttt{healthy} is a list, \(\texttt{wh} \) is a numeric vector of length \(m \) that sums to one and if \(\texttt{wh} \) is \texttt{NULL}, MAMSE weights are calculated.

wd Weights for the diseased population. If \texttt{healthy} is a vector, \(\texttt{wd} \) is a numeric vector of the same length that sums to one and if \(\texttt{wd} \) is \texttt{NULL}, equal weights are given to each datum. If \texttt{healthy} is a list, \(\texttt{wd} \) is a numeric vector of length \(m \) that sums to one and if \(\texttt{wh} \) is \texttt{NULL}, MAMSE weights are calculated.

FPR Numeric vector giving the values of \texttt{FPR} (the x-axis) where the ROC curve should be computed. If \(\texttt{FPR} \) is \texttt{NULL}, the default is to keep every step in the nonparametric settings, or to split the \([0,1]\) interval in \(\texttt{nfPR} \) steps (keeping both 0 and 1).

method Allowed values are "np" for nonparametric ROC curves, "lognormal" for a parametric curve based on the log-normal distribution or "normal" for a parametric curve based on the normal distribution. In the parametric cases, plug-in estimates are used with the (possibly weighted) likelihood.

smalldiseased By default, it is assumed that diseased subjects tend to have smaller values than healthy ones, but \(\texttt{smalldiseased=FALSE} \) can be used if small values are for healthy subjects.

AUC If \(\texttt{AUC=TRUE} \), the Area Under the Curve will be calculated and returned. Note that \(\texttt{AUC} \) will not be calculated if a manually provided \(\texttt{FPR} \) does not start at 0 and end at 1.

nfPR If \(\texttt{FPR} \) is not provided in the parametric setting, it will be generated with equal steps between 0 and 1 (including those bounds).

Details

This function returns the ROC curve based on the provided data sets. The method can be either parametric (normal or log-normal) or nonparametric. Multiple samples can be used and weighted. MAMSE weights are used by default. The first sample appearing in the lists of data is then deemed to come from the population of interest. The function returns a list of point (\texttt{FPR},\texttt{TPR}) that can be plotted to see the ROC curve. The points where the function is evaluated can be controlled by specifying \texttt{FPR} manually. By default, it is assumed that small values of the diagnostic variable indicate a disease, but the option \texttt{smalldiseased} can be used if small values are for healthy subjects.

Value

S3 object of type \texttt{roc} which is a list with the values \texttt{TPR} (vector with true positive rates for different thresholds), \texttt{FPR} (false positive rate for the corresponding threshold) and \texttt{AUC} (Area under the ROC curve). A method for plot has been defined for easier display (see exemples below).
References

See Also

MAMSE-package, MAMSE.

Examples

data(Progesterone)
healthy=lapply(Progesterone,function(x){x$viable})
diseased=lapply(Progesterone,function(x){sort(c(x$ecto,x$abort)))

par(mfrow=c(2,2))

plot(roc(healthy[[1]],diseased[[1]],AUC=TRUE))
title("Empirical ROC curve based on Ledger (1994)")
plot(roc(healthy[[1]],diseased[[1]],AUC=TRUE,method="lognormal")
title("Parametric ROC curve based on Ledger (1994)")

plot(roc(healthy,diseased,AUC=TRUE))
title("MAMSE-weighted empirical ROC curve")
plot(roc(healthy,diseased,AUC=TRUE,method="lognormal")
title("MAMSE-weighted parametric ROC curve")

WKME

Kaplan-Meier Estimate

Description

Computes the weighted Kaplan-Meier estimate over some time points with optional confidence intervals.

Usage

```r
WKME(x,ub,lb=NULL,time=NULL,boot=NULL,REP=1000)
```

Arguments

- **x**: A list of \(m \) samples. Each element is an \(n \) by 2 matrix whose second column is an indicator of whether the time in column 1 is observed (1) or censored (0).
- **lb,ub**: Lower and upper bounds of the integral of the MAMSE criterion.
- **time**: A vector of times at which to compute the Kaplan-Meier estimate.
- **boot**: When NULL, bootstrap confidence intervals are not generated. Otherwise must be a number in (0,1) corresponding to the coverage probability of the bootstrap intervals to be built.
- **REP**: When bootstrap is used, controls the number of pseudo-sample to generate.
Details

This function calculates the weighted Kaplan-Meier estimate and can provide pointwise bootstrap confidence intervals.

Value

List of elements:

- **x**: Sorted list of the times (observed and censored) from each samples
- **weight**: The size of the jump that the Kaplan-Meier estimate allocates to each time in x.
- **time**: Vector of time points where the function is evaluated.
- **kme**: The Kaplan-Meier estimate for Population 1 evaluated at time.
- **kmeci**: Pointwise bootstrap confidence interval for kme.
- **wkme**: The weighted Kaplan-Meier estimate evaluated at time.
- **wkmeCI**: Pointwise bootstrap confidence interval for wkme.

References

See Also

MAMSE-package, WKME.

Examples

```r
set.seed(2009)
x=list(
  cbind(rexp(20),sample(c(0,1),20,replace=TRUE)),
  cbind(rexp(50),sample(c(0,1),50,replace=TRUE)),
  cbind(rexp(100),sample(c(0,1),100,replace=TRUE))
)
allx=pmin(1,c(x[[1]][x[[1]]][,2]==1,1,x[[2]][x[[2]]][,2]==1,1,
  x[[3]][x[[3]]][,2]==1,1))
K=WKME(x,1,time=sort(unique(c(0,1,allx,allx-.0001))),boot=.9,REP=100)
# Only 100 bootstrap repetitions were used to get a fast enough calculation on a CRAN check.
plot(K$time,K$wkme,type='l',col="blue",xlab="x",
ylab="P(X<x)",ylim=c(0,1))
lines(K$time,K$kme[,1],col="red")
lines(K$time,K$wkmeCI[1,],lty=2,col="blue")
lines(K$time,K$wkmeCI[2,],lty=2,col="blue")
```
lines(K$time,K$kmeCI[,],lty=2,col="red")
lines(K$time,K$kmeCI2[,],lty=2,col="red")
legend(.1,.9,c("Weighted Kaplan-Meier","Kaplan-Meier"),
 col=c("blue","red"),lty=c(1,1))
Index

*Topic MAMSE ranked, 8
*Topic ROC roc, 8
*Topic copula ranked, 8
*Topic datasets Progesterone, 6
*Topic diagnostic roc, 8
*Topic multivariate MAMSE, 4 MAMSE-package, 2 MAMSEpo, 6
*Topic nonparametric KM, 4 MAMSE, 4 MAMSE-package, 2 MAMSEpo, 6 ranked, 8 roc, 8 WKME, 10
*Topic package MAMSE-package, 2
*Topic survival KM, 4 MAMSE, 4 MAMSE-package, 2 MAMSEpo, 6 WKME, 10
*Topic univar MAMSE, 4 MAMSE-package, 2 MAMSEpo, 6

bootx (KM), 4
csum (KM), 4
dS (KM), 4