Package ‘MANOVA.RM’

September 29, 2017

Type Package
Title Analysis of Multivariate Data and Repeated Measures Designs
Version 0.2.1
Date 2017-09-26
Author Sarah Friedrich, Frank Konietschke, Markus Pauly
Maintainer Sarah Friedrich <sarah.friedrich@uni-ulm.de>
Depends R (>= 3.4.1)
Description Implemented are various tests for semi-parametric repeated measures
 and general MANOVA designs that do neither assume multivariate normality nor
 covariance homogeneity, i.e., the procedures are applicable for a wide range
 of general multivariate factorial designs.
License GPL-2 | GPL-3
Imports plyr (>= 1.8.3), MASS (>= 7.3-43), Matrix (>= 1.2-2), magic
 (>= 1.5-6), plotrix (>= 3.5-12), parallel, methods, ellipse
LazyData TRUE
Suggests RGtk2 (>= 2.20.31), knitr, rmarkdown, HSAUR, tidyR, GFD,
 testthat
RoxygenNote 5.0.1
VignetteBuilder knitr, rmarkdown
URL http://github.com/smn74/MANOVA.RM
BugReports http://github.com/smn74/MANOVA.RM/issues
NeedsCompilation no
Repository CRAN
Date/Publication 2017-09-29 09:14:48 UTC

R topics documented:

 conf.reg .. 2
 EEG ... 3
conf.reg

The conf.reg() function calculates confidence regions for contrasts in multivariate factorial designs. In the two-dimensional case, confidence ellipsoids can be plotted via the generic plot() function.

Description

The conf.reg() function calculates confidence regions for contrasts in multivariate factorial designs. In the two-dimensional case, confidence ellipsoids can be plotted via the generic plot() function.

Usage

conf.reg(object, nullhypo)

Arguments

object A MANOVA object.

nullhypo In scenarios with more than one factor, the null hypothesis, i.e., the contrast of interest must be specified.

Value

A confreg object containing the following components:

center The center of the confidence ellipsoid.

scale The scaling factors for the axis of the confidence ellipsoid calculated as $\sqrt{\lambda \times c/N}$, where λ are the eigenvalues, c denotes the bootstrap quantile and N is the total sample size. See Friedrich and Pauly (2017) for details.

eigenvectors The corresponding eigenvectors, which determine the axes of the ellipsoid.

References

Examples

```r
data(EEG)
EEG_mod <- MANOVA(resp ~ sex * diagnosis,
                   data = EEG, subject = "id", resampling = "paramBS",
                   alpha = 0.05, iter = 100, CPU = 1)
conf.reg(EEG_mod, nullhypo = "sex")
```

EEG Measurements in Patients with Alzheimer’s Disease (long format)

Description

At the Department of Neurology, University Clinic of Salzburg, 160 patients were diagnosed with either AD, MCI, or SCC, based on neuropsychological diagnostics. This data set contains z-scores for brain rate and Hjorth complexity, each measured at frontal, temporal and central electrode positions and averaged across hemispheres. In addition to standardization, complexity values were multiplied by -1 in order to make them more easily comparable to brain rate values: For brain rate we know that the values decrease with age and pathology, while Hjorth complexity values are known to increase with age and pathology. The three between-subjects factors considered were sex (men vs. women), diagnosis (AD vs. MCI vs. SCC), and age (<= 70 vs. >= 70 years). Additionally, the within-subjects factors region (frontal, temporal, central) and feature (brain rate, complexity) structure the response vector.

Usage

```r
data(EEG)
```

Format

A data frame with 960 rows and 7 variables:

- **resp** EEG measurements
- **sex** sex of the patient
- **age** age of the patient, coded as 0 for less than 70 years and 1 for >= 70 years
- **diagnosis** neuropsychological diagnosis, AD for Alzheimer’s Disease, MCI for mild cognitive impairment or SCC for subjective cognitive complaints without clinically significant deficits
- **region** brain region of the EEG measurements, one of "temporal", "frontal" and "central"
- **feature** feature of the EEG measurements, either "brainrate" or "complexity"
- **id** Subject id

Source

Description

At the Department of Neurology, University Clinic of Salzburg, 160 patients were diagnosed with either AD, MCI, or SCC, based on neuropsychological diagnostics. This data set contains z-scores for brain rate and Hjorth complexity, each measured at frontal, temporal and central electrode positions and averaged across hemispheres. In addition to standardization, complexity values were multiplied by -1 in order to make them more easily comparable to brain rate values: For brain rate we know that the values decrease with age and pathology, while Hjorth complexity values are known to increase with age and pathology. The three between-subjects factors considered were sex (men vs. women), diagnosis (AD vs. MCI vs. SCC), and age (< 70 vs. >= 70 years). Additionally, the within-subjects factors region (frontal, temporal, central) and feature (brain rate, complexity) structure the response vector.

Usage

data(EEGwide)

Format

A data frame with 160 rows and 9 variables:

- brainrate_temporal EEG measurements for brainrate in temporal regions
- brainrate_frontal EEG measurements for brainrate in frontal regions
- brainrate_central EEG measurements for brainrate in central regions
- complexity_temporal EEG measurements for complexity in temporal regions
- complexity_frontal EEG measurements for complexity in frontal regions
- complexity_central EEG measurements for complexity in central regions
- sex sex of the patient
- age age of the patient
- diagnosis neuropsychological diagnosis, AD for Alzheimer’s Disease, MCI for mild cognitive impairment or SCC for subjective cognitive complaints without clinically significant deficits
- AgeGroup categorized age, coded as 0 for less than 70 years and 1 for >= 70 years

Source

GUI.MANOVA

A graphical user interface for the `MANOVA()` function

Description

This function provides a graphical user interface for calculating statistical tests for multivariate data.

Usage

`GUI.MANOVA()`

Details

The function produces a GUI for the calculation of the test statistics. Data can be loaded via the "load data" button. The formula, number of resampling iterations (default: 10,000) and the significance level alpha (default: 0.05) need to be specified. Furthermore, the column name specifying the subjects in the data needs to be provided. For the resampling methods, the user can choose between a parametric bootstrap approach (see e.g. Konietschke et al. (2015)) and a Wild bootstrap using Rademacher weights (see e.g. Bathke et al. (2016)).

GUI.MANOVAwide

A graphical user interface for the `MANOVA.wide()` function

Description

This function provides a graphical user interface for calculating statistical tests for multivariate data.

Usage

`GUI.MANOVAwide()`

Details

The function produces a GUI for the calculation of the test statistics. Data can be loaded via the "load data" button. The formula, number of resampling iterations (default: 10,000) and the significance level alpha (default: 0.05) need to be specified. For the resampling methods, the user can choose between a parametric bootstrap approach (see e.g. Konietschke et al. (2015)) and a Wild bootstrap using Rademacher weights (see e.g. Bathke et al. (2016)).
GUI.RM

A graphical user interface for the RM() function

Description

This function provides a graphical user interface for calculating statistical tests in repeated measures designs.

Usage

GUI.RM()

Details

The function produces a GUI for the calculation of the test statistics and for plotting. Data can be loaded via the "load data" button. The formula, number of resampling iterations (default: 10,000) and the significance level alpha (default: 0.05) need to be specified. Furthermore, the number of sub-plot factors and the column name specifying the subjects in the data need to be provided. For the resampling methods, the user can choose between a permutation approach (Friedrich et al. (2017)), a parametric bootstrap approach (Konietschke et al. (2015)) and a Wild bootstrap using Rademacher weights (Bathke et al. (2016)). If the plot option is chosen, an additional window opens containing information on the plots.

MANOVA

Tests for Multivariate Data in Semi-Parametric Factorial Designs

Description

The MANOVA function calculates the Wald-type statistic (WTS) and a modified ANOVA-type statistic (MATS) as well as resampling versions of these test statistics for semi-parametric multivariate data.

Usage

MANOVA(formula, data, subject, iter = 10000, alpha = 0.05,
resampling = "paramBS", CPU, seed, nested.levels.unique = FALSE,
dec = 3)

Arguments

- **formula**: A model formula object. The left hand side contains the response variable and the right hand side contains the factor variables of interest. An interaction term must be specified.
- **data**: A data.frame, list or environment containing the variables in formula. Data must be in long format.
subject The column name of the subjects in the data.
iter The number of iterations used for calculating the resampled statistic. The default option is 10,000.
alpha A number specifying the significance level; the default is 0.05.
resampling The resampling method to be used, one of "paramBS" (parametric bootstrap approach) and "WildBS" (wild bootstrap approach with Rademacher weights).
CPU The number of cores used for parallel computing. If omitted, cores are detected via detectCores.
seed A random seed for the resampling procedure. If omitted, no reproducible seed is set.
nested.levels.unique A logical specifying whether the levels of the nested factor(s) are labeled uniquely or not. Default is FALSE, i.e., the levels of the nested factor are the same for each level of the main factor. For an example and more explanations see the GFD package and the corresponding vignette.
dec Number of decimals the results should be rounded to. Default is 3.

Details

The MANOVA() function provides the Wald-type statistic (WTS) as well as the modified ANOVA-type statistic (MATS) for multivariate designs with metric data as described in Konietschke et al. (2015) and Friedrich and Pauly (2017), respectively. The MATS is invariant under scale transformations of the components and applicable to designs with singular covariance matrices. Both tests are applicable for non-normal error terms, different sample sizes and/or heteroscedastic variances. They are implemented for designs with an arbitrary number of crossed factors or for nested designs. In addition to the asymptotic p-values, the function also provides p-values based on resampling approaches.

Value

A MANOVA object containing the following components:

Descriptive Some descriptive statistics of the data for all factor level combinations. Displayed are the number of individuals per factor level combination and the vector of means (one column per dimension).
Covariance The estimated covariance matrix.
WTS The value of the WTS along with degrees of freedom of the central chi-square distribution and p-value.
MATS The value of the MATS.
resampling p-values for the test statistic based on the chosen resampling approach.

NOTE

The number of resampling iterations has been set to 100 in the examples due to run time restrictions on CRAN. Usually it is recommended to use at least 1000 iterations. For more information and detailed examples also refer to the package vignette.
References

See Also

RM

Examples

data(EEG)
EEG_mod <- MANOVA(resp ~ sex * diagnosis,
data = EEG, subject = "id", resampling = "paramBS",
alpha = 0.05, iter = 100, CPU = 1)
summary(EEG_mod)

MANOVA.wide

Tests for Multivariate Data in Semi-Parametric Factorial Designs

Description

The MANOVA.wide function calculates the Wald-type statistic (WTS) and a modified ANOVA-type statistic (MATS) as well as resampling versions of these test statistics for semi-parametric multivariate data provided in wide format.

Usage

MANOVA.wide(formula, data, iter = 10000, alpha = 0.05,
resampling = "paramBS", CPU, seed, nested.levels.unique = FALSE,
dec = 3)
MANOVA.wide

Arguments

formula A model *formula* object. The left hand side contains the matrix of response variables and the right hand side contains the factor variables of interest. An interaction term must be specified.

data A data.frame, list or environment containing the variables in *formula*. Data must be in wide format.

iter The number of iterations used for calculating the resampled statistic. The default option is 10,000.

alpha A number specifying the significance level; the default is 0.05.

resampling The resampling method to be used, one of "paramBS" (parametric bootstrap approach) and "WildBS" (wild bootstrap approach with Rademacher weights). The Wild Bootstrap is calculated for all test statistics.

CPU The number of cores used for parallel computing. If omitted, cores are detected via `detectCores`.

seed A random seed for the resampling procedure. If omitted, no reproducible seed is set.

nested.levels.unique A logical specifying whether the levels of the nested factor(s) are labeled uniquely or not. Default is FALSE, i.e., the levels of the nested factor are the same for each level of the main factor. For an example and more explanations see the GFD package and the corresponding vignette.

dec Number of decimals the results should be rounded to. Default is 3.

Value

See MANOVA

NOTE

The number of resampling iterations has been set to 100 in the examples due to run time restrictions on CRAN. Usually it is recommended to use at least 1000 iterations.

See Also

MANOVA

Examples

```r
# Example on producing plastic film from Krzanowski (1998, p. 381), see \code{\link{manova.summary}}
tear <- c(6.5, 6.2, 5.8, 6.5, 6.5, 6.9, 7.2, 6.9, 6.1, 6.3,
          6.7, 6.6, 7.2, 7.1, 6.8, 7.1, 7.0, 7.2, 7.5, 7.6)
gloss <- c(9.5, 9.9, 9.6, 9.6, 9.2, 9.1, 10.8, 9.9, 9.5, 9.4,
          9.1, 9.3, 8.3, 8.4, 8.5, 9.2, 8.8, 9.7, 10.1, 9.2)
opacity <- c(4.4, 6.4, 3.0, 4.1, 0.8, 5.7, 2.0, 3.9, 1.9, 5.7,
            2.8, 4.1, 3.8, 1.6, 3.4, 8.4, 5.2, 6.9, 2.7, 1.9)
rate <- gl(2, 10, labels = c("Low", "High"))
additive <- gl(2, 5, length = 20, labels = c("Low", "High"))
```
MANOVARM

MANOVA.RM: A package for calculating test statistics and their re-sampling versions for heteroscedastic semi-parametric multivariate data or repeated measures designs.

Description

The MANOVA.RM package provides two important functions: MANOVA() and RM() which will be explained in detail below.

MANOVA and MANOVA.wide function

The MANOVA() and MANOVA.wide() functions provide the Wald-type statistic (WTS) as well as a modified ANOVA-type statistic (MATS) as in Friedrich and Pauly (2017) for multivariate designs with metric data as described in Konietschke et al. (2015). These are applicable for non-normal error terms, different sample sizes and/or heteroscedastic variances. The MATS can even handle designs involving singular covariance matrices. The tests are implemented for designs with an arbitrary number of crossed factors or for nested designs. In addition to the asymptotic p-values, they also provide p-values based on resampling approaches (parametric or wild bootstrap). The difference between the two functions is the format of the data: For MANOVA(), the data needs to be in long format, while MANOVA.wide() is for data in wide format. For further details, see MANOVA and MANOVA.wide.

RM function

The RM() function provides the Wald-type statistic (WTS) as well as the ANOVA-type statistic (ATS) for repeated measures designs with metric data as described in Friedrich et al. (2017). These are even applicable for non-normal error terms and/or heteroscedastic variances. It is implemented for designs with an arbitrary number of whole-plot and sub-plot factors and allows for different sample sizes. In addition to the asymptotic p-values, it also provides p-values based on resampling approaches (Permutation, parametric bootstrap, Wild bootstrap). For further details, see RM.

References

O2cons

Oxygen Consumption of Leukocytes

Description

A dataset containing measurements on the oxygen consumption of leukocytes in the presence and absence of inactivated staphylococci.

Usage

data(o2cons)

Format

A data frame with 144 rows and 5 variables:

- **O2**: oxygen consumption of leukocytes in μl
- **Staphylococci**: whether or not inactivated staphylococci were added, 1 denotes yes, 0 no
- **Time**: the measurements were taken after 6, 12 and 18 minutes
- **Group**: the treatment group, either P for Placebo or V for Verum
- **Subject**: the subject id

Source

RM

Tests for Repeated Measures in Semi-Parametric Factorial Designs

Description

The RM() function calculates the Wald-type statistic (WTS), the ANOVA-type statistic (ATS) as well as resampling versions of these test statistics for semi-parametric repeated measures designs.

Usage

RM(formula, data, subject, no.subf = 1, iter = 10000, alpha = 0.05, resampling = "Perm", CPU, seed, CI.method = "t-quantile", dec = 3)
Arguments

formula: A model formula object. The left hand side contains the response variable and the right hand side contains the factor variables of interest. An interaction term must be specified. The time variable must be the last factor in the formula.

data: A data.frame, list or environment containing the variables in formula. Data must be in long format.

subject: The column name of the subjects in the data.

no.subf: The number of sub-plot factors in the data, default is 1.

iter: The number of iterations used for calculating the resampled statistic. The default option is 10,000.

alpha: A number specifying the significance level; the default is 0.05.

resampling: The resampling method to be used, one of "Perm" (randomly permute all observations), "paramBS" (parametric bootstrap approach) and "WildBS" (wild bootstrap approach with Rademacher weights). Except for the Wild Bootstrap, all methods are applied to the WTS only.

CPU: The number of cores used for parallel computing. If omitted, cores are detected via detectCores.

seed: A random seed for the resampling procedure. If omitted, no reproducible seed is set.

CI.method: The method for calculating the quantiles used for the confidence intervals, either "t-quantile" (the default) or "resampling" (the quantile of the resampled WTS).

dec: Number of decimals the results should be rounded to. Default is 3.

Details

The RM() function provides the Wald-type statistic as well as the ANOVA-type statistic for repeated measures designs with metric data as described in Friedrich et al. (2017). These are even applicable for non-normal error terms and/or heteroscedastic variances. It is implemented for designs with an arbitrary number of whole-plot and sub-plot factors and allows for different sample sizes. In addition to the asymptotic p-values, it also provides p-values based on resampling approaches.

Value

An RM object containing the following components:

Descriptive: Some descriptive statistics of the data for all factor level combinations. Displayed are the number of individuals per factor level combination, the mean and 100*(1-alpha)% confidence intervals (based on t-quantiles).

Covariance: The estimated covariance matrix.

WTS: The value of the WTS along with degrees of freedom of the central chi-square distribution and corresponding p-value.

ATS: The value of the ATS, degrees of freedom of the central F distribution and the corresponding p-value.

resampling: p-values for the test statistics based on the chosen resampling approach.
References

See Also

GFD, nparLD, MANOVA

Examples

data(o2cons)
oxy <- RM(O2 ~ Group * Staphylococci * Time, data = o2cons,
 subject = "Subject", no.subf = 2, iter = 100, resampling = "Perm", CPU = 1)
summary(oxy)
plot(oxy, factor = "Group")

For more details including the output of the examples also refer to the # package vignette.

using the EEG data, consider additional within-subjects factors 'brain region' # and 'feature'
data(EEG)
Not run:
EEG_model <- RM(resp ~ sex * diagnosis * feature * region,
 data = EEG, subject = "id", no.subf = 2, resampling = "WildBS",
 iter = 1000, alpha = 0.01, CPU = 4, seed = 987, dec = 2)
summary(EEG_model)

End(Not run)
Index

*Topic **datasets**

EEG, 3
EEGwide, 4
o2cons, 11

conf.reg, 2

detectCores, 7, 9, 12

EEG, 3
EEGwide, 4

formula, 6, 9, 12

GFD, 13
GUI.MANOVA, 5
GUI.MANOVAwide, 5
GUI.RM, 6

MANOVA, 6, 9, 13
MANOVA.wide, 8
MANOVARM, 10
MANOVARM-package (MANOVARM), 10

nparLD, 13

o2cons, 11

RM, 8, 11