Package ‘MAP’

April 1, 2019

Type Package
Title Multimodal Automated Phenotyping
Version 0.1.3
Author Jiehuan Sun [aut, cre], Katherine P. Liao[aut], Sheng Yu [aut], Tianxi Cai [aut]
Maintainer Jiehuan Sun <jiehuan.sun@gmail.com>
Description Electronic health records (EHR) linked with biorepositories are a powerful platform for translational studies. A major bottleneck exists in the ability to phenotype patients accurately and efficiently. Towards that end, we developed an automated high-throughput phenotyping method integrating International Classification of Diseases (ICD) codes and narrative data extracted using natural language processing (NLP). Specifically, our proposed method, called MAP (Map Automated Phenotyping algorithm), fits an ensemble of latent mixture models on aggregated ICD and NLP counts along with healthcare utilization. The MAP algorithm yields a predicted probability of phenotype for each patient and a threshold for classifying subjects with phenotype yes/no (See Katherine P. Liao, et al. (2019) <doi:10.1101/587436>.).

License GPL-2
Encoding UTF-8
LazyData true
Depends R (>= 3.4.0), flexmix (>= 2.3-14), Matrix(>= 1.2-10)
Suggests knitr, rmarkdown
NeedsCompilation no
RoxygenNote 6.1.1
Repository CRAN
Date/Publication 2019-04-01 08:20:09 UTC

R topics documented:

MAP ... 2

Index 3
MAP

MAP algorithm

Description

Main function to perform MAP algorithm to calculate predicted probabilities of positive phenotype for each patient based on NLP and ICD counts adjusted for healthcare utilization.

Usage

```r
MAP(mat = NULL, note = NULL, yes.con = FALSE, full.output = FALSE)
```

Arguments

- `mat` Count data (sparse matrix). One of the columns has to be ICD data with name being ICD.
- `note` Note count (sparse matrix) indicating health utilization.
- `yes.con` A logical variable indicating if concomitant is desired. Not used for now.
- `full.output` A logical variable indicating if full outputs are desired.

Value

Returns a list with following objects:

- `scores` indicates predicted probabilities.
- `cut.MAP` the cutoff value that can be used to derive binary phenotype.

References

Examples

```r
# simulate data to test the algorithm
n = 400
ICD = c(rpois(n/4,10), rpois(n/4,1), rep(0,n/2) )
NLP = c(rpois(n/4,10), rpois(n/4,1), rep(0,n/2) )
mat = Matrix(data=cbind(ICD,NLP),sparse = TRUE)
note = Matrix(rpois(n,10)+5,ncol=1,sparse = TRUE)
res = MAP(mat = mat, note=note)
head(res$scores)
res$cut.MAP
```
Index

MAP, 2