Package ‘MARX’

April 24, 2018

Title Simulation, Estimation, Model Selection and Forecasting for MARX Models

Version 0.2

Date 2018-04-24

Author Sean Telg [aut, cre, cph],
Alain Hecq [ctb],
Lenard Lieb [ctb]

Maintainer Sean Telg <j.telg@maastrichtuniversity.nl>

Imports matlab, fBasics, tseries, stabledist, metRology

License GPL-2

Encoding UTF-8

LazyData true

RoxygenNote 6.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2018-04-24 18:44:32 UTC

R topics documented:

- aic
- arx.ls
- bic
- commodity
- companion.form
- compute.MA
- forecast.marx
- hq
The Akaike information criterion (AIC) function

Description

This function allows you to calculate the Akaike information criteria (AIC) for ARX models.

Usage

```r
aic(y, x, p_max)
```

Arguments

- `y`: Data vector of time series observations.
- `x`: Matrix of data (every column represents one time series). Specify NULL or "not" if not wanted.
- `p_max`: Maximum number of autoregressive terms to be included.

Value

- `p`: Lag order chosen by AIC.
- `values`: Vector containing values AIC for `p = 0` up to `p_max`.

Author(s)

Sean Telg

Examples

```r
data <- sim.marx(c('t',1,1), c('t',1,1),100,0.5,0.4,0.3)
aic(data$y, data$x,8)
```
The ARX estimation by OLS function

Description

This function allows you to estimate ARX models by ordinary least squares (OLS).

Usage

arx.ls(y, x, p)

Arguments

y Data vector of time series observations.
x Matrix of data (every column represents one time series). Specify NULL or "not" if not wanted.
p Number of autoregressive terms to be included.

Value

coefficients Vector of estimated coefficients.
coef.auto Vector of estimated autoregressive parameters.
coef.exo Vector of estimated exogenous parameters.
mse Mean squared error.
residuals Residuals.
loglikelihood Value of the loglikelihood.
fitted.values Fitted values.
df Degrees of freedom.
vcov Variance-covariance matrix of residuals.

Author(s)

Sean Telg

Examples

data <- sim.marx(c('t', 3, 1), c('t', 1, 1), 100, 0.5, 0.4, 0.3)
arx.ls(data$y, data$x, 2)
The Bayesian/Schwarz information criterion (BIC) function

Description

This function allows you to calculate the Bayesian/Schwarz information criteria (BIC) for ARX models.

Usage

bic(y, x, p_max)

Arguments

y
Data vector of time series observations.

x
Matrix of data (every column represents one time series). Specify NULL or "not" if not wanted.

p_max
Maximum number of autoregressive terms to be included.

Value

p
Lag order chosen by BIC.

values
Vector containing values BIC for p = 0 up to p_max.

Author(s)

Sean Telg

Examples

data <- sim.marx(c('t',1,1), c('t',1,1), 100, 0.5, 0.4, 0.3)
bic(data$y, data$x, 8)

Data: Monthly growth rates of commodity prices, exchange rate and industrial production index.

Description

Monthly growth rates of commodity prices, exchange rate and industrial production index from February 1980 until October 2010. Levels of these series can be downloaded from IMF and Federal Reserve Bank of St. Louis.

Usage

data("commodity")
Format

A data frame with 441 observations on the following 8 variables.

- `x_date_` a vector with dates
- `dlnbev` a numeric vector
- `dlnind` a numeric vector
- `dlnrawm` a numeric vector
- `dlnmeta` a numeric vector
- `dlnoil` a numeric vector
- `dlnipi` a numeric vector
- `dlnex` a numeric vector

Source

Examples

```r
data(dataset)
```

companion.form

<table>
<thead>
<tr>
<th>Companion form function</th>
</tr>
</thead>
</table>

Description

This function allows you to compute a companion form matrix in order to check the stability of causal and noncausal part of the ARX model.

Usage

```r
companion.form(pol)
```

Arguments

- `pol` Coefficient vector. If polynomial is 1 - ax - bx^2, coefficient vector is c(a, b).

Value

- `C` Companion matrix C.

Author(s)

Sean Telg
compute.MA

Coefficients of the moving average representation function

Description
This function allows you to invert a polynomial (either the causal or the noncausal one) and output
the corresponding coefficients of the moving average representation.

Usage
compute.MA(pol, M)

Arguments
pol Coefficient vector. If polynomial is 1 - ax - bx^2, coefficient vector is c(a, b).
M Truncation value M (how many MA coefficients should be computed?).

Value
psi Vector containing coefficients of the moving average representation.

Author(s)
Sean Telg

Examples
pol <- c(0.3, 0.4)
psi <- companion.form(pol)

forecast.marx
Forecasting function for the MARX model

Description
This function allows you to forecast with the mixed causal-noncausal model with possibly exoge-

Usage
forecast.marx(y, X, p_C, p_NC, X.for, h, M, N)
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>Data vector y.</td>
</tr>
<tr>
<td>X</td>
<td>(optional) Matrix with data (column represents a series).</td>
</tr>
<tr>
<td>p_c</td>
<td>Number of lags (causal order).</td>
</tr>
<tr>
<td>p_nc</td>
<td>Number of leads (non-causal order).</td>
</tr>
<tr>
<td>X.for</td>
<td>(optional) Matrix with forecasted values for X (column represents series).</td>
</tr>
<tr>
<td>h</td>
<td>Forecast horizon h.</td>
</tr>
<tr>
<td>M</td>
<td>(optional) Truncation value M for MA representation. Default value: 50.</td>
</tr>
<tr>
<td>N</td>
<td>(optional) Number of simulations to forecast non-causal component. Default: 10,000.</td>
</tr>
</tbody>
</table>

Value

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y.for</td>
<td>Vector containing forecasted values for y.</td>
</tr>
</tbody>
</table>

Author(s)

Sean Telg

Examples

```r
## Forecasting MAR(0,1) model 4-periods ahead for lnbev (from dataset)
data <- MARX::dataset[,2]
y.for <- forecast.marx(y=data, p_c=0, p_nc=1, h=4, M=50, N=1000)
```

Description

This function allows you to calculate the Hannan-Quinn (HQ) information criteria for ARX models.

Usage

`hq(y, x, p_max)`

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>Data vector of time series observations.</td>
</tr>
<tr>
<td>x</td>
<td>Matrix of data (every column represents one time series). Specify NULL or "not" if not wanted.</td>
</tr>
<tr>
<td>p_max</td>
<td>Maximum number of autoregressive terms to be included.</td>
</tr>
</tbody>
</table>
inference

Value

\(p \)
Lag order chosen by HQ.

values
Vector containing values HQ for \(p = 0 \) up to \(p_{\text{max}} \).

Author(s)

Sean Telg

Examples

data <- sim.marx(c('t',1,1), c('t',1,1),100,0.5,0.4,0.3)
hq(data$y, data$x,8)

| inference | Asymptotic inference for the MARX function |

Description

This function allows you to calculate standard errors and confidence intervals for parameters of the MARX model.

Usage

\[
\text{inference}(y, x, B_C, B_{NC}, B_x, IC, \text{sig}, df, \text{sig_level})
\]

Arguments

\(y \)
Data vector of time series observations.

\(x \)
Matrix of data (every column represents one time series). Specify NULL or "not" if not wanted.

\(B_C \)
Estimated causal parameters of the MARX.

\(B_{NC} \)
Estimated noncausal parameters of the MARX.

\(B_x \)
Estimated parameters of the exogenous variables in the MARX.

\(IC \)
Estimated intercept.

\(\text{sig} \)
Estimated scale parameter of the assumed underlying Student-t distribution of the residuals.

\(df \)
Estimated degrees of freedom of the assumed underlying Student-t distribution of the residuals.

\(\text{sig_level} \)
Significance level for the construction of inference.
Value

CI.c
Confidence intervals for causal parameters.

CI.nc
Confidence intervals for noncausal parameters.

CI.exo
Confidence intervals for exogenous parameters.

CI.int
Confidence interval for intercept.

se.c
Standard errors of causal parameters.

se.nc
Standard errors of noncausal parameters.

se.exo
Standard errors of exogenous parameters.

se.int
Standard error of intercept.

Author(s)

Sean Telg

Examples

```r
data <sim.marx(c('t',1,1), c('t',1,1),100,0.5,0.4,0.3)
y <- data$y
x <- data$x
res <- marx.t(y,x,1,1)
inference(y,x,res$coef.c,res$coef.nc,res$coef.exo,res$coef.int,res$scale,res$df,0.05)
```

Description

This function allows you to determine the value of the t-log-likelihood for the MARX model.

Usage

```r
ll.max(params, y, x, p.C, p.NC)
```

Arguments

- **params**: List of parameters.
- **y**: Data vector of time series observations.
- **x**: Matrix of data (every column represents one time series). Specify NULL or "not" if not wanted.
- **p.C**: Number of lags.
- **p.NC**: Number of leads.
Value

neg.loglikelihood

Minus the loglikelihood.

Author(s)

Sean Telg

Examples

```r
data <- sim.marx(c('t',1,1), c('t',1,1),100,0.5,0.4,0.3)
y <- data$y
x <- data$x
p_C <- 1
p_NC <- 1
params <- c(0.5,0.4,0.3,0,1,1)
ll.max(params,y,x,p_C,p_NC)
```

marx

The MARX function

Description

This interface-based function allows you to perform model selection for MARX models based on information criteria.

Usage

```r
marx(y, x, p_max, sig_level, p_c, p NC)
```

Arguments

- **y**: Data vector of time series observations.
- **x**: Matrix of data (every column represents one time series). Specify NULL or "not" if not wanted.
- **p_max**: Maximum number of autoregressive parameters (leads + lags) to be included.
- **sig_level**: Significance level for the construction of inference.
- **p_C**: Number of lags (if not specified by the user a model selection procedure is used to determine the number of lags).
- **p_NC**: Number of leads (if not specified by the user a model selection procedure is used to determine the number of leads).

Details

Mixed causal-noncausal autoregressions with exogenous regressors.
Value

The function returns the values of the information criteria for the pseudo-causal models. The user is asked to choose a value for "p". Extensive output for the MARX(r,s,q) model (with p = r + s) which maximizes the log-likelihood is reported.

Author(s)

Sean Telg

Examples

data <- sim.marx(c('t',1,1), c('t',1,1),100,0.5,0.4,0.3)
p_max <- 8
sig_level <- 0.05
marx(data$y, data$x, p_max, sig_level,1,1) ## p_C and p_NC chosen to be 1: MARX(1,1,1) output.
m Marx(data$y, NULL, p_max,sig_level,1,1) ## MAR(1,1), no exogenous variable specified.

The estimation of the MARX model by t-MLE function

Description

This function allows you to estimate the MARX model by t-MLE.

Usage

marx.t(y, x, p_C, p_NC, params0)

Arguments

y Data vector of time series observations.
x Matrix of data (every column represents one time series). Specify NULL or "not" if not wanted.
p_C Number of lags.
p_NC Number of leads.
params0 Starting values for the parameters to be estimated (both model and distributional parameters).

Value

ccoef.c Estimated causal coefficients.
ccoef.nc Estimated noncausal coefficients.
ccoef.exo Estimated exogenous coefficients.
ccoef.int Estimated intercept.
scale Estimated scale parameter.
mixed

<table>
<thead>
<tr>
<th>df</th>
<th>Estimated degrees of freedom.</th>
</tr>
</thead>
<tbody>
<tr>
<td>residuals</td>
<td>Residuals.</td>
</tr>
<tr>
<td>se.dist</td>
<td>Standard errors of the distributional parameters.</td>
</tr>
</tbody>
</table>

Author(s)

Sean Telg

Examples

```r
data <- sim.marx(c('t',3,1),c('t',3,1),100,0.5,0.4,0.3)
marx.t(data$y, data$x, 1, 1)
```

Description

This function allows you to estimate mixed causal-noncausal MARX models by t-MLE (compatible with most functions in lm() class).

Usage

```r
mixed(y, x, p_C, p_NC)
```

Default S3 method:
mixed(y, x, p_C, p_NC)

S3 method for class 'mixed'
print(x, ...)

S3 method for class 'mixed'
summary(object, ...)

Arguments

- **y** Data vector of time series observations.
- **x** Matrix of data (every column represents one time series). Specify NULL or "not" if not wanted.
- **p_C** Number of lags to be included.
- **p_NC** Number of leads to be included.
- **...** Other parameters.
- **object** An object of the class "mixed".
pseudo

Value
An object of class "mixed" is a list containing the following components:

- coefficients: Vector of estimated coefficients.
- se: Standard errors of estimated coefficients.
- df.residual: Degrees of freedom residuals.
- residuals: Residuals.
- fitted.values: Fitted values.
- order: Vector containing (r,s,q), i.e. causal order r, noncausal order s, number of exogenous regressors q.

Examples

data <- sim.marx(c("t",1,1), c("t",1,1),100,0.5,0.4,0.3)
object <- mixed(data$y, data$x, 1, 1)
class(object) <- "mixed"
summary(object)

pseudo: The pseudo-causal model function

Description
This function allows you to estimate pseudo-causal ARX models by OLS (compatible with most functions in lm() class).

Usage
pseudo(y, x, p)

Default S3 method:
pseudo(y, x, p)

S3 method for class 'pseudo'
print(x, ...)

S3 method for class 'pseudo'
summary(object, ...)

Arguments

- y: Data vector of time series observations.
- x: Matrix of data (every column represents one time series). Specify NULL or "not" if not wanted.
- p: Number of lags to be included.
- ...: Other arguments
- object: An object of the class "pseudo"
Value

An object of class "pseudo" is a list containing the following components:

- **coefficients**: Vector of estimated coefficients.
- **coef.auto**: Vector of estimated autoregressive parameters.
- **coef.exo**: Vector of estimated exogenous parameters.
- **mse**: Mean squared error.
- **residuals**: Residuals.
- **loglikelihood**: Value of the loglikelihood.
- **fitted.values**: Fitted values.
- **df**: Degrees of freedom.
- **vcov**: Variance-covariance matrix of residuals.

Examples

```r
data <- sim.marx(c('t', 't'), c('t', 't'), 100, 0.5, 0.4, 0.3)
object <- pseudo(data$y, data$x, 2)
class(object) <- "pseudo"
summary(object)
```

regressor.matrix

The regressor matrix function

Description

This function allows you to create a regressor matrix.

Usage

`regressor.matrix(y, x, p)`

Arguments

- **y**: Data vector of time series observations.
- **x**: Matrix of data (every column represents one time series). Specify NULL or "not" if not wanted.
- **p**: Number of autoregressive terms to be included.

Value

- **Z**: Regressor matrix

Author(s)

Sean Telg
Examples

data <- sim.marx(c('t',3,1), c('t',1,1), 100, 0.5, 0.4, 0.3)
regressor.matrix(data$y, data$x, 2)

selection.lag

The model selection for pseudo-ARX function

Description

This function allows you to calculate AIC, BIC, HQ for pseudo-ARX models.

Usage

selection.lag(y, x, p_max)

Arguments

y
Data vector of time series observations.

x
Matrix of data (every column represents one time series). Specify NULL or "not" if not wanted.

p_max
Maximum number of autoregressive terms to be included.

Value

bic
Vector containing values BIC for p=0 up to p_max.

aic
Vector containing values AIC for p=0 up to p_max.

hq
Vector containing values HQ for p=0 up to p_max.

Author(s)

Sean Telg

Examples

data <- sim.marx(c('t',1,1), c('t',1,1), 100, 0.5, 0.4, 0.3)
selection.lag(data$y, data$x, 8)
selection.lag.lead
The lag-lead model selection for MARX function

Description

This function allows you to determine the MARX model (for \(p = r + s \)) that maximizes the t-log-likelihood.

Usage

```r
selection.lag.lead(y, x, p_pseudo)
```

Arguments

- `y`: Data vector of time series observations.
- `x`: Matrix of data (every column represents one time series). Specify NULL or "not" if not wanted.
- `p_pseudo`: Number of autoregressive terms to be included in the pseudo-causal model.

Value

- `p.C`: The number of lags selected.
- `p.NC`: The number of leads selected.
- `loglikelihood`: The value of the loglikelihood for all models with \(p = r + s \).

Author(s)

Sean Telg

Examples

```r
data <- sim.marx(c('t',3,1), c('t',3,1),100,0.5,0.4,0.3)  
selection.lag.lead(data$y, data$x, 2)
```

sim.marx
The simulation of MARX processes

Description

This function allows you to simulate MARX processes based on different underlying distribution.

Usage

```r
sim.marx(dist.eps, dist.x, obs, c_par, nc_par, exo_par)
```
Arguments

dist.\eps \quad \text{vector containing the error distribution and its parameters (options: t, normal, stable).}

dist.x \quad \text{vector containing the distribution of x and its parameters (options: t, normal, stable). Specify NULL or "not" if not wanted.}

obs \quad \text{Number of observations for simulated process.}

c_par \quad \text{vector of causal parameters.}

nc_par \quad \text{vector of noncausal parameters.}

exo_par \quad \text{Parameter of the exogenous variable.}

Value

y \quad \text{Simulated data y.}

x \quad \text{Simulated data x (exogenous variable).}

Author(s)

Sean Telg

Examples

dist.\eps \leftarrow c('t',1,1) \quad \# \text{t-distributed errors with 1 degree of freedom and scale parameter 1}
dist.x \leftarrow c('normal',0,1) \quad \# \text{standard normally distributed x variable}
obs \leftarrow 100
c_par \leftarrow c(0.2,0.4)
nc_par \leftarrow 0.8
exo_par \leftarrow 0.5
sim.marx(dist.\eps,dist.x,obs,c_par,nc_par,exo_par) \quad \# \text{Simulates a MARX(2,1,1) process}
Index

*Topic causal-noncausal
 inference, 8
 marx.t, 11
 mixed, 12
 selection.lag.lead, 16
*Topic datasets
 commodity, 4
*Topic estimation
 arx.ls, 3
 marx, 10
 marx.t, 11
 mixed, 12
 pseudo, 13
 regressor.matrix, 14
*Topic forecasting
 forecast.marx, 6
*Topic inference
 inference, 8
*Topic optimization
 ll.max, 9
*Topic pseudo-causal
 arx.ls, 3
 pseudo, 13
 selection.lag, 15
*Topic selection
 aic, 2
 bic, 4
 hq, 7
 marx, 10
 selection.lag, 15
 selection.lag.lead, 16
*Topic simulation
 sim.marx, 16
*Topic stability,
 companion.form, 5
 compute.MA, 6
*Topic stationarity
 companion.form, 5
 compute.MA, 6

aic, 2
arx.ls, 3
bic, 4
commodity, 4
companion.form, 5
compute.MA, 6
dataset(commodity), 4
forecast.marx, 6
hq, 7
inference, 8
ll.max, 9
marx, 10
marx.t, 11
mixed, 12
print.mixed(mixed), 12
print.pseudo(pseudo), 13
pseudo, 13
regressor.matrix, 14
selection.lag, 15
selection.lag.lead, 16
sim.marx, 16
summary.mixed(mixed), 12
summary.pseudo(pseudo), 13