Package ‘MBHdesign’

October 12, 2022

Title Spatial Designs for Ecological and Environmental Surveys

Version 2.2.2

Author Scott D. Foster

Maintainer Scott Foster <scott.foster@data61.csiro.au>

License GPL (>= 2)

Imports mgcv, geometry, randtoolbox, mvtnorm, stats, class, parallel, raster

Suggests fields, graphics, knitr, spsurvey, MASS

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2022-01-25 01:12:41 UTC

R topics documented:

- alterInclProbs .. 2
- ConstrainTransects 4
- modEsti ... 5
- quasiSamp .. 8
- transectSamp 10

Index 15
alterInclProbs

Alters inclusion probabilities to accommodate legacy sites

Description

Alters inclusion probabilities to accommodate legacy sites. Inclusion probabilities are deflated around legacy sites, and the resulting set of new sites (and legacy sites) are spatially balanced.

Usage

```r
alterInclProbs( legacy.sites, potential.sites=NULL, n=NULL, inclusion.probs=NULL, mc.cores=1, sigma=NULL)
```

Arguments

- `legacy.sites`: a matrix (MxD) matrix of locations of the M legacy sites as points in D dimensions. For most applications D=2. Each row gives the location (in space) of one of the legacy sites.
- `potential.sites`: a matrix (NxD) of locations of the N potential sampling sites as points in D dimension. These are the locations from which n are taken as the sample. If NULL (default) a maximum of N=10000 samples are placed on a regular grid within a convex hull defined by the legacy locations. This default may or may not make sense for you (but something has to be the default).
- `n`: an integer specifying the number of new sites to sample. One of n and inclusion.probs needs to be specified, but if both are then n is discarded.
- `inclusion.probs`: a vector specifying the inclusion probability for each of the N sampling sites. This is the probability that each site will be included in the final sample. The sum of inclusion.probs must be the number of new sites required. Locations in inclusion.probs must be ordered the same as the potential.sites argument. If NULL (default) equal inclusion probabilities are specified and the number of new sites is taken to be n.
- `mc.cores`: the number of processes to for some of the calculations on (in particular the calculation of distances to legacy sites). See parLapply(qv) in package parallel.
- `sigma`: a parameter defining the spatial influence of the legacy sites. Must be positive. It is sigma in the squared exponential decay function, \(\exp(-\text{distanceFromLegacySite}^2 / \sigma^2) \). If NULL (default), then it is chosen so that 95 percent of the legacy sites influence is located within the average patch size around a point. This seems like a useful default. See Foster et al. (in prep) for details.

Details

The inclusion probabilities are adjusted using a variant of the spatially clustered Poisson sampling method in Grafstrom (2012), which is itself a spatially explicit version of Bondesson and Thorburn (2008). The adjustments here are given in Foster et al. (in prep). Basically, the adjustment is similar
to that proposed in Section 3.2 of Grafstrom (2012), that is the inclusion probabilities are updated using the squared loss distance metric (as above). However, the weighting function here is given by the distance times the inclusion probability of the new site.

Value

The alterInclProbs function returns a numeric vector containing inclusion probabilities adjusted for legacy sites.

Author(s)

Scott D. Foster

References

See Also

quasiSamp, modEsti

Examples

big plane today
set.seed(747)
the number of potential sampling locations
N <- 100^2
number of samples
n <- 27
number of legacy sites
nLegacy <- 3
the grid
X <- as.matrix(expand.grid(1:sqrt(N), 1:sqrt(N)) / sqrt(N) - 1/(2*sqrt(N)))
the inclusion probabilities with gradient according to non-linear function of X[,1]
p <- 1-exp(-X[,1])
standardise to get n samples
p <- n * p / sum(p)
randomly choose legacy sites
legacySites <- sample(1:N, nLegacy, prob=p)
alter inclusion probabilities
p2 <- alterInclProbs(legacy.sites=X[legacySites,], potential.sites=X, inclusion.probs=p)
if(requireNamespace("graphics", quietly = TRUE)) {
 # plotting up old and new inclusion probabilities
 par(mfrow=c(1,2))
ConstrainTransects

Finds transects that are descending over complex terrain, or are stemming from a set of locations.

Description

Creates a 'mask' for the extended sampling frame (sites by rotations) for two reasons: Some sampling gears that can only be deployed down-slope, and those designs where a 'wagon-wheel' is required from a small set of points (e.g. the top of a seamount).

Usage

```r
findDescendingTrans( potential.sites, bathy, in.area, descend.cutoff=0, control=NULL)
findTransFromPoint( potential.sites, originPoints, in.area, control = NULL)
```

Arguments

- **potential.sites**: a matrix (of size Nxdimension) of the spatial coordinates of the N sampling locations, of which n=N are taken as the sample. If NULL (default) N=10000 samples are placed on a regular grid. If study.area is defined, then this grid is over the smallest bounding (hyper-)rectangle for the study.area. If study.area is NULL, the grid is over the unit (hyper-)square.

- **bathy**: a vector of length N, giving the depth (or height) at each of the N potential.sites. Ordering must be the same as potential.sites.

- **in.area**: a vector describing which cells are in the study region (TRUE) and which are not (FALSE). Ordering must be the same as potential.sites.

- **descend.cutoff**: the value describing how down a descent actually is (in some cases slight rises are still manageable). Default is 0, meaning that strict descent is required.

- **control**: A list containing details of the transects, their computational representation, and decisions about the design. See the Details Section of `transectSamp` for more information.

- **originPoints**: a matrix with two columns giving the locations of the centre cells. There can be as many central cells as desired (more rows).
Details

The function `findDescendingTrans` aims to provide a set of transects, which all can be performed down slope. The function `findTransFromPoint` aims to provide a set of transects, which all start from a particular point (or set of points). The output of these functions is formatted so that it can be directly used as an argument to `transectSamp`. In this case, and when supplied to `transectSamp`, a set of descending or radially stemming, spatially-balanced transects are generated.

This function implements a type of constraint on the randomisation process. Discussed in Foster et al (2020).

Value

The `findDescendingTrans` function returns a matrix giving a character matrix of size N x nRotate that specifies which transects are 'descend'ing (with N centre locations and nRotate different orientations), which transects are 'upAndDown' slope, which contains only NAs (where bathymetry data is not available), which are descending over the available bathymetry data ('descendAndNA'), which are up and down over the available data ('upAndDownAndNA_NaN').

The `findTransFromPoint` function similarly returns a character matrix containing the strings "starts-FromPoint" meaning that the transect starts form one of the specified points, and "badStart" meaning that the transect does not start from one of the specified points. The developer realises that "badStart" is not an extremely informative string – it must have seemed like a good idea late one night.

Author(s)

Scott D. Foster

References

See Also

`transectSamp`

modEsti

Get a model-based estimate of mean of a sampled area

Description

For a given survey design in any number of dimensions, calculate the mean prediction (plus SE plus 95% CI) for the area.

Usage

```r
modEsti( y, locations, includeLegacyLocation=TRUE, legacyIDs=NULL, predPts=NULL, family=gaussian(), offset=rep(0,length(y)), control=list())
```
Arguments

- **y**: a numeric vector of all observations (at new sites and legacy sites) collected in the survey
- **locations**: a matrix (or something that can be coerced) containing the set of locations where observations were collected. Note that nrow(locations) == length(y).
- **includeLegacyLocation**: a boolean indicating whether an extra term should be included into the model that corresponds to distance from legacy sites. See Foster et al (2017) for details. If TRUE (default) the extra term is included. If FALSE (so that model is purely spatial), then the extra term is discarded.
- **legacyIDs**: the indexes, for the rows of y and locations, that correspond to legacy sites. For example, if the first, third and sixth rows were legacy sites in y and locations, then legacyIDs would be c(1,3,6).
- **predPts**: A data.frame (or something that can be coerced to a data.frame) containing set of points to do the predictions at. Typically predPts is a dense grid (or similar) of points over the spatial area of interest. Note that the number of columns defines the number of dimensions. Do not include surplus variables in extra columns. If NULL (default), then a dense grid within the convex hull bounding "locations" will be used.
- **family**: A family object giving the distribution of the data. Default is gaussian() but other sensible choices in ecology include nb(link="log") and binomial(). For more details see ?family.mgcv from the mgcv package.
- **offset**: A numeric vector of length equal to "length(y)". This gives any offset to the linear predictor of the model.
- **control**: A list of control parameters (see details)

Details

This function works by fitting a generalised additive model (see `gam()`), predicting at the points predPts, and then averaging. Well, that is the general idea. The actual implementation uses a Monte Carlo routine to account for parameter uncertainty. This is done mirroring the helpfile of `predict.gam`. Basically, lots of sets of parameters are drawn from the parameters (asymptotic) distribution and then predictions are made for each draw. The overall estimate is then the mean (over parameter draws) of the mean (over prediction locations) of the prediction. Standard errors and confidence intervals are likewise calculated.

The control list contains elements with names:

- **k**: the number of knot points used in each dimension of locations
- **N**: the number of prediction points (in each dimension) for the grid, argument not used if "predPts!=NULL"
- **B**: the number of bootstrap samples to take of the parameter estimates
- **mc.cores**: the number of computer cores to spread the calculation of distances over (only used if includeLegacyLocation==TRUE)

Value

A list of three elements: 1) a point prediction of mean, 2) standard error of mean (obtained by parametric bootstrap), and 3) 95% confidence interval of the mean.
modEsti

Author(s)

Scott D. Foster

References

See Also

quasiSamp, alterInclProbs, and total.est from the spsurvey package. The total.est function provides design-based estimation of both mean and variance.

Examples

#set up design parameters
#taken from the example in alterInclProbs()
#big plane today
set.seed(747)
#the number of potential sampling locations
N <- 50^2
#number of samples
n <- 27
#number of legacy sites
nLegacy <- 3
#the grid
X <- as.matrix(expand.grid(1:sqrt(N), 1:sqrt(N)) / sqrt(N) - 1/(2*sqrt(N)))
#the inclusion probabilities with gradient according to non-linear function of X[,1]
p <- 1-exp(-X[,1])
#standardise to get n samples
p <- n * p / sum(p)
#randomly choose legacy sites
legacySites <- sample(1:N, nLegacy, prob=p)
#alter inclusion probabilities for legacy sites
p2 <- alterInclProbs(legacy.sites=X[legacySites,], potential.sites=X, inclusion.probs=p)
#get the sample
samp <- quasiSamp(n=n, dimension=2, potential.sites=X, inclusion.probs=p2)
samp <- rbind(cbind(X[legacySites,], inclusion.probabilities=NA, ID=NA), samp)
#generate some fake data
samp$outcomes <- rnorm(nrow(samp))
#get the estimate
esti <- modEsti(y=samp$outcomes, locations=samp[,1:2], includeLegacyLocation=TRUE,
 legacyIDs=1:3, predPts=NULL, family=gaussian(), control=list(mc.cores=1, B=100))
#in real applications the number of bootstrap samples (B), and mc.cores, should be larger
print(esti)
#tidy
rm(esti, legacySites, n, N, nLegacy, p, p2, samp, X)
quasiSamp

Generates a spatial design using Quasi-random numbers

Description

Generates a spatially balanced design for given inclusion probabilities over a grid of potential sampling locations

Usage

quasiSamp(n, dimension=2, study.area=NULL, potential.sites=NULL, inclusion.probs=NULL, randStartType=2, nSampsToConsider=5000)
quasiSamp.raster(n, inclusion.probs, randStartType=2, nSampsToConsider=5000)

Arguments

n
 the number of samples to take
dimension
 the number of dimensions that the samples are located in. Equal to 2 for areal sampling. Care should be taken with large dimensions as: 1) the number of potential sampling sites needed for effective coverage starts to explode (curse of dimensionality); and 2) the well-spaced behaviour of the Halton sequence starts to deteriorate (but this requires very very many dimensions to be problematic – included as a warning here for largely academic reasons).

study.area
 a numeric matrix with dimension columns. This defines the sampling area from where the sites are selected – each row defines a vertex of the sampling area and the order of rows is such that the vertices are joined in order. The last vertex is joined to the first. If NULL (default), the study.area is defined to be the smallest (hyper-)rectangle that bounds the potential.sites. If potential.sites is also NULL (default), then the study area is taken to be the unit (hyper-)square. This argument is closely related to potential.sites.

potential.sites
 a matrix (of size Nxdimension) of the spatial coordinates of the N sampling locations, of which n<N are taken as the sample. If NULL (default) N=10000 samples are placed on a regular grid. If study.area is defined, then this grid is over the smallest bounding (hyper-)rectangle for the study.area. If study.area is NULL, the grid is over the unit (hyper-)square.

inclusion.probs
 either a vector or a RasterLayer specifying the inclusion probability for each of the N potential sampling sites. For quasiSamp.raster inclusion.probs must be a raster. The values contained are the probability that each site will be included in the final sample. If a vector, then the locations must be ordered the same as the potential.sites argument. If NULL and a vector (default) equal inclusion probabilities are specified. Must be specified for quasiSamp.raster. If quasiSamp is called with a RasterLayer value, then quasiSamp will internally call quasiSamp.raster and ignore the dimension, study.area and potential.sites arguments.
quasiSamp

randStartType
the type of random start Halton sequence to use. The choices are 2 (default) as described in Robertson et al. (2013), and 1 which is a mis-interpretation of that method (constrained so that the size of the skip in each dimension is equal). Note that randStartType=1 is used in Foster et al. (2017).

nSampsToConsider
the total number of samples to consider in the BAS step (rejection sampling). The default is 5000, which means that 5000 halton numbers are drawn and then thinned according to the inclusion probabilities. You may want to increase this number if your inclusion probabilities are extremely unbalanced or if the number of samples required is close to 5000. Reduce if you want the code to run quicker and are confident that a sample will be found using less.

Details
These function are an implementation of the balanced adaptive sampling (BAS) designs presented in Robertson et al. (2013), which forms the basis for the methods in Foster et al. (2017). The BAS approach uses Halton sequences of quasi-random numbers, which are evenly spread over space, as the basis for generating spatially balanced designs. In this implementation, we require that the inclusion probabilities be given as points in space and the BAS design is the set of these points that lie closest to a continuous-space Halton sequence. Computational speed has been rudimentily optimised, but (of course) it could be done better – like coding outside of R, for example.

In an updated version of the package (Version 2.2.1 onwards) a RasterLayer can be passed to the function. This may be both more convenient and it will be faster for very large design problems. Note though that the underlying algorithm, and much of the code, remains unchanged between the two different versions.

Value
The quasiSamp and quasiSamp.raster functions returns a matrix of (dimension+2) columns. The first columns (of number ... for the sampled locations. The last column is the row number (of potential.sites) that corresponds to that sampled site.

Author(s)
Scott D. Foster

References

See Also
alterInclProbs, modEsti
Examples

#generate samples on a 100 x 100 grid
#Note that, although the random number is set, there may be differences between versions of R.
#In particular, post R/3.6 might be different to R/3.5 and before
#jet plane
set.seed(707)
#the number of potential sampling locations
N <- 100^2
#number of samples
n <- 10
#the grid on unit square
X <- as.matrix(expand.grid(1:sqrt(N), 1:sqrt(N)) / sqrt(N) - 1/(2*sqrt(N))
#the inclusion probabilties with gradient according to non-linear function of X[,1]
p <- 1-exp(-X[,1])
#standardise to get n samples
p <- n * p / sum(p)
#get the sample
samp <- quasiSamp(n=n, dimension=2, potential.sites=X, inclusion.probs=p)
par(mfrow=c(1,3), ask=FALSE)
plot(samp[,1:2], main="n=10")
#now let's get sillier
n <- 250
#get the sample
samp <- quasiSamp(n=n, dimension=2, potential.sites=X, inclusion.probs=p)
plot(samp[,1:2], main="n=250")
#silly or sublime?
n <- 1000
#get the sample
samp <- quasiSamp(n=n, dimension=2, potential.sites=X, inclusion.probs=p, nSampsToConsider=5000)
plot(samp[,1:2], main="n=1000")
#I'm sure that you get the idea now.

###The same for raster inclusion probabilities (just for illustration)
#Xp <- raster::rasterFromXYZ(cbind(X,p))
#samp <- quasiSamp(n=10, inclusion.probs=Xp)
#plot(samp[,1:2], main="n=10 (raster)")
#samp <- quasiSamp(n=250, inclusion.probs=Xp)
#plot(samp[,1:2], main="n=250 (raster)")
#samp <- quasiSamp(n=1000, inclusion.probs=Xp, nSampsToConsider=5000)
#plot(samp[,1:2], main="n=1000 (raster)")

#tidy
rm(N, n, X, p, samp, Xp)
	ransectSamp

Generates a spatial design for transects

Description

For arbitrary transect patterns, generates a spatially balanced design for given inclusion probabilities over a grid of potential sampling locations.
transectSamp

Usage

transectSamp(n, study.area=NULL, potential.sites=NULL, inclusion.probs=NULL, control=NULL, constrainedSet=NULL)
transectSamp.internal(n, study.area=NULL, potential.sites=NULL, inclusion.probs=NULL, control=NULL, constrainedSet, ...)

Arguments

n
the number of transect to provide a sample for

study.area
a numeric matrix with dimension columns. This defines the sampling area from where the sites are selected – each row defines a vertex of the sampling area and the order of rows is such that the vertices are joined in order. The last vertex is joined to the first. If NULL (default), the study.area is defined to be the smallest (hyper-)rectangle that bounds the potential.sites. If potential.sites is also NULL (default), then the study area is taken to be the unit (hyper-)square. This argument is closely related to potential.sites.

potential.sites
a matrix (of size Nxdimension) of the spatial coordinates of the N sampling locations, of which n « N are taken as the sample. If NULL (default) N=10000 samples are placed on a regular grid. If study.area is defined, then this grid is over the smallest bounding (hyper-)rectangle for the study.area. If study.area is NULL, the grid is over the unit (hyper-)square.

inclusion.probs
a vector specifying the inclusion probability for each of the N potential sampling sites. This is the probability that each site will be included in the final sample. Locations are ordered the same as the potential.sites argument. If NULL (default) equal inclusion probabilities are specified. Note that there is no sum constraint to this vector – inclusion probabilities are relative.

control
A list containing details of the transects, their computational representation, and decisions about the design. See the Details for more information.

constrainedSet
An N x nRotate Boolean matrix specifying whether the putative transect, starting at each location and orientated along each rotation, should be considered for sampling. See findDescendingTrans for an example.

...
Further arguments mostly for reducing computation for when certain quantities have been pre-calculated. Often not useful for general purpose, unless extra constraints are required for certain types of transects. The arguments include the computationally expensive objects (where repeated survey generation may be sped up): IDs – the information about which grid cell each and every sampling location (along all transects) falls; transectsOverCells – information about which sampling locations (from any transect) falls in all cells, and; adjustedSpecified – The specified inclusion probabilities adjusted for edge effects.

Details

This function aims to provide a randomised design for transects that: 1) adheres to inclusion probabilities for each grid cell; 2) is spatially coherent/balanced so that transects are well spread throughout the study area; and 3) is not too computationally expensive (or too devilishly difficult) to use effectively. However, fine grids over large areas will be demanding nevertheless.
The methods implemented by the function are outlined in Foster et al (2020), but are based on the ideas presented in Robertson et al (2013) and as implemented for Foster et al (2017). Briefly, the locations of the centre of the transects are chosen according to BAS sampling (Robertson et al; 2013) and the direction of the sample is then taken randomly. See Foster et al (2020) for further details.

The control list contains the following elements.

- **transect.pattern**: a set of points describing the transect pattern (a line, or an “S” pattern, or a dense grid, or a quadrat, or ...). This is a generic pattern, which will be rotated as required by the function for the randomisation. The pattern will be centred in both the x and y directions, so this does not need to be performed by the user (unless they choose to). Please specify as a 2 column matrix full of X- and Y-coordinates. A special value, and the default, is not a matrix at all. Rather the specific character string “line”, in which case the function will produce its own generic pattern (for a line of length control$line.length with control$transect.nPts points along it). All values that are not “line” will be interpreted as a matrix. For symmetric patterns (around the centre point), and to avoid excess computations only, please make sure that an odd number of nRotate is used (see below).

- **transect.nPts**: The number of points to represent the (linear) transect. If control$transect.pattern is specified to something apart from “line” then this argument is ignored. A large value of transect.nPts will lead to a more accurate representation of the transects, but it will also cost more computation. The default is the arbitrary value of 20.

- **line.length**: If control$transect.pattern==“line”, then this control parameter gives the length of that line. By default, it is arbitrarily taken to be 0.1 times the maximal edge of the study.area.

- **nRotate**: The number of different bearings (through North, East, South, West) to consider at each sampling location for directions of the transect. The default is 11 (an odd number), meaning that transects laid out at 0 degrees, 32.7 degrees, 65.5 degrees, 98.2 degrees, ... (from north) will be considered. For symmetric a transect.pattern, such as a linear transect, nRotate should be an odd number (like the default) to avoid excess computation. This is because directions around a centre point can be inadvertently repeated (e.g. a linear transect in the 10 and 190 degree directions lead to the same transect). Increasing the number of directions to consider also increases computational time – probably at very modest increase in efficiency or scientific validity.

- **mc.cores**: The number of computer cores to spread the (parallel) computation to. More decreases the real-world time that the function will use to execute, but this occurs at the expense of decreasing the performance of the computer to run other jobs. It is not recommended that the number of cores on the machine is exceeded. If NULL (the default), the function uses just 1 core. This is not generally recommend as it is the slowest choice.

- **transAdjust**: Should the user-specified inclusion probabilities be altered so that, in a transect design, each cell has that inclusion probability of being sampled. The default is TRUE – the inclusion probabilities should be altered. See Foster et al (2020) for details.

- **edge.max.iter**: The maximum number of iterations to perform whilst adjusting inclusion probabilities for transect sampling. Integer >= 1. The default is 25.

- **conv.tol.diff**: the tolerance for convergence for adjusting inclusion probabilities for transect sampling. Default is 0.01, meaning that successive iterations have to have proportional performance criteria less than 0.0001 apart.
• gamma: the dampening multiplier for successive iterations of the transect adjustment for inclusion probabilities. Default is 0.8. Values should be in [0,1] with larger values likely to be quicker and more unstable.

• calcObsProbs: Should the observed inclusion probabilities be calculated for the design. Default is TRUE if inclusion probabilities are being adjusted (transAdjust is TRUE), and FALSE otherwise (transAdjust is FALSE).

• return.index: Should the (computationally demanding) indexes be returned? These may be useful if multiple surveys designs are being generated; as done in a simulation study. Default is FALSE, and these large objects are not returned.

• spat.random.type: The type of randomisation used to select locations of transects. Default is “quasi”, after Robertson et al (2013) which gives spatially-balanced designs. The other option is “pseudo”, a random sample, which does no spatial balancing.

• nSampsToConsider: A parameter passed to quasiSamp controlling the acceptance sampling. Larger numbers are more computationally expensive, but are also more likely to find a design (important for very unequal inclusion probabilities and/or challenging shaped survey areas). Default is 5000.

• nCells: If no potential sites are given, then some will be created on the unit square. There will be a nCells X nCells grid.

Value

The transectSamp function returns a list of two data.frames. The first data.frame (named “transect”) contains the chosen transects' middle locations and their directions. The second data.frame (named “points”) contains the set of points that the survey’s transects are planned to pass through. These are points on each of the transects and are the points used to represent the transect during the design.

Author(s)

Scott D. Foster

References

See Also

alterInclProbs, quasiSamp, findDescendingTrans, findTransFromPoint
Examples

```r
## Not run:
# generate samples on a 50 x 50 grid
# Note that, although the random number is set, there may be differences between versions of R.
# In particular, post R/3.6 might be different to R/3.5 and before
# jet plane
set.seed(767)
# the number of potential sampling locations
N <- 50^2
# number of samples
n <- 10
# the grid on unit square
X <- as.matrix(expand.grid(1:sqrt(N), 1:sqrt(N)) / sqrt(N) - 1/(2*sqrt(N)))
# the inclusion probabilities with gradient according to non-linear function of X[,1]
p <- 1-exp(-X[,1])
# standardise to get n samples
p <- n * p / sum(p)
# get the sample
# note that 5 points on the transect line and 5 directions considered is a bit thin.
# This low-definition is done to avoid trouble with CRAN's checks
# (no example should take a long time to run).
samp <- transectSamp(n, potential.sites=X, inclusion.probs=p,
                     control=list(transect.patter="line", nRotate=5, transect.nPts=5, mc.cores=7))
plot(samp$points[,5:6], main="n=10 TRANSECTS")
# tidy
rm(N, n, X, p, samp)

## End(Not run)
```
Index

* misc
 alterInclProbs, 2
 modEsti, 5
 quasiSamp, 8
 transectSamp, 10

alterInclProbs, 2, 7, 9, 13

ConstrainTransects, 4

findDescendingTrans, 11, 13
findDescendingTrans
 (ConstrainTransects), 4
findTransFromPoint, 13
findTransFromPoint
 (ConstrainTransects), 4

modEsti, 3, 5, 9

quasiSamp, 3, 7, 8, 13

transectSamp, 4, 5, 10