Package ‘MBSGS’

August 9, 2017

Type Package

Title Multivariate Bayesian Sparse Group Selection with Spike and Slab

Version 1.1.0

Author Benoit Liquet, Matthew Sutton

Maintainer Benoit Liquet <benoit.liquet@qut.edu.au>

Imports MCMCpack, MASS, mgcv, mnormt, truncnorm

Description An implementation of a Bayesian sparse group model using spike and slab priors in a regression context. It is designed for regression with a multivariate response variable, but also provides an implementation for univariate response.

License GPL (>= 2.0)

Encoding UTF-8

NeedsCompilation no

Repository CRAN

Date/Publication 2017-08-09 08:06:21 UTC

R topics documented:

BGLSS ... 2
BSGSSS ... 4
MBGLSS ... 6
MBSGS-internal ... 7
MBSGSSS .. 8

Index 10
Description

Run a Gibbs sampler for a Bayesian group lasso model with spike and slab prior. This function is designed for an univariate response model and when the design matrix has a group structure. Run a Gibbs sampler for a Bayesian group lasso model with spike and slab prior. This function is designed for an univariate response model and when the design matrix has a group structure.

Usage

```r
BGLSS(Y, X, niter = 10000, burnin = 5000, group_size, a = 1,
   b = 1, num_update = 100, niter.update = 100, verbose = FALSE,
   alpha = 0.1, gamma = 0.1, pi_prior = TRUE, pi = 0.5,
   update_tau = TRUE, option.weight.group = FALSE,
   option.update = "global", lambda2_update = NULL)
```

Arguments

- **Y**: A numerical vector representing the univariate response variable.
- **X**: A matrix representing the design matrix of the linear regression model.
- **niter**: Number of iteration for the Gibbs sampler.
- **burnin**: Number of burnin iteration.
- **group_size**: Integer vector representing the size of the groups of the design matrix.
- **a**: First shape parameter of the conjugate beta prior for `pi_0`. Default is 1.
- **b**: Second shape parameter of the conjugate beta prior for `pi_0`. Default is 1.
- **num_update**: Number of update regarding the scaling of the shrinkage parameter lambda which is calibrated by a Monte Carlo EM algorithm.
- **niter.update**: Number of iteration regarding the scaling of the shrinkage parameter lambda which is calibrated by a Monte Carlo EM algorithm.
- **verbose**: Logical. If "TRUE" iterations are displayed.
- **alpha**: Shape parameter of the Inverse Gamma prior on the variance of the noise for the linear regression model.
- **gamma**: Scale parameter of the Inverse Gamma prior on the variance of the noise for the linear regression model.
- **pi_prior**: Logical. If "TRUE" a beta prior is used for `pi`.
- **pi**: Initial value for `pi_0` which will be updated if `pi_prior="TRUE"`.
- **update_tau**: Logical. If "TRUE" then a Monte Carlo EM algorithm is used to update lambda.
- **option.weight.group**: If "TRUE" then the group size is used for shrinkage penalty purpose.
- **option.update**: Two options are proposed for updating lambda. A "Local" update or a "Global" update.
- **lambda2_update**: Value of the square of lambda when `update_tau="FALSE"`.

BGLSS

Bayesian Group Lasso with Spike and Slab prior
BGLSS

Value

BGLSS returns a list that contains the following components:

- **pos_mean**: The posterior mean estimate of the regression coefficients
- **pos_median**: The posterior mean estimate of the regression coefficients
- **coef**: A matrix with the regression coefficients sampled at each iteration

Author(s)

Benoit Liquet, Matthew Sutton and Xiaofan Xu.

References

See Also

BSGSSS

Examples

```r
## Simulation of datasets X and Y with group variables
set.seed(1)
data1 = gen_data_uni(nsample = 120, cor.var=0.5, ntrain = 80)
data1 = normalize(data1)

true_model <- data1$true_model
X <- data1$X
Y <- data1$Y
train_idx <- data1$train_idx
gsize <- data1$gsize
## We recommend to set niter=50000, burnin=10000
## num_update = 100 and niter_update = 100
## to reach convergence
model <- BGLSS(Y[,1],X,niter=500,burnin=100,group_size=gsize, num_update = 20,niter_update = 20)
model$pos_median! = 0
true_model
```
Bayesian Sparse Group Selection with Spike and Slab priors

Description

Run a gibbs sampler for a Bayesian sparse group selection model with spike and slab priors. This function is designed for an univariate response model and when the design matrix has a group structure.

Usage

```r
BSGSSS(Y, X, group_size, niter = 10000, burnin = 5000,
pi0 = 0.5, pi1 = 0.5, num_update = 100, niter.update = 100,
alpha = 0.1, gamma = 0.1, a1 = 1, a2 = 1, c1 = 1, c2 = 1,
pi_prior = TRUE)
```

Arguments

- **Y**: A numerical vector representing the univariate response variable.
- **X**: A matrix representing the design matrix of the linear regression model.
- **group_size**: Integer vector representing the size of the groups of the design matrix X.
- **niter**: Number of iteration for the Gibbs sampler.
- **burnin**: Number of burnin iteration.
- **pi0**: Initial value for pi0 which will be updated if pi_prior="TRUE".
- **pi1**: Initial value for pi1 which will be updated if pi_prior="TRUE".
- **num_update**: Number of update regarding the scaling of the shrinkage parameter lambda which is calibrated by a Monte Carlo EM algorithm.
- **niter.update**: Number of iteration regarding the scaling of the shrinkage parameter lambda which is calibrated by a Monte Carlo EM algorithm.
- **alpha**: Shape parameter of the Inverse Gamma prior on the variance of the noise for the linear regression model.
- **gamma**: Scale parameter of the Inverse Gamma prior on the variance of the noise for the linear regression model.
- **a1**: First shape parameter of the conjugate beta hyper-prior for pi_0. Default is 1.
- **a2**: Second shape parameter of the conjugate beta prior for pi_0. Default is 1.
- **c1**: First shape parameter of the conjugate beta hyper-prior for pi_1. Default is 1.
- **c2**: Second shape parameter of the conjugate beta prior for pi_1. Default is 1.
- **pi_prior**: Logical. If "TRUE" beta priors are used for pi0 and pi1.
Value

BSGSSS returns a list that contains the following components:

- **pos_mean**: The posterior mean estimate of the regression coefficients
- **pos_median**: The posterior mean estimate of the regression coefficients
- **coef**: A matrix with the regression coefficients sampled at each iteration

Author(s)

Benoit Liquet, Matthew Sutton and Xiaofan Xu.

References

See Also

BGLSS

Examples

```r
## Simulation of datasets X and Y with group variables
set.seed(1)
data1 = gen_data_uni(nsample = 120, cor.var=0.5, ntrain = 80)
data1 = normalize(data1)
true_model <- data1$true_model
X <- data1$X
Y <- data1$Y
train_idx <- data1$train_idx
gsize <- data1$gsize
## We recommend to set niter=50000, burnin=10000
## num_update = 100 and niter.update = 100
## to reach convergence
model <- BSGSSS(Y[,1],X,niter=500,burnin=100,group_size=gsize, num_update = 20,niter.update = 20)
model$pos_median[1]=0
true_model
```
Description

Run a gibbs sampler for a Multivariate Bayesian group lasso model with spike and slab prior. This function is designed for a regression model with multivariate response, where the design matrix has a group structure.

Usage

```r
MBGLSS(Y, X, niter = 10000, burnin = 5000, group_size,
       a = 1, b = 1, num_update = 100, niter.update = 100,
       verbose = FALSE, pi_prior = TRUE, pi = 0.5,
       d = 3, update_tau = TRUE, option.update = "global")
```

Arguments

- **Y**: A numerical vector representing the univariate response variable.
- **X**: A matrix representing the design matrix of the linear regression model.
- **niter**: Number of iteration for the Gibbs sampler.
- **burnin**: Number of burnin iteration.
- **group_size**: Integer vector representing the size of the groups of the design matrix X.
- **a**: First shape parameter of the conjugate beta prior for \(\pi_0 \). Default is 1.
- **b**: Second shape parameter of the conjugate beta prior for \(\pi_0 \). Default is 1.
- **num_update**: Number of update regarding the scaling of the shrinkage parameter \(\lambda \) which is calibrated by a Monte Carlo EM algorithm.
- **niter.update**: Number of iteration regarding the scaling of the shrinkage parameter \(\lambda \) which is calibrated by a Monte Carlo EM algorithm.
- **verbose**: Logical. If "TRUE" iterations are displayed.
- **pi_prior**: Logical. If "TRUE" a beta prior is used for \(\pi_0 \).
- **pi**: Initial value for \(\pi_0 \) which will be updated if \(\pi_{prior} = "TRUE" \).
- **d**: Degree of freedom of the inverse Wishart prior of the covariance matrix of the response variable. By default d is set to 3.
- **update_tau**: Logical. If "TRUE" then a Monte Carlo EM algorithm is used to update \(\lambda \).
- **option.update**: Two options are proposed for updating \(\lambda \). A "Local" update or a "Global" update.

Value

`BSGSSS` returns a list that contains the following components:

- **pos_mean**: The posterior mean estimate of the regression coefficients.
- **pos_median**: The posterior mean estimate of the regression coefficients.
- **coef**: A matrix with the regression coefficients sampled at each iteration.
Author(s)

Benoit Liquet and Matthew Sutton.

References

See Also

MBGSSSS

Examples

```r
## Not run:
## Simulation of datasets X and Y with group variables
data1 = gen_data_Multi(nsample = 120, ntrain = 80)
data1 = Mnormalize(data1)

true_model <- data1$true_model
X <- data1$X
Y <- data1$Y
train_idx <- data1$train_idx
gsize <- data1$gsize
niter <- 2000
burnin <- 1000

model <- MBGLSS(Y,X,niter,burnin,gsize,num_update = 100,
niter.update = 100)
model$pos_median[,1]!=0

## End(Not run)
```

Internal Functions

Internal functions not to be used by the user.
Multivariate Bayesian Sparse Group Selection with Spike and Slab priors

Description

Run a gibbs sampler for a Multivariate Bayesian sparse group selection model with spike and slab prior. This function is designed for a regression model with multivariate response, where the design matrix has a group structure.

Usage

```r
MBSGSSS(Y, X, group_size, pi0 = 0.5, pi1 = 0.5,
  a1 = 1, a2 = 1, c1 = 1, c2 = 1, pi_prior = TRUE,
  niter = 10000, burnin = 5000, d = 3,
  num_update = 100, niter.update = 100)
```

Arguments

- **Y**: A numerical vector representing the univariate response variable.
- **X**: A matrix representing the design matrix of the linear regression model.
- **group_size**: Integer vector representing the size of the groups of the design matrix X.
- **pi0**: Initial value for pi0 which will be updated if pi_prior = TRUE.
- **pi1**: Initial value for pi1 which will be updated if pi_prior = TRUE.
- **a1**: First shape parameter of the conjugate beta hyper-prior for pi_0. Default is 1.
- **a2**: Second shape parameter of the conjugate beta prior for pi_0. Default is 1.
- **c1**: First shape parameter of the conjugate beta hyper-prior for pi_1. Default is 1.
- **c2**: Second shape parameter of the conjugate beta prior for pi_1. Default is 1.
- **pi_prior**: Logical. If TRUE beta priors are used for pi0 and pi1.
- **niter**: Number of iteration for the Gibbs sampler.
- **burnin**: Number of burnin iteration.
- **d**: Degree of freedom of the inverse Wishart prior of the covariance matrix of the response variable. By default d is set to 3.
- **num_update**: Number of update regarding the scaling of the shrinkage parameter lambda which is calibrated by a Monte Carlo EM algorithm.
- **niter.update**: Number of iteration regarding the scaling of the shrinkage parameter lambda which is calibrated by a Monte Carlo EM algorithm.

Author(s)

Benoit Liquet and Matthew Sutton.
References

See Also

MBGLSS

Examples

not run:
Simulation of datasets X and Y with group variables
data1 = gen_data_Multi(nsamples = 120, ntrain = 80)
data1 = mnormalize(data1)

true_model <- data1$true_model
X <- data1$X
Y <- data1$Y
train_idx <- data1$train_idx
gsize <- data1$gsize
niter <- 2000
burnin <- 1000

model <- MBSGSSS(Y, X, niter=niter, burnin=burnin, group_size=gsize, num_update = 50, niter_update = 50)
model$pos_median[,1]!=0

End(Not run)
Index

*Topic multivariate
 MBGLSS, 6
 MBSGSSS, 8

*Topic regression
 BGLSS, 2
 BSGSSS, 4
 MBGLSS, 6
 MBSGSSS, 8

BGLSS, 2, 5
BGLSS_EM_lambda (MBSGS-internal), 7
BSGSSS, 3, 4
BSGSSS_EM_t (MBSGS-internal), 7

gen_data_Multi (MBSGS-internal), 7
gen_data_uni (MBSGS-internal), 7

MBGLSS, 6, 9
MBGLSS_EM_lambda (MBSGS-internal), 7
MBSGS-internal, 7
MBSGSSS, 7, 8
MBSGSSS_EM_t (MBSGS-internal), 7
Mnormalize (MBSGS-internal), 7

normalize (MBSGS-internal), 7