Package ‘MCAvariants’

Type Package
Title Multiple Correspondence Analysis Variants
Version 2.5
Date 2020-09-07
Author Rosaria Lombardo and Eric J Beh
Maintainer Rosaria Lombardo <rosaria.lombardo@unicampania.it>
Description Provides two variants of multiple correspondence analysis (ca):
multiple ca and ordered multiple ca via orthogonal polynomials of Emerson.
Depends R (> 3.0.1), methods, tools, ggplot2, ggrepel, gridExtra,
plotly
LazyData true
License GPL (> 2)
URL https://www.R-project.org
NeedsCompilation no
Repository CRAN
Date/Publication 2020-09-07 14:50:03 UTC

R topics documented:

alligator.dat .. 2
caplot3d ... 3
insertval2 .. 4
mcabasic ... 4
mcafun ... 5
MCAvariants .. 6
miocount ... 8
omcabasic ... 8
orthopoly ... 9
plot.MCAvariants .. 10
print.MCAvariants ... 12
printwithaxes .. 13
satisfaction .. 14
tableconvert ... 14
Description

The data set is a three-way contingency table. It consists of 2 rows (alligators'size), 5 columns (alligators'food) by 4 tubes (alligators'lake). The table should be converted in reduced code table, using the function `tableconvert` for getting `alligatormca`.

Usage

data(alligator.dat)

Format

A data frame with 300 alligators on the following 3 variables.

- **Size** A numeric vector of categories ranging from 1 to 2 (small and large).
- **Food** A numeric vector of categories ranging from 1 to 5 (type of food: fish, invertebrate, reptile, bird, other.
- **Lake** a numeric vector of categories ranging from 1 to 4 for the four American lakes: Hancock, Oklawaha, Trafford, George.

Source

Agresti (2007), p. 270

Examples

data(alligator.dat)
dim(alligator.dat)
dimnames(alligator.dat)
caplot3d

Three dimensional correspondence plot

Description

This function is used in the plot function plot.CAvariants when the logical parameter is plot3d = TRUE. It produces a 3-dimensional visualization of the association.

Usage

caplot3d(coordR, coordC, inertiaper, firstaxis = 1, lastaxis = 2, thirdaxis = 3)

Arguments

coordR The row principal or standard coordinates.
coordC The column principal or standard coordinates.
inertiaper The percentage of the total inertia explained inertia by each dimension.
firstaxis The first axis number. By default, firstaxis = 1.
lastaxis The second axis number. By default, lastaxis = 2.
thirdaxis The third axis number. By default, thirdaxis = 3.

Note

This function depends on the R library plotly.

Author(s)

Rosaria Lombardo and Eric J. Beh

References

insertval2 Secondary function to code data

Description
Secondary function to code data in complete disjunctive form

Usage
insertval2(x, nmod)

Arguments
x Data matrix in reduced coding (primitive coding)
nmod number of categories of each variable

Details
It helps to return a matrix from reduced coding in complete disjunctive coding

Author(s)
Rosaria Lombardo

References

mcabasic Classical multiple correspondence analysis

Description
This function is used in the main function MCAvariants when the input parameter is catype="mca".

Usage
mcabasic(xo, np, nmod, tmod, rows, idr, idc, idcv)
mcafun

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xo</td>
<td>The starting table of variables in reduced code.</td>
</tr>
<tr>
<td>np</td>
<td>The column number of the starting table (coincident with the variable number).</td>
</tr>
<tr>
<td>nmod</td>
<td>The number of variable categories of each variable.</td>
</tr>
<tr>
<td>tmod</td>
<td>The total number of variable categories.</td>
</tr>
<tr>
<td>rows</td>
<td>The row number of the starting table (coincident with the individual number).</td>
</tr>
<tr>
<td>idr</td>
<td>The row labels of the data table.</td>
</tr>
<tr>
<td>idc</td>
<td>The column labels of the data table.</td>
</tr>
<tr>
<td>idcv</td>
<td>The labels of the categories of each variable.</td>
</tr>
</tbody>
</table>

Note

This function belongs to the R object class called mcabasicresults.

Author(s)

Rosaria Lombardo

References

Description

This function is used in the secondary function mcabasic when the input parameter of MCAvariants is catype="mca". It performs the singular value decomposition of the weighted super-indicator matrix and compute principal axes, coordinates, weights of rows and columns and total inertia.

Usage

mcafun(XO, Burt, np, idr, idc, nmod)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XO</td>
<td>The super-indicator data table.</td>
</tr>
<tr>
<td>Burt</td>
<td>The Burt data table.</td>
</tr>
<tr>
<td>np</td>
<td>The number of categorical variables.</td>
</tr>
<tr>
<td>idr</td>
<td>The row labels of data table.</td>
</tr>
<tr>
<td>idc</td>
<td>The column labels of data table.</td>
</tr>
<tr>
<td>nmod</td>
<td>The category number of each variable.</td>
</tr>
</tbody>
</table>
Author(s)
Rosaria Lombardo

References

MCAvariants
Classic and Ordered Multiple Correspondence Analysis

Description
It performs Classic Multiple Correspondence analysis for nominal variables (setting catype = "mca") and Ordered Multiple Correspondence analysis via orthogonal polynomials (setting catype="omca"). When the categorical variables are nominal and ordinal, you can specify writing FALSE or TRUE in the input parameter vordered.

Usage
MCAvariants(Xtable, catype = "omca", np = 5, vordered=c(TRUE,TRUE,TRUE,TRUE,TRUE))

Arguments
Xtable The two-way contingency table.
catype The input parameter for specifying what variant of multiple correspondence analysis is considered. By default, catype = "mca".
np The input parameter for specifying the number of categorical variables. By default, np = 5.
vordered The flag parameter for specifying what variable is ordered, the ordered variables should be in column close each other. By default, all the five variables are ordered: vordered = c(FALSE,FALSE,TRUE,TRUE,TRUE).

Value
Description of the output returned
Xtable The starting table of variables in reduced (primitive) code.
rows The row number of the starting table.
cols The column number of the starting table (coincident with the variable number).
rowlabels The label of the row individuals.
columnlabels The label of the column variable categories.
Rprinccoord The coordinates of individuals.
Cprinccoord The category variable coordinates.
inertiaXsum The total inertia when multiple correspondence analysis is performed on the indicator table.

inertiaBurtsum The total inertia when multiple correspondence analysis is performed on the Burt table.

inertias Benzecri's Adjusted Inertia values, percentages and cumulative values.

inertiasAdjusted The adjusted inertia values.

catype The kind of multiple correspondence analysis chosen, classical or ordered, that is catype is "mca" or "omca".

printdims The dimension of a matrix in print. By default it is equal to 3.

comp The polynomial components of inertia when catype is "omca". The total inertia is partitioned in terms of polynomial components.

componentpvalue The p-value of the polynomial components of total inertia, when catype is "omca".

degreef The degree of freedom of polynomial components of total inertia when, catype is "omca".

Note

This function recalls internally two other functions, depending on the setting of the input parameter catype, it recalls multiple correspondence analysis or ordered multiple correspondence analysis. It gives the output object necessary for printing and plotting the results. These two important functions are print.MCAvariants and plot.MCAvariants.

Author(s)

Rosaria Lombardo and Eric J Beh

References

Examples

data(satisfaction)
MCAvariants(satisfaction, catype = "omca",np=5,vordered=c(TRUE,TRUE,TRUE,TRUE,TRUE))
MCAvariants(satisfaction, catype = "mca",np=5)
miocount
The counting function

Description

The function that counts the number of individuals in each clusters automatically generated in ordered multiple correspondence analysis.

Usage

```r
miocount(x)
```

Arguments

- `x`
The coordinates of axes

Note

This function is used in the function `omcabasic` when in the main function `MCAvariants` the input parameter is `catype="omca"`.

Author(s)

Rosaria Lombardo

References

omcabasic
Ordered multiple correspondence analysis via orthogonal polynomials

Description

This function is used in the main function `MCAvariants` when the input parameter is `catype="omca"`. It requires that all categorical variables are ordered variables. It performs the hybrid decomposition of the weighted super-indicator matrix and compute polynomial axes, coordinates, weights of rows and columns and total inertia.

Usage

```r
omcabasic(xo,np , nmod , tmod , rows, idr, idc, idcv,vordered)
```
orthopoly

Arguments

- **xo**
 - The starting table of variables in reduced code.
- **np**
 - The column number of the starting table (coincident with the variable number).
- **nmod**
 - The number of variable categories of each variable.
- **tmod**
 - The total number of variable categories.
- **rows**
 - The row number of the starting table (coincident with the individual number).
- **idr**
 - The row labels of the data table.
- **idc**
 - The column labels of the data table.
- **idcv**
 - The labels of the categories of each variable.
- **vordered**
 - The flag parameter for specifying what variable is ordered. By default, all the five variables are ordered: `vordered = c(FALSE,FALSE,TRUE,TRUE,TRUE)`.

Note

This function belongs to the R object class called `mcabasicresults`.

Author(s)

Rosaria Lombardo

References

Description

This function is called from the function `omca`. It allows the analyst to compute the orthogonal polynomials of each ordered categorical variable. The number of the polynomials is equal to the variable category less one. The function computes the polynomial transformation of the ordered categorical variable.

Usage

```r
orthopoly(marginals, scores)
```

Arguments

- **scores**
 - The ordered scores of an ordered variable. By default `mj=NULL`, the natural scores (1,2,...) are computed.
- **marginals**
 - The marginals, relative frequencies of the ordered variable.
Value

Describe the value returned

the matrix of the orthogonal polynomials without the trivial polynomial.

Note

Note that the sum of the marginals of the ordered variables should be one. At the end, the various polynomial matrices will be stored in a super-diagonal matrix.

Author(s)

Rosaria Lombardo and Eric J Beh

References

Beh EJ and Lombardo R 2014 Correspondence analysis, Theory, Practice and New Strategies. Wiley.

Examples

orthopoly(marginals=c(.1,.2,.3,.2,.2), scores=c(1,2,3,4,5))

plot.MCAvariants

Main plot function for classical and ordered multiple correspondence analysis

Description

This function allows the analyst to produce the suitable graphical displays with respect to the classical and ordered multiple correspondence analysis. The main plot function called from the main function MCAvariants. It produces classical graphical displays for catype = "mca" and catype = "omca".

Usage

S3 method for class 'MCAvariants'
plot(x, catype = "mca", firstaxis = 1, lastaxis = 2, thirdaxis = 3, cex = 0.8, cex.lab = 0.8, prop = 1, plot3d = FALSE, plotind= FALSE, M=2,...)
plot.MCAvariants

Arguments

x
Represents the set of the output parameters of the main function MCAvariants of the R object class mca.corporateris.

catype
The input parameter specifying what variant of correspondence analysis is requested.

firstaxis
The dimension reflected along the horizontal axis.

lastaxis
The dimension reflected along the vertical axis.

thirdaxis
The third axis number when plot3d = TRUE. By default, thirdaxis = 3.

cex
The parameter that specifies the size of character labels of points in graphical displays. By default, it is equal to 1.

cex.lab
The parameter cex.lab that specifies the size of character labels of axes in graphical displays. By default, cex.lab = 0.8.

prop
The scaling parameter for specifying the limits of the plotting area. By default, it is equal to 1.

plot3d
The logical parameter specifies whether a 3D plot is to be included in the output or not. By default, plot3d = FALSE.

plotind
The logical parameter specifies whether a plot of individuals is to be included in the output or not. By default, plotind = FALSE.

M
The number of axes M considered when portraying the elliptical confidence regions. By default, it is equal to M = 2.

...
Further arguments passed to or from other methods.

Details
It produces classical graphical displays. Further when catype is equal to "omca", the individual clusters are portrayed.

Author(s)
Rosaria Lombardo and Eric J Beh

References

Examples

```r
data(satisfaction)
ris1=MCAvariants(satisfaction, catype = "mca")
plot(ris1)
print(ris1)
ris2=MCAvariants(satisfaction, catype = "omca")
plot(ris2)
print(ris2)
```
Description

This function prints results of classical or ordered multiple correspondence analysis. The input parameter is the name of the output of the main function `MCAvariants`.

Usage

```r
## S3 method for class 'MCAvariants'
print(x, printdims = 2, ...)
```

Arguments

- `x` The output of the main function `CAvariants`.
- `printdims` The number of dimensions, `printdims`, that are used to generate the correspondence plot and for summarising the numerical output of the analysis. By default, `printdims = 2`.
- `...` Further arguments passed to or from other methods.

Details

This function uses another function (called `printwithaxes`) for specifying the number of matrix dimensions to print.

Value

The value of output returned depends on the kind of multiple correspondence analysis performed.

- **DataTable** The Burt data table.
- **Column coordinates** Column in principal coordinates.
- **Polynomials** Polynomial functions of each variable. When `catype` is `omca`.
- **Linear Percentage of Clusters** The percentage of individuals belonging to each cluster. When `catype` is `omca`.
- **Polynomial Components of Total Inertia** The decomposition of total inertia via orthogonal polynomials. When `catype` is `omca`.
- **Degree of Freedom** Degree of Freedom of Polynomial Component. When `catype` is `omca`.
- **Inertia values** Inertia values of super-indicator and Burt table.
- **Benzecri’s Inertia values** Adjusted Inertia values, percentages and cumulative.
printwithaxes

Total Degree of Freedom
The degree of freedom of total inertia.

Total inertia of X
Total inertia of Super-Indicator table

Total inertia of B
Total inertia of BURT table.

Chi-square values
Chi-square values of BURT Inertia.

Total Chi-square values
Chi-square values of total Inertia of Burt table.

Author(s)
Rosaria Lombardo

References

printwithaxes Secondary printing function

Description
The function is called from the main print function printmca corporateris. It adds the names to objects.

Usage
printwithaxes(res, thenames)

Arguments
res An R object.
thenames A character vector of up to the same length as x.

Note
It is called from printmca corporateris.

Author(s)
Rosaria Lombardo

References
Description

The data set consists of 235 rows and 5 columns. The rows represent the individuals (patients in an hospital) and the columns concern the five variables of satisfaction (Tangibility, Reliability, Capacity of Response, Capacity of Assurance and Empathy).

Usage

data(satisfaction)

dim(satisfaction)
dimnames(satisfaction)

Format

A data frame with 235 observations on the following 5 variables.

- TANG a numeric vector of ordered categories ranging from 1 to 5.
- REL a numeric vector of ordered categories ranging from 1 to 5.
- CRES a numeric vector of ordered categories ranging from 1 to 5.
- CASS a numeric vector of ordered categories ranging from 1 to 5.
- EMPAT a numeric vector of ordered categories ranging from 1 to 5.

Source

Examples

data(satisfaction)
dim(satisfaction)
dimnames(satisfaction)

Description

This simple piece of R code converts a two-way or three-way contingency table into what is required to analyse MCA (table of reduced code: n by number of variables).

Usage

tableconvert(N)
tableconvert

Arguments

N A two-way or three-way contingency table to convert in a table n by np, where np is the number of the categorical variables.

Author(s)

Rosaria Lombardo and Eric J Beh

References

Examples

alligatormca<-tableconvert(alligator.dat)
dimnames(alligatormca)<-list(paste("a", 1:300,sep = ""),c("Size","Food","Lake"))
Index

* datasets
 alligator.dat, 2
 satisfaction, 14
* graphical
 plot.MCAvariants, 10
* multivariate
 insertval2, 4
 mcabasic, 4
 mcafun, 5
 MCAvariants, 6
 miocount, 8
 omcabasic, 8
 print.MCAvariants, 12
 printwithaxes, 13
 tableconvert, 14
* nonparametric
 orthopoly, 9
* plot
 caplot3d, 3
 alligator.dat, 2
 caplot3d, 3
 insertval2, 4
 mcabasic, 4
 mcafun, 5
 MCAvariants, 6
 miocount, 8
 omcabasic, 8
 orthopoly, 9
 plot.MCAvariants, 10
 print.MCAvariants, 12
 printwithaxes, 13
 satisfaction, 14
 tableconvert, 14