Package ‘MCI2’

January 3, 2019

Type Package
Title Market Area Models for Retail and Service Locations
Version 1.1.1
Date 2019-01-03
Author Thomas Wieland
Maintainer Thomas Wieland <thomas.wieland.geo@googlemail.com>
Description Market area models are used to analyze and predict store choices and market areas concerning retail and service locations. This package is a more user-friendly wrapper of the functions in the package 'MCI' (Wieland 2017) providing market area analysis using the Huff Model or the Multiplicative Competitive Interaction (MCI) Model. In 'MCI2', also a function for creating transport costs matrices is provided.

Depends R (>= 3.5.0)
Imports MCI, REAT, tmaptools, osrm, reshape
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2019-01-03 08:40:03 UTC

R topics documented:

 MCI2-package ... 2
 HaslachDistricts ... 3
 HaslachStores ... 5
 HaslachSurvey ... 7
 Haslach_coords_destinations 10
 Haslach_coords_origins 11
 Haslach_tcmatAirline 13
 Haslach_tcmatDrvtime 15
 huff ... 17
 huff.newdest ... 20
 huff.optim .. 24
 huff.updest .. 27
Description

This package provides several functions for market area modeling with respect to retail and service locations (for a review, see Wieland 2017). The package MCI2 has two purposes:

1) A user-friendly wrapper for the functions in the package MCI (Wieland 2017) concerning the Huff Model and the Multiplicative Competitive Interaction Model. For more information, see the MCI package documentation and the related RJ paper (Wieland 2017).

2) A user-friendly way to create transport costs matrices, including the usage of OSM (OpenStreetMap)-related APIs. The included function tcmat.create is a convenient wrapper of the functions geocode.OSM (for geocoding street addresses using OSM Nominatim) from the tmaptools package (Tennekes 2018), osrmTable (for creating travel time matrices between points while interfacing the table OSRM service) from the osrm package (Giraud 2018) and dist.mat (for creating airline distances between points) from the REAT package (Wieland 2018). For more information, see the related package documentations.

Author(s)

Thomas Wieland

Maintainer: Thomas Wieland <thomas.wieland.geo@googlemail.com>

References

HaslachDistricts

Description

Statistical districts of Haslach and additional information

Usage

data("HaslachDistricts")

Format

A data frame with 4 observations on the following 5 variables.

- wo: a character vector containing the district code
- wo_name: a character vector containing the district name
- wo_einwohner: a numeric vector containing the district population
- wo_lonlat: a character vector containing the longitude/latitude of the district center
- wo_adr: a character vector containing the street address of the district center

Source

Own postprocessing.

References

Examples

Compilation of tcmat list from existing datasets:
(Results from the tcmat.create function)
data(Haslach_tcmatAirline)
airline distances
data(Haslach_coords_origins)
Coordinates of origins
data(Haslach_coords_destinations)
Coordinates of destinationes
Component "tc.mode":
Airline_tc.mode <- list()
Airline_tc.mode$tc.type = "airline"
Airline_tc.mode$tc.unit = "Km"
Airline_tc.mode$tc.constant = 0

tcmat with airline distances
Compilation as a list:
tcmat_haslach_airline <- list(tcmat = Haslach_tcmatAirline,
 coords_origins = Haslach_coords_origins,
 coords_destinations = Haslach_coords_destinations,
 tc.mode = Airline_tc.mode)

Drvtime_tc.mode <- list()
Drvtime_tc.mode$tc.type = "street"
Drvtime_tc.mode$tc.unit = "min"
Drvtime_tc.mode$tc.constant = 0

data(Haslach_tcmatDrvtime)
car driving times

tcmat with car driving times
Compilation as a list:
tcmat_haslach_drvtime <- list(tcmat = Haslach_tcmatDrvtime,
 coords_origins = Haslach_coords_origins,
 coords_destinations = Haslach_coords_destinations,
 tc.mode = Airline_tc.mode)

data(HaslachSurvey)
survey raw data (Store choices and purchases)
data(HaslachDistricts)
IDs and information about customer origins
data(HaslachStores)
IDs and information about destinations (grocery stores)

Preparing raw data (HaslachSurvey)
HaslachSurvey_prepared <- rawdata.prep (cols.below1 =
 list(HaslachSurvey$LM1_Text, HaslachSurvey$LM2_Text),
 cols.below2 = list(HaslachSurvey$LM1E, HaslachSurvey$LM2E),
 cols.keep = HaslachSurvey$W0,
 colnames.new = c("LM", "LME", "Wohnort"))
"WO" and "Wohnort" = origin ID
"LM1_Text", "LM2_Text" and "LM" = destination IDs (grocery stores)
"LM1E", "LM2E" and "LME" = grocery store purchases

Creating a MCI interaction matrix
based on raw data of a survey (HaslachSurvey_prepared)
and a tcmat list object
mciomat_haslach <- mciomat.create(rawdata = HaslachSurvey_prepared,
 origins.id = "Wohnort", destinations.id = "LM", "LME",
 tcmat = tcmat_haslach_airline,
 remOrig = c("SBXXX", "SB613"), corObserved = 0.1,
origvar.data = HaslachDistricts, origvardata.id = "WO",
destvar.data = HaslachStores, destvardata.id = "LM"

MCI model based on empirical local market shares
two explanatory variables: distance (d_ij), store size (LM_VKF)
mcmmodel_haslach <- mci (mcmimat_haslach, "p_i", "d_ij", "LM_VKF",
 show.proc = TRUE)

HaslachStores Freiburg-Haslach: grocery stores

Description

Main grocery stores in Freiburg-Haslach and additional information

Usage

data("HaslachStores")

Format

A data frame with 8 observations on the following 9 variables.

LM a character vector containing the store code
LM_Name a character vector containing the store name
LM_NameZusatz a character vector containing the additional store name
LM_Betriebsform a character vector containing the store format (in German, Nielsen typology)
LM_Adrt a character vector containing the street address of the stores
LM_Stadt a character vector containing the corresponding city (Freiburg)
LM_PLZ a character vector containing the corresponding zip code
LM_VKF a numeric vector containing the store size (sqm)
LM_Adrt_zus a character vector containing the complete street address (ready for geocoding)

Source

References

Examples

Compilation of tcmat list from existing datasets:
(Results from the tcmat.create function)
data(Haslach_tcmatAirline)
airline distances
data(Haslach_coords_origins)
Coordinates of origins
data(Haslach_coords_destinations)
Coordinates of destinations

Component "tc.mode":
Airline_tc.mode <- list()
Airline_tc.mode$tc.type = "airline"
Airline_tc.mode$tc.unit = "km"
Airline_tc.mode$tc.constant = 0

tcmat with airline distances
Compilation as a list:
tcmat_haslach_airline <- list(tcmat = Haslach_tcmatAirline,
coords_origins = Haslach_coords_origins,
coords_destinations = Haslach_coords_destinations,
tc.mode = Airline_tc.mode)

Drvtime_tc.mode <- list()
Drvtime_tc.mode$tc.type = "street"
Drvtime_tc.mode$tc.unit = "min"
Drvtime_tc.mode$tc.constant = 0

data(Haslach_tcmatDrvtime)
car driving times

tcmat with car driving times
Compilation as a list:
tcmat_haslach_drvtime <- list(tcmat = Haslach_tcmatDrvtime,
coords_origins = Haslach_coords_origins,
coords_destinations = Haslach_coords_destinations,
tc.mode = Drvtime_tc.mode)

data(HaslachSurvey)
survey raw data (Store choices and purchases)
data(HaslachDistricts)
IDs and information about customer origins
data(HaslachStores)
IDs and information about destinations (grocery stores)

Preparing raw data (HaslachSurvey)
HaslachSurvey_prepared <- rawdata.prep (cols.below1 =
list(HaslachSurvey$LM1_Text, HaslachSurvey$LM2_Text),
cols.below2 = list(HaslachSurvey$LME, HaslachSurvey$LM2E),
cols.keep = HaslachSurvey$WO,
colnames.new = c("LM", "LME", "Wohnort"))
"WO" and "Wohnort" = origin ID
HaslachSurvey

"LM1_Text", "LM2_Text" and "LM" = destination IDs (grocery stores)
"LM1E", "LM2E" and "LME" = grocery store purchases

Creating a MCI interaction matrix
based on raw data of a survey (HaslachSurvey_prepared)
and a tcmat list object
mcimat_haslach <- mcimat.create(rawdata = HaslachSurvey_prepared,
origins.id = "Wohnort", destinations.id = "LM", "LME",
tmat = tcmat_haslach_airline,
remOrig = c("SBXXX", "SB613"), corObserved = 0.1,
origvar.data = HaslachDistricts, origvardata.id = "WO",
destvar.data = HaslachStores, destvardata.id = "LM")

MCI model based on empirical local market shares
two explanatory variables: distance (d_1j), store size (LM_VKF)
mcmicmodel_haslach <- mci (mcimat_haslach, "p_1j", "d_1j", "LM_VKF",
show_proc = TRUE)

HaslachSurvey Freiburg-Haslach: customer survey

Description

Part of a point of sale survey (n=235) in Freiburg-Haslach with respect to grocery shopping behavior.

Usage

data("HaslachSurvey")

Format

A data frame with 470 observations on the following 24 variables.

DATUM a numeric vector containing the datum code
UHRZEIT a numeric vector containing the time code
BEFRSTANDORT2 a numeric vector containing the sample point code
LMHAEUF a numeric vector containing the weekly frequency of grocery shopping
LM1 a numeric vector containing the store code of the last grocery shopping trip
LM1_Text a character vector containing the store code (character) of the last grocery shopping trip, corresponding to variable LM1 in the HaslachStores dataset
LM1A a character vector containing other shopping destinations on grocery shopping trips (not coded)
LM1E a numeric vector containing the amount of purchases corresponding to the last grocery shopping trip
LM2 a numeric vector containing the store code of the second to the last grocery shopping trip
LM2_Text a character vector containing the store code (character) of the second to the last grocery shopping trip, corresponding to variable LM2 in the HaslachStores dataset
LM2A a character vector containing other shopping destinations on grocery shopping trips (not coded)
LM2E a numeric vector containing the amount of purchases corresponding to the second to the last grocery shopping trip
ZUFR_LM a numeric vector containing customer satisfaction scores (1=best, ... 6=worst) with respect to local grocery stores supply
ZUFR_LME a numeric vector containing customer satisfaction scores (1=best, ... 6=worst) with respect to local grocery stores accessibility
ZUFR_APO a numeric vector containing customer satisfaction scores (1=best, ... 6=worst) with respect to local pharmacies supply
ZUFR_EHSO a numeric vector containing customer satisfaction scores (1=best, ... 6=worst) with respect to other types of local retailing
ZUFR_BANK a numeric vector containing customer satisfaction scores (1=best, ... 6=worst) with respect to local bank supply
WOHNSTANDORT a numeric vector containing the district code
WO a character vector containing the district code, corresponding to variable WO in the HaslachDistricts dataset
ALTERKAT a numeric vector containing the code of age category
GESCHL a numeric vector containing the gender code
BERUF a numeric vector containing the code of the respondent’s working status
HHPERS a numeric vector containing the household size
HHKIND a numeric vector containing the no. of children in the household

Source
Own survey (June 2018). Own postprocessing.

Examples

Compilation of tcmat list from existing datasets:
(Results from the tcmat.create function)
data(Haslach_tcmatAirline)
airline distances
data(Haslach_coords_origins)
Coordinates of origins
data(Haslach_coords_destinations)
Coordinates of destinations

Component "tc.mode":
Airline_tc.mode <- list()
Airline_tc.mode$tc.type = "airline"
Airline_tc.mode$tc.unit = "km"
Airline_tc.mode$tc.constant = 0
tcmat with airline distances
Compilation as a list:
tcmat_haslach_airline <- list(tcmat = Haslach_tcmatAirline,
coords_origins = Haslach_coords_origins,
coords_destinations = Haslach_coords_destinations,
tc.mode = Airline_tc.mode)

Drvtime_tc.mode <- list()
Drvtime_tc.mode$tc.type = "street"
Drvtime_tc.mode$tc.unit = "min"
Drvtime_tc.mode$tc.constant = 0

data(Haslach_tcmatDrvtime)
car driving times

tcmat with car driving times
Compilation as a list:
tcmat_haslach_drvtime <- list(tcmat = Haslach_tcmatDrvtime,
coords_origins = Haslach_coords_origins,
coords_destinations = Haslach_coords_destinations,
tc.mode = Drvtime_tc.mode)

data(HaslachSurvey)
survey raw data (Store choices and purchases)
data(HaslachDistricts)
IDs and information about customer origins
data(HaslachStores)
IDs and information about destinations (grocery stores)

Preparing raw data (HaslachSurvey)
HaslachSurvey_prepared <- rawdata.prep (cols.below1 =
list(HaslachSurvey$LM1_Text, HaslachSurvey$LM2_Text),
cols.below2 = list(HaslachSurvey$LM1E, HaslachSurvey$LM2E),
cols.keep = HaslachSurvey$WO,
colnames.new = c("LM", "LME", "Wohnort"))
"WO" and "Wohnort" = origin ID
"LM1_Text", "LM2_Text" and "LME" = destination IDs (grocery stores)
"LM1E", "LM2E" and "LME" = grocery store purchases

Creating a MCI interaction matrix
based on raw data of a survey (HaslachSurvey_prepared)
and a tcmat list object
mcmat_haslach <- mcmat.create(rawdata = HaslachSurvey_prepared,
origins.id = "Wohnort", destinations.id = "LM", "LME",
tcmat = tcmat_haslach_airline,
remOrig = c("SBXXX", "SB613"), corObserved = 0.1,
origvar.data = HaslachDistricts, origvardata.id = "WO",
destvar.data = HaslachStores, destvardata.id = "LM")

MCI model based on empirical local market shares
two explanatory variables: distance (d_lij), store size (LM_VKF)
mcmimodel_haslach <- mci (mcmat_haslach, "p_lij", "d_lij", "LM_VKF",
show_proc = TRUE)
Haslach_coords_destinations

Freiburg-Haslach: coordinates of destinations (grocery stores)

Description

Coordinates of destinations (grocery stores) in Freiburg-Haslach and related information

Usage

data("Haslach_coords_destinations")

Format

A data frame with 8 observations on the following 4 variables.

destinations.id Destination ID (grocery stores)
destinations.addr street address of grocery stores
destinations.x_lon longitude
destinations.y_lat latitude

Source

Generated by the tcmat.create function.

Examples

Compilation of tcmat list from existing datasets:
(Results from the tcmat.create function)
data(Haslach_tcmatAirline)
airline distances
data(Haslach_coords_origins)
Coordinates of origins
data(Haslach_coords_destinations)
Coordinates of destinations

Component "tc.mode":
Airline_tc.mode <- list()
Airline_tc.mode$tc.type = "airline"
Airline_tc.mode$tc.unit = "km"
Airline_tc.mode$tc.constant = 0

tcmat with airline distances
Compilation as a list:
tcmat_haslach_airline <- list(tcmat = Haslach_tcmatAirline, coords_origins = Haslach_coords_origins, coords_destinations = Haslach_coords_destinations, tc.mode = Airline_tc.mode)
Drvtim_tc_mode <- list()
Drvtim_tc_mode\$tc_type = "street"
Drvtim_tc_mode\$tc_unit = "min"
Drvtim_tc_mode\$tc_constant = 0

data(Haslach_tc_mat_drvtim)
car driving times

tcmat with car driving times
Compilation as a list:
tc_mat_haslach_drvtim <- list(tcmat = Haslach_tc_mat_drvtim,
coords_origins = Haslach_coords_origins,
coords_destinations = Haslach_coords_destinations,
 tc_mode = Drvtim_tc_mode)

data(Haslach_Survey)
survey raw data (Store choices and purchases)
data(Haslach_Districts)
IDs and information about customer origins
data(Haslach_Stores)
IDs and information about destinations (grocery stores)

Preparing raw data (Haslach_Survey)
Haslach_Survey_prepared <- rawdata_prep (cols_below1 =
list(Haslach_Survey\$LM_1_Text, Haslach_Survey\$LM_2_Text),
cols_below2 = list(Haslach_Survey\$LM_1_E, Haslach_Survey\$LM_2_E),
cols_keep = Haslach_Survey\$WO,
colnames_new = c("LM", "LME", "Wohnort"))
"WO" and "Wohnort" = origin ID
"LM_1_Text", "LM_2_Text" and "LM" = destination IDs (grocery stores)
"LM_1_E", "LM_2_E" and "LME" = grocery store purchases

Creating a MCI interaction matrix
based on raw data of a survey (Haslach_Survey_prepared)
and a tcmat list object
mcimat_haslach <- mcimat_create (rawdata = Haslach_Survey_prepared,
origns_id = "Wohnort", destinations_id = "LM", "LME",
tcmat = tcmat_haslach_airline,
remOrig = c("SBXXX", "SB613"), corObserved = 0.1,
origvar_data = Haslach_Districts, origvardata_id = "WO",
destvar_data = Haslach_Stores, destvardata_id = "LM")

MCI model based on empirical local market shares
two explanatory variables: distance (d_ij), store size (LM_VKF)
mcimodel_haslach <- mci (mcimat_haslach, "p_ij", "d_ij", "LM_VKF",
show_proc = TRUE)

Haslach_coords_origins

Freiburg-Haslach: coordinates of origins (districts)
Description

Coordinates of customer origins (districts) in Freiburg-Haslach and related information

Usage

data("Haslach_coords_origins")

Format

A data frame with 4 observations on the following 4 variables.

- origins.id: customer origin ID (districts)
- origins.addr: street address of customer origins
- origins.x_lon: longitude
- origins.y_lat: latitude

Source

Generated by the tcmat.create function.

Examples

Compilation of tcmat list from existing datasets:
(Results from the tcmat.create function)
data(Haslach_tcmatAirline)
airline distances
data(Haslach_coords_origins)
Coordinates of origins
data(Haslach_coords_destinations)
Coordinates of destinations

Component "tc.mode":
Airline_tc.mode <- list()
Airline_tc.mode$tc.type = "airline"
Airline_tc.mode$tc.unit = "km"
Airline_tc.mode$tc.constant = 0

tcmat with airline distances
Compilation as a list:
tcmat_haslach_airline <- list(tcmat = Haslach_tcmatAirline,
coords_origins = Haslach_coords_origins,
coords_destinations = Haslach_coords_destinations,
tc.mode = Airline_tc.mode)

Drvtime_tc.mode <- list()
Drvtime_tc.mode$tc.type = "street"
Drvtime_tc.mode$tc.unit = "min"
Drvtime_tc.mode$tc.constant = 0

data(Haslach_tcmatDrvtime)
car driving times
Haslach_tcmatAirline

tcmat with car driving times
Compilation as a list:
tcmat_haslach_drvtime <- list(tcmat = Haslach_tcmatDrvtime,
coords_origins = Haslach_coords_origins,
coords_destinations = Haslach_coords_destinations,
tc.mode = Drvtime_tc.mode)

data(HaslachSurvey)
survey raw data (Store choices and purchases)
data(HaslachDistricts)
IDs and information about customer origins
data(HaslachStores)
IDs and information about destinations (grocery stores)

Preparing raw data (HaslachSurvey)
HaslachSurvey_prepared <- rawdata.prep(cols.below1 =
list(HaslachSurvey$LM1_Text, HaslachSurvey$LM2_Text),
cols.below2 = list(HaslachSurvey$LM1E, HaslachSurvey$LM2E),
cols.keep = HaslachSurvey$WO,
colnames.new = c("LM", "LME", "Wohnort"))
"WO" and "Wohnort" = origin ID
"LM1_Text", "LM2_Text" and "LM" = destination IDs (grocery stores)
"LM1E", "LM2E" and "LME" = grocery store purchases

Creating a MCI interaction matrix
based on raw data of a survey (HaslachSurvey_prepared)
and a tcmat list object
mciimat_haslach <- mciomat.create(rawdata = HaslachSurvey_prepared,
origins.id = "Wohnort", destinations.id = "LM", "LME",
tcmat = tcmat_haslach_airline,
remOrig = c("SBxxx", "SB613"), corObserved = 0.1,
origvar.data = HaslachDistricts, origvardata.id = "WO",
destvar.data = HaslachStores, destvardata.id = "LME")

MCI model based on empirical local market shares
two explanatory variables: distance (d_ij), store size (LM_VKF)
mcmmodel_haslach <- mci (mciomat_haslach, "p_ij", "d_ij", "LM_VKF",
show_proc = TRUE)

Haslach_tcmatAirline Freiburg-Haslach: airline distances

Description

Airline distances for customer origins (districts) and destinations (grocery stores) in Freiburg-
Haslach

Usage

data("Haslach_tcmatAirline")
Format

A data frame with 32 observations on the following 4 variables.

- `from`: customer origin ID (districts)
- `to`: destination ID (grocery stores)
- `from_to`: interactions (customer origins x destinations)
- `tc`: transport costs values (here: airline distances)

Source

Generated by the `tcmat.create` function.

Examples

```r
# Compilation of tcmat list from existing datasets:
# (Results from the tcmat.create function)
data(Haslach_tcmatAirline)
# airline distances
data(Haslach_coords_origins)
# Coordinates of origins
data(Haslach_coords_destinations)
# Coordinates of destinations

# Component "tc.mode":
Airline_tc.mode <- list()
Airline_tc.mode$tc.type = "airline"
Airline_tc.mode$tc.unit = "km"
Airline_tc.mode$tc.constant = 0

# tcmat with airline distances
# Compilation as a list:
tcmat_haslach_airline <- list(tcmat = Haslach_tcmatAirline,
                             coords_origins = Haslach_coords_origins,
                             coords_destinations = Haslach_coords_destinations,
                             tc.mode = Airline_tc.mode)

Drvtime_tc.mode <- list()
Drvtime_tc.mode$tc.type = "street"
Drvtime_tc.mode$tc.unit = "min"
Drvtime_tc.mode$tc.constant = 0

data(Haslach_tcmatDrvtime)
# car driving times

# tcmat with car driving times
# Compilation as a list:
tcmat_haslach_drvt ime <- list(tcmat = Haslach_tcmatDrvtime,
                              coords_origins = Haslach_coords_origins,
                              coords_destinations = Haslach_coords_destinations,
                              tc.mode = Drvt ime_tc.mode)
```
data(HaslachSurvey)
survey raw data (Store choices and purchases)
data(HaslachDistricts)
IDs and information about customer origins
data(HaslachStores)
IDs and information about destinations (grocery stores)

Preparing raw data (HaslachSurvey)
HaslachSurvey_prepared <- rawdata.prep (cols.below1 =
 list(HaslachSurvey$L1_Text, HaslachSurvey$L2_Text),
 cols.below2 = list(HaslachSurvey$L1E, HaslachSurvey$L2E),
 cols.keep = HaslachSurvey$WO,
 colnames.new = c("LM", "LME", "Wohnort"))
"WO" and "Wohnort" = origin ID
"L1_Text", "L2_Text" and "LM" = destination IDs (grocery stores)
"L1E", "L2E" and "LME" = grocery store purchases

Creating a MCI interaction matrix
based on raw data of a survey (HaslachSurvey_prepared)
and a tcmat list object
mcimat_haslach <- mcimat.create(rawdata = HaslachSurvey_prepared,
 origins.id = "Wohnort", destinations.id = "LM", "LME",
 tcmat = tcmat_haslach_airline,
 remOrig = c("SBXXX", "SB613"), corObserved = 0.1,
 origvar.data = HaslachDistricts, origvardata.id = "WO",
 destvar.data = HaslachStores, destvardata.id = "LM")

MCI model based on empirical local market shares
two explanatory variables: distance (d_ij), store size (LM_VKF)
mcmimodel_haslach <- mci (mcimat_haslach, "p_ij", "d_ij", "LM_VKF",
 show_proc = TRUE)

Haslach_tcmatDrvtime Freiburg-Haslach: car driving times

Description

Car driving times for customer origins (districts) and destinations (grocery stores) in Freiburg-Haslach

Usage

data("Haslach_tcmatDrvtime")

Format

A data frame with 32 observations on the following 4 variables.

from customer origin ID (districts)
to destination ID (grocery stores)
from_to interactions (customer origins x destinations)
tc transport costs values (here: car driving times)

Source
Generated by the tcmat.create function.

Examples

Compilation of tcmat list from existing datasets:
(Results from the tcmat.create function)
data(Haslach_tcmatAirline)
airline distances
data(Haslach_coords_origins)
Coordinates of origins
data(Haslach_coords_destinations)
Coordinates of destinations

Component "tc.mode":
Airline_tc.mode <- list()
Airline_tc.mode$tc.type = "airline"
Airline_tc.mode$tc.unit = "km"
Airline_tc.mode$tc.constant = 0

tcmat with airline distances
Compilation as a list:
tcmat_haslach_airline <- list(tcmat = Haslach_tcmatAirline,
coods_origins = Haslach_coords_origins,
coods_destinations = Haslach_coords_destinations,
tc.mode = Airline_tc.mode)

Drvtime_tc.mode <- list()
Drvtime_tc.mode$tc.type = "street"
Drvtime_tc.mode$tc.unit = "min"
Drvtime_tc.mode$tc.constant = 0

data(Haslach_tcmatDrvtime)
car driving times

tcmat with car driving times
Compilation as a list:
tcmat_haslach_drvtime <- list(tcmat = Haslach_tcmatDrvtime,
coods_origins = Haslach_coords_origins,
coods_destinations = Haslach_coords_destinations,
tc.mode = Drvtime_tc.mode)

data(HaslachSurvey)
survey raw data (Store choices and purchases)
data(HaslachDistricts)
IDs and information about customer origins
data(HaslachStores)
IDs and information about destinations (grocery stores)
Preparing raw data (HaslachSurvey)
HaslachSurvey_prepared <- rawdata.prep(
cols.below1 = list(HaslachSurvey$L1.Text, HaslachSurvey$L2.Text),
cols.below2 = list(HaslachSurvey$L1E, HaslachSurvey$L2E),
cols.keep = HaslachSurvey$WO,
colnames.new = c("LM", "LME", "Wohnort"))
"WO" and "Wohnort" = origin ID
"L1_Text", "L2_Text" and "LM" = destination IDs (grocery stores)
"L1E", "L2E" and "LME" = grocery store purchases

Creating a MCI interaction matrix
based on raw data of a survey (HaslachSurvey_prepared)
and a tcmat list object
mcimat_haslach <- mcimat.create(rawdata = HaslachSurvey_prepared,
origins.id = "Wohnort", destinations.id = "LM", "LME",
tcmat = tcmat_haslach_airline,
remOrig = c("SBXXX", "SB613"), corObserved = 0.1,
origvar.data = HaslachDistricts, origvardata.id = "WO",
destvar.data = HaslachStores, destvardata.id = "LM")

MCI model based on empirical local market shares
two explanatory variables: distance (d_ij), store size (LM_VKF)
mciomodel_haslach <- mci(mcimat_haslach, "p_i", "d_i", "LM_VKF",
show_proc = TRUE)

Huff Model market simulation

Description
Calculating local market shares and total market areas of locations using the probabilistic market area model by Huff

Usage

```
huff(origins.id, origins.pot, destinations.id, destinations.attrac, tcmat, 
atype = "pow", gamma = 1, gamma2 = NULL, dtype = "pow", lambda = NULL, 
lambda2 = NULL)
```

Arguments

- **origins.id** Vector of customer origins
- **origins.pot** Vector of corresponding customer potential of the origins
- **destinations.id** Vector of destinations (stores, locations)
- **destinations.attrac** Vector of corresponding attraction values of the destinations
- **tcmat** Object (list) created by the function tcmat.create (Transportation costs matrix)
Details

This function computes local market shares \(p_{ij} \) and total market areas \(T_j \) according to the Huff Model.

Value

A `huffmodel` list (invisible) containing the following components:

- `huffmat`: Huff interaction matrix (data frame), also containing the local market shares \(p_{ij} \)
- `hufftotal`: Total location market areas (data frame), also containing the total market areas \(T_j \)
- `params`: A matrix containing the user-defined weighting functions and the corresponding weighting parameters
- `coords`: A list containing the coordinates and additional information of the origins (coords_origins) and the destinations (coords_destinations), inherited from the `tcmat` object
- `tc.mode`: A list containing information about the transportation costs matrix, inherited from the `tcmat` object

Note

The function is a wrapper of `huff.shares` and `shares.total` of the MCI package. For further information see the MCI documentation and the corresponding RJ paper (Wieland 2017).

Author(s)

Thomas Wieland

References

See Also

`huff.newdest, huff.updest, tcmat.create`

Examples

```r
# Compilation of tcmat list from existing datasets:
# (Results from the tcmat.create function)
data(Haslach_tcmatAirline)
# airline distances
data(Haslach_coords_origins)
# Coordinates of origins
data(Haslach_coords_destinations)
# Coordinates of destinationes

# Component "tc.mode":
Airline_tc.mode <- list()
Airline_tc.mode$tc.type = "airline"
Airline_tc.mode$tc.unit = "km"
Airline_tc.mode$tc.constant = 0

# tcmat with airline distances
# Compilation as a list:
tcmat_haslach_airline <- list(tcmat = Haslach_tcmatAirline,
coords_origins = Haslach_coords_origins,
coords_destinations = Haslach_coords_destinations,
tc.mode = Airline_tc.mode)

Drvtime_tc.mode <- list()
Drvtime_tc.mode$tc.type = "street"
Drvtime_tc.mode$tc.unit = "min"
Drvtime_tc.mode$tc.constant = 0

data(Haslach_tcmatDrvtime)
# car driving times

# tcmat with car driving times
# Compilation as a list:
```
tcmat_haslach_drvtme <- list(tcmat = Haslach_tcmatDrvtme,
coords_origins = Haslach_coords_origins,
coords_destinations = Haslach_coords_destinations,
tc_mode = Drvtme_tc.mode)

data(HaslachDistricts)
IDs and information about customer origins
data(HaslachStores)
IDs and information about destinations (grocery stores)

huffmodel1 <- huff(HaslachDistricts$WO, HaslachDistricts$WO_Einwohner,
HaslachStores$LM, HaslachStores$LM_VKF,
tcmat = tcmat_haslach_airline)
Huff Model with standard parameters
uses given transport costs matrix (tcmat_haslach_airline)

huffmodel1a <- huff(HaslachDistricts$WO, HaslachDistricts$WO_Einwohner,
HaslachStores$LM, HaslachStores$LM_VKF,
tcmat = tcmat_haslach_airline,
atype = "pow", gamma = 0.9, dtype = "pow", lambda = -2.1)
Alternative weighting parameters

Not run:
huffmodel2 <- huff.newdest(huffmodel1, newdest.id = "LM_NEU",
newdest.addr = "Bettackerstrasse 3, Freiburg, Germany",
newdest.attract = 1500)
Adding a new destination with a given street address
Recalculation of the Huff Model
Needs internet access and accesses OpenStreetMap server(s)
If server not available, the function will produce an error

End(Not run)

huffmodel3 <- huff.updest (huffmodel1, dest.id = "LM01",
dest.attract = 1200)
Update the attraction value of one grocery stores
Recalculation of the Huff Model

Not run:
model.export(huffmodel3, "interactionmatrix", "totals")
export as CSV files

End(Not run)

huff.newdest

Huff Model market simulation with a new destination

Description

Adding a new location and (re-)calculating local market shares and total market areas of locations using the probabilistic market area model by Huff
Usage

huff.newdest(huffmodel, newdest.id, newdest.addr, newdest.attract,
newdest.addr.format = "stradr", distval = NULL)

Arguments

- huffmodel: Object (list) created by the function huff (Huff Model)
- newdest.id: Code of the new destination
- newdest.addr: (Street) address of the new destination
- newdest.attract: Attraction value of the new destination
- newdest.addr.format: Address format (default: street address)
- distval: Optional: numerical vector containing the transportation costs values with respect to the new destination and all origins in the Huff Model object (huffmodel)

Details

Adding a new destination (e.g. new store) to a given location system (Huff Model object). This function computes local market shares (p_{ij}) and total market areas (T_j) according to the Huff Model.

Value

A huffmodel list (invisible) containing the following components:

- huffmat: Huff interaction matrix (data frame), also containing the local market shares (p_{ij})
- hufftotal: Total location market areas (data frame), also containing the total market areas (T_j)
- params: A matrix containing the user-defined weighting functions and the corresponding weighting parameters
- coords: A list containing the coordinates and additional information of the origins (coords_origins) and the destinations (coords_destinations), inherited from the tcmat object
- tc.mode: A list containing information about the transportation costs matrix, inherited from the tcmat object

Note

The function is a wrapper of huff.shares and shares.total of the MCI package, also integrating the tcmat.create function. For further information see the MCI documentation and the corresponding RJ paper (Wieland 2017).

Author(s)

Thomas Wieland
References

See Also

huff, huff.updest, tcmat.create

Examples

Compilation of tcmat list from existing datasets:
(Results from the tcmat.create function)
data(Haslach_tcmatAirline)
airline distances
data(Haslach_coords_origins)
Coordinates of origins
data(Haslach_coords_destinations)
Coordinates of destinationes

Component "tc.mode":
Airline_tc.mode <- list()
Airline_tc.mode$tc.type = "airline"
Airline_tc.mode$tc.unit = "km"
Airline_tc.mode$tc.constant = 0

tcmat with airline distances
Compilation as a list:
tcmat_haslach_airline <- list(tcmat = Haslach_tcmatAirline,
coords_origins = Haslach_coords_origins, coords_destinations = Haslach_coords_destinations,
tc.mode = Airline_tc.mode)

Drvtme_tc.mode <- list()
Drvtme_tc.mode$tc.type = "street"
Drvtme_tc.mode$tc.unit = "min"

Drvtme_tc.mode$tc.constant = 0

data(Haslach_tcmatDrvtme)
 # car driving times
 # tcmat with car driving times
 # Compilation as a list:
tcmat_haslach_drvtme <- list(tcmat = Haslach_tcmatDrvtme,
 coords_origins = Haslach_coords_origins,
 coords_destinations = Haslach_coords_destinations,
 tc.mode = Drvtme_tc.mode)

data(HaslachDistricts)
 # IDs and information about customer origins
 data(HaslachStores)
 # IDs and information about destinations (grocery stores)

huffmodel1 <- huff(HaslachDistricts$WO, HaslachDistricts$WO_Einwohner,
 HaslachStores$L, HaslachStores$LM, tcmat = tcmat_haslach_airline)
 # Huff Model with standard parameters
 # uses given transport costs matrix (tcmat_haslach_airline)

huffmodel1a <- huff(HaslachDistricts$WO, HaslachDistricts$WO_Einwohner,
 HaslachStores$L, HaslachStores$LM, tcmat = tcmat_haslach_airline,
 atype = "pow", gamma = 0.9, dtype = "pow", lambda = -2.1)
 # Alternative weighting parameters

Not run:
huffmodel2 <- huff.newdest(huffmodel1, newdest.id = "LM_NEU",
 newdest.addr = "Bettkarstrasse 3, Freiburg, Germany",
 newdest.attrac = 1500)
 # Adding a new destination with a given street address
 # Recalculation of the Huff Model
 # Needs internet access and accesses OpenStreetMap server(s)
 # If server not available, the function will produce an error

Not run:
huffmodel3 <- huff.update(huffmodel1, dest.id = "LM01",
 dest.attrac = 1200)
 # Update the attraction value of one grocery stores
 # Recalculation of the Huff Model

Not run:
model.export(huffmodel3, "interactionmatrix", "totals")
 # export as CSV files

Not run:
huff.optim

Huff Model optimization

Description

This function fits the Huff Model using a local optimization of attraction algorithm.

Usage

`huff.optim(huffmodel, location.dataset, location.id, location.total, tolerance = 5, iterations = 3, show_proc = TRUE)`

Arguments

- **huffmodel**: Object (huffmodel list) object created by the function `huff` (Huff Model)
- **location.dataset**: A data frame containing the destinations and the corresponding observed total market areas, $T_{j,obs}$ (e.g. annual turnover)
- **location.id**: Name of the column in `location.dataset` containing the destination IDs
- **location.total**: Name of the column in `location.dataset` containing the destinations’ observed total market areas, $T_{j,obs}$ (e.g. annual turnover)
- **tolerance**: Accepted value of absolute percentage error between observed ($T_{j,obs}$) and estimated total values ($T_{j,exp}$) to skip a local optimization of location j
- **iterations**: a single numeric value for the desired number of iterations
- **show_proc**: logical argument that indicates if the function prints messages about the state of process during the work

Details

In many cases, only total empirical market areas (e.g. annual turnover) of the destinations/locations can be used for market area estimation. This function fits the Huff Model not by estimating the parameters but by optimizing the attraction variable (transport cost weighting by λ is given) using an optimization algorithm introduced and explained in Wieland (2017a) and Wieland (2017b).

Value

A `huffmodel` list (invisible) containing the following components:

- **huffmat**: Huff interaction matrix (data frame), also containing the local market shares (p_{ij})
- **hufftotal**: Total location market areas (data frame), also containing both the empirical and the estimated total market areas (T_j and $T_{j,obs}$, respectively) as well as their difference ($T_j - T_{j,obs}$) and the new attraction values (λ_{opt})
- **diag**: A data frame containing several model diagnoses for each iteration
huff.optim

params A matrix containing the user-defined weighting functions and the corresponding weighting parameters

coords A list containing the coordinates and additional information of the origins (coords_origins) and the destinations (coords_destinations), inherited from the tcmat object

tc.mode A list containing information about the transportation costs matrix, inherited from the tcmat object

Note
The function is a wrapper of huff.attrac from the MCI package. For further information see the MCI documentation and the corresponding RJ paper (Wieland 2017).

Author(s)
Thomas Wieland

References

See Also
huff, huff.newdest, huff.updest

Examples
Compilation of tcmat list from existing datasets:
(Results from the tcmat.create function)
data(Haslach_tcmatAirline)
airline distances
data(Haslach_coords_origins)
Coordinates of origins
data(Haslach_coords_destinations)
Coordinates of destinationes

Component "tc.mode":
Airline_tc.mode <- list()
Airline_tc.mode$tc.type = "airline"
Airline_tc.mode$tc.unit = "km"
Airline_tc.mode$tc.constant = 0
tcmat with airline distances
Compilation as a list:
tcmat_haslach_airline <- list(tcmat = Haslach_tcmatAirline,
coords_origins = Haslach_coords_origins,
coords_destinations = Haslach_coords_destinations,
tc.mode = Airline_tc.mode)

Drvtime_tc.mode <- list()
Drvtime_tc.mode$tc.type = "street"
Drvtime_tc.mode$tc.unit = "min"
Drvtime_tc.mode$tc.constant = 0

data(Haslach_tcmatDrvtime)
car driving times

tcmat with car driving times
Compilation as a list:
tcmat_haslach_drvtime <- list(tcmat = Haslach_tcmatDrvtime,
coords_origins = Haslach_coords_origins,
coords_destinations = Haslach_coords_destinations,
tc.mode =Drvtime_tc.mode)

data(HaslachDistricts)
IDs and information about customer origins
data(HaslachStores)
IDs and information about destinations (grocery stores)

huffmodel1 <- huff (HaslachDistricts$W0, HaslachDistricts$W0_Einwohner,
HaslachStores$Lm, HaslachStores$Lm_VKF,
tcmat = tcmat_haslach_airline)
Huff Model with standard parameters
uses given transport costs matrix (tcmat_haslach_airline)

huffmod_total <- huffmodel1$hufftotal
Total values from the Huff Model

huff_optim(huffmodel1, location.dataset = huffmod_total,
location.id = "_j_dest", location.total = "T_j")
Using calculated total market areas for optimization

now adding random errors:
rnderr <- runif(8, min=-1000, max=1500)
huffmod_total2 <- huffmod_total
huffmod_total2$T_j <- huffmod_total2$T_j+rnderr

New optimization:
now saving as huffmodel list object
huffmodel_opt <- huff_optim(huffmodel1, location.dataset = huffmod_total2,
location.id = "_j_dest", location.total = "T_j")

huffmodel_opt
complete huffmodel list object
huff.updest

Description

Updating an existing location and (re-)calculating local market shares and total market areas of locations using the probabilistic market area model by Huff.

Usage

```
huff.updest(huffmodel, dest.id, dest.attrac)
```

Arguments

- `huffmodel`: Object (list) created by the function `huff` (Huff Model)
- `dest.id`: Code of the existing destination that has to be updated
- `dest.attrac`: New attraction value of the existing destination

Details

Updating the attraction value of an existing destination (e.g., store) in a given location system (Huff Model object). This function computes local market shares (p_{ij}) and total market areas (T_j) according to the Huff Model.

Value

A `huffmodel` list (invisible) containing the following components:

- `huffmat`: Huff interaction matrix (data frame), also containing the local market shares (p_{ij})
- `hufftotal`: Total location market areas (data frame), also containing the total market areas (T_j)
- `params`: A matrix containing the user-defined weighting functions and the corresponding weighting parameters
- `coords`: A list containing the coordinates and additional information of the origins (coords_origins) and the destinations (coords_destinations), inherited from the tcmat object
- `tc.mode`: A list containing information about the transportation costs matrix, inherited from the tcmat object

Note

The function is a wrapper of `huff.shares` and `shares.total` of the MCI package. For further information see the MCI documentation and the corresponding RJ paper (Wieland 2017).
Author(s)
Thomas Wieland

References

See Also
huff, huff.newdest, tcmat.create

Examples
Compilation of tcmat list from existing datasets:
(Results from the tcmat.create function)
data(Haslach_tcmatAirline)
airline distances
data(Haslach_coords_origins)
Coordinates of origins
data(Haslach_coords_destinations)
Coordinates of destinationes

Component "tc.mode"
Airline_tc.mode <- list()
Airline_tc.mode$tc.type = "airline"
Airline_tc.mode$tc.unit = "km"
Airline_tc.mode$tc.constant = 0

tcmat with airline distances
Compilation as a list:
tcmat_haslach_airline <- list(tcmat = Haslach_tcmatAirline, coords_origins = Haslach_coords_origins, coords_destinations = Haslach_coords_destinations, tc.mode = Airline_tc.mode)
```
Drvtme_tc.mode <- list()
Drvtme_tc.mode$tc.type = "street"
Drvtme_tc.mode$tc.unit = "min"
Drvtme_tc.mode$tc.constant = 0

data(Haslach_tcmatDrvtme)
# car driving times

# tcmat with car driving times
# Compilation as a list:
tcmat_haslach_drvtme <- list(tcmat = Haslach_tcmatDrvtme,
coors_origins = Haslach_coors_origins,
coors_destinations = Haslach_coors_destinations,
tc.mode = Drvtme_tc.mode)

data(HaslachDistricts)
# IDs and information about customer origins
data(HaslachStores)
# IDs and information about destinations (grocery stores)

huffmodel1 <- huff (HaslachDistricts$WO, HaslachDistricts$WO_Einwohner,
HaslachStores$LM, HaslachStores$LM_VKF,
tcmat = tcmat_haslach_airline)
# Huff Model with standard parameters
# uses given transport costs matrix (tcmat_haslach_airline)

huffmodel1a <- huff (HaslachDistricts$WO, HaslachDistricts$WO_Einwohner,
HaslachStores$LM, HaslachStores$LM_VKF,
tcmat = tcmat_haslach_airline,
atype = "pow", gamma = 0.9, dtype = "pow", lambda = -2.1)
# Alternative weighting parameters

## Not run:
huffmodel2 <- huff.newdest(huffmodel1, newdest.id = "LM_NEU",
newdest.addr = "Bettakerstrasse 3, Freiburg, Germany",
newdest.attract = 1500)
# Adding a new destination with a given street address
# Recalculation of the Huff Model
# Needs internet access and accesses OpenStreetMap server(s)
# If server not available, the function will produce an error

## End(Not run)

huffmodel3 <- huff.updest (huffmodel1, dest.id = "LM01",
dest.attrac = 1200)
# Update the attraction value of one grocery stores
# Recalculation of the Huff Model

## Not run:
model.export(huffmodel3, "interactionmatrix", "totals")
# export as CSV files
```
Fitting the MCI model

Description

This function fits the MCI model based on a given MCI interaction matrix.

Usage

```r
mci(mcimat, shares, ..., no.intercept = TRUE,
    mci.weighting = FALSE, mci.weights = NULL,
    show_proc = FALSE)
```

Arguments

- `mcimat` Object (list) created by the function `mcimat.create` (Creating an MCI interaction matrix based on raw data)
- `shares` Column containing the local market shares
- `...` Explanatory variables (partial utilities)
- `no.intercept` Logical argument that indicates if an intercept is included into the model
- `mci.weighting` Logical argument that indicates if weighted least squares (WLS) should be used for fitting the model
- `mci.weights` If `mci.weighting = TRUE`: optional weighting vector for the WLS fitting. If `mci.weights = NULL`, the reciprocals of the residuals are used as weightings
- `show_proc` Logical argument that indicates if the function prints messages about the state of process during the work

Details

This function calculates a Multiplicative Competitive Interaction (MCI) Model based on a given interaction matrix.

Value

A `mcimodel` list (invisible) containing the following components:

- `regdata` Log-centering transformed interaction matrix (data frame)
- `mcimodel_coef` A matrix containing the regression results (parameters, std. errors, t statistics,...)
- `mcimodel_stat` A matrix containing the regression model diagnostics (R-squared, adj. R-squared, F statistic,...)
Note

The function is a wrapper of mci.transmat and mci.fit of the MCI package. For further information see the MCI documentation and the corresponding RJ paper (Wieland 2017).

Author(s)

Thomas Wieland

References

See Also

mcimat.create

Examples

Compilation of tcmat list from existing datasets:
(Results from the tcmat.create function)
data(Haslach_tcmatAirline)
airline distances
data(Haslach_coords_origins)
Coordinates of origins
data(Haslach_coords_destinations)
Coordinates of destinations

Component "tc.mode":
Airline_tc.mode <- list()
Airline_tc.mode$tc.type = "airline"
Airline_tc.mode$tc.unit = "km"
Airline_tc.mode$tc.constant = 0

tcmat with airline distances
Compilation as a list:
tcmat_haslach_airline <- list(tcmat = Haslach_tcmatAirline, coords_origins = Haslach_coords_origins, coords_destinations = Haslach_coords_destinations)
tc.mode = Airline_tc.mode)

Drvtime.tc.mode <- list()
Drvtime.tc.mode$tc.type = "street"
Drvtime.tc.mode$tc.unit = "min"
Drvtime.tc.mode$tc.constant = 0

data(Haslach_tcmatDrvtime)
car driving times

tcmat with car driving times
Compilation as a list:
tcmat_haslach_drvttime <- list(tcmat = Haslach_tcmatDrvtime,
coords_origins = Haslach_coords_origins,
coords_destinations = Haslach_coords_destinations,
tc.mode = Drvtime.tc.mode)

data(HaslachSurvey)
survey raw data (Store choices and purchases)
data(HaslachDistricts)
IDs and information about customer origins
data(HaslachStores)
IDs and information about destinations (grocery stores)

Preparing raw data (HaslachSurvey)
HaslachSurvey_prepared <- rawdata.prep (cols.below1 =
list(HaslachSurvey$LM1_Text, HaslachSurvey$LM2_Text),
cols.below2 = list(HaslachSurvey$LM1E, HaslachSurvey$LM2E),
cols.keep = HaslachSurvey$WO,
colnames.new = c("LM", "LME", "Wohnort"))
"WO" and "Wohnort" = origin ID
"LM1_Text", "LM2_Text" and "LM" = destination IDs (grocery stores)
"LM1E", "LM2E" and "LME" = grocery store purchases

Creating a MCI interaction matrix
based on raw data of a survey (HaslachSurvey_prepared)
and a tcmat list object
mcimat_haslach <- mcimat.create(rawdata = HaslachSurvey_prepared,
origins.id = "Wohnort", destinations.id = "LM", "LME",
tcmat = tcmat_haslach_airline,
remOrig = c("SBXXX", "SB613"), corObserved = 0.1,
origvar.data = HaslachDistricts, origvardata.id = "WO",
destvar.data = HaslachStores, destvardata.id = "LM")

MCI model based on empirical local market shares
two explanatory variables: distance (d_ij), store size (LM_VKF)
mcimodel_haslach <- mci (mcimat_haslach, "p_ij", "d_ij", "LM_VKF",
show_proc = TRUE)
Description

Market simulation using the MCI model

Usage

mci.sim(mcimodel, origins.pot, ..., mcitrans = "lc", interc = NULL)

Arguments

- **mcimodel**: Object (list) created by the function mci
- **origins.pot**: The column representing the customer potential in the origins in the interaction matrix in mcimodel
- **...**: Explanatory variables (partial utilities) and their corresponding weighting parameters (variable1, parameter1, variable2, parameter2, ...)
- **mcitrans**: Type of MCI transformation: Log-centering transformation (mcitrans = "lc"), or, e.g. in the case of using dummy variables, inverse log-centering transformation (mcitrans = "ilc")
- **interc**: Intercept to be included

Details

This function calculates a market simulation using the Multiplicative Competitive Interaction (MCI) Model based on a given MCI model.

Value

A mcimodel list (invisible) containing the following components:

- **mcimat**: MCI interaction matrix (data frame), also containing the local market shares (p_{ij})
- **mcitotal**: Total location market areas (data frame), also containing the total market areas (T_j)

Note

The function is a wrapper of mci.shares and shares.total of the MCI package. For further information see the MCI documentation and the corresponding RJ paper (Wieland 2017).

Author(s)

Thomas Wieland
References

See Also

mci.mcimat.create

Examples

Compilation of tcmat list from existing datasets:
(Results from the tcmat.create function)
data(Haslach_tcmatAirline)
airline distances
data(Haslach_coords_origins)
Coordinates of origins
data(Haslach_coords_destinations)
Coordinates of destinationes

Component "tc.mode":
Airline_tc.mode <- list()
Airline_tc.mode$tc.type = "airline"
Airline_tc.mode$tc.unit = "km"
Airline_tc.mode$tc.constant = 0

tcmat with airline distances
Compilation as a list:
tcmat_haslach_airline <- list(tcmat = Haslach_tcmatAirline, coords_origins = Haslach_coords_origins, coords_destinations = Haslach_coords_destinations, tc.mode = Airline_tc.mode)

Drvtime_tc.mode <- list()
Drvtime_tc.mode$tc.type = "street"
Drvtime_tc.mode$tc.unit = "min"
Drvtime_tc.mode$tc.constant = 0

data(Haslach_tcmatDrvtime)
car driving times
tcmat with car driving times
Compilation as a list:
tcmat_haslach_drvtme <- list(tcmat = Haslach_tcmatDrvtime,
coords_origins = Haslach_coords_origins,
coords_destinations = Haslach_coords_destinations,
tc.mode = Drvtime_tc.mode)

data(HaslachSurvey)
survey raw data (Store choices and purchases)
data(HaslachDistricts)
IDs and information about customer origins
data(HaslachStores)
IDs and information about destinations (grocery stores)

Preparing raw data (HaslachSurvey)
HaslachSurvey_prepared <- rawdata.prep (cols.below1 =
list(HaslachSurvey$LM1_Text, HaslachSurvey$LM2_Text),
cols.below2 = list(HaslachSurvey$LM1E, HaslachSurvey$LM2E),
cols.keep = HaslachSurvey$WO,
colnames.new = c("LM", "LME", "Wohnort")
"WO" and "Wohnort" = origin ID
"LM1_Text", "LM2_Text" and "LME" = destination IDs (grocery stores)
"LM1E", "LM2E" and "LME" = grocery store purchases

Creating a MCI interaction matrix
based on raw data of a survey (HaslachSurvey_prepared)
and a tcmat list object
mcimat_haslach <- mcimat.create(rawdata = HaslachSurvey_prepared,
origins.id = "Wohnort", destinations.id = "LM", "LME",
tcmat = tcmat_haslach_airline,
remOrig = c("SBXXX", "SB613"), corObserved = 0.1,
origvar.data = HaslachDistricts, origvardata.id = "WO",
destvar.data = HaslachStores, destvardata.id = "LM")

MCI model based on empirical local market shares
two explanatory variables: distance (d_ij), store size (LM_VKF)
mcimodel_haslach <- mci (mcimat_haslach, "p_ij", "d_ij", "LM_VKF",
show_proc = TRUE)

if (!require("MCI")) install.packages("MCI")
Needed for function var.asdummy from package MCI

Integration of chains as dummy variables
chaindummies <- var.asdummy(HaslachStores$LM_Name)
HaslachStores <- cbind(HaslachStores, chaindummies)
nmcimat_haslach2 <- mcimat.create (rawdata = HaslachSurvey_prepared,
origins.id = "Wohnort", destinations.id = "LM", "LME",
tcmat = tcmat_haslach_airline,
remOrig = c("SBXXX", "SB613"), remDest = "LM00", corObserved = 0.1,
origvar.data = HaslachDistricts, origvardata.id = "WO",
destvar.data = HaslachStores, destvardata.id = "LM")
mcimat.create

Creation of a MCI interaction matrix

Description
Creation of an interaction matrix with local market shares (p_{ij}) of each location (j) in each customer origin (i) based on the frequencies in the raw data (e.g. household or POS survey).

Usage

```r
mcimat.create(rawdata, origins.id, destinations.id, ..., tcmat, origvar.data = NULL, origvardata.id = NULL, destvar.data = NULL, destvardata.id = NULL, remOrig = NULL, remDest = NULL, corObserved = 0, remNA = TRUE)
```

Arguments
- **rawdata** Raw data (data.frame), e.g. customer survey
- **origins.id** Vector of customer origins
- **destinations.id** Vector of destinations (stores, locations)
- **...** other numeric variables in the raw data which were observed and shall be used to calculate market shares (e.g. expenditures)
- **tcmat** Object (list) created by the function tcmat.create (Transportation costs matrix)
- **origvar.data** Optional: additional data (data.frame) concerning the customer origins
- **origvardata.id** Optional: customer origins in the additional origins data
- **destvar.data** Optional: additional data (data.frame) concerning the destinations
- **destvardata.id** Optional: destinations in the additional destinations data
- **remOrig** Optional: vector of origins to be removed from the analysis
mcimat.create

remDest Optional: vector of destinations to be removed from the analysis

corObserved numeric value which is added to the absolute values before calculating market

remNA Logical argument that indicates if NA values of the origins and destinations are

Details

This function creates a Multiplicative Competitive Interaction (MCI) Model interaction matrix for

Value

A mcimat list (invisible) containing the following components:
mimat MCI interaction matrix (data frame), also containing the local market shares (p_ij)

coords A list containing the coordinates and additional information of the origins (coords_origins) and the destinations (coords_destinations), inherited from the tcmat object
tc.mode A list containing information about the transportation costs matrix, inherited from the tcmat object
mci.cormode A list containing information about the processing mode of the interaction matrix (removed origins/destinations etc.)

Note

The function is a wrapper of ijmatrix.create from the MCI package. For further information see the MCI documentation and the corresponding RJ paper (Wieland 2017).

Author(s)

Thomas Wieland

References

See Also

mci, tcmat.create

Examples

Compilation of tcmat list from existing datasets:
(Results from the tcmat.create function)
data(Haslach_tcmatAirline)
airline distances
data(Haslach_coords_origins)
Coordinates of origins
data(Haslach_coords_destinations)
Coordinates of destinations

Component "tc.mode":
Airline_tc.mode <- list()
Airline_tc.mode$tc.type = "airline"
Airline_tc.mode$tc.unit = "km"
Airline_tc.mode$tc.constant = 0

tcmat with airline distances
Compilation as a list:
tcmat_haslach_airline <- list(tcmat = Haslach_tcmatAirline,
coods_origins = Haslach_coords_origins,
coods_destinations = Haslach_coords_destinations,
tc.mode = Airline_tc.mode)

Drvtime_tc.mode <- list()
Drvtime_tc.mode$tc.type = "street"
Drvtime_tc.mode$tc.unit = "min"
Drvtime_tc.mode$tc.constant = 0

data(Haslach_tcmatDrvtime)
car driving times

tcmat with car driving times
Compilation as a list:
tcmat_haslach_drvtime <- list(tcmat = Haslach_tcmatDrvtime,
coods_origins = Haslach_coords_origins,
coods_destinations = Haslach_coords_destinations,
tc.mode = Drvtime_tc.mode)

data(HaslachSurvey)
survey raw data (Store choices and purchases)
data(HaslachDistricts)
IDs and information about customer origins
data(HaslachStores)
IDs and information about destinations (grocery stores)

Preparing raw data (HaslachSurvey)
HaslachSurvey_prepared <- rawdata.prep (cols.below1 =
list(HaslachSurvey$LM1_Text, HaslachSurvey$LM2_Text),
Creating a MCI interaction matrix
based on raw data of a survey (HaslachSurvey_prepared)
and a tcmat list object
mcimat_haslach <- mcimat.create(rawdata = HaslachSurvey_prepared,
origins.id = "Wohnort", destinations.id = "LM", "LME",
tomat = tcmat_haslach_airline,
remOrig = c("SBXXX", "SB613"), corObserved = 0.1,
origvar.data = HaslachDistricts, origvardata.id = "WO",
destvar.data = HaslachStores, destvardata.id = "LM")

MCI model based on empirical local market shares
two explanatory variables: distance (d_ij), store size (LM_vKF)
mcimodel_haslach <- mci (mcimat_haslach, "p_ij", "d_ij", "LM_vKF",
show_proc = TRUE)

model.export

Output Huff Model results

Description

Output Huff Model results as .csv file(s)

Usage

model.export(huffmodel, mat.filename, total.filename,
decimal = ":.", colsep = ":", mat.ascrosstab = TRUE)

Arguments

- **huffmodel**: Object (list) created by the function huff (Huff Model)
- **mat.filename**: File name for the interaction matrix output (no suffix)
- **total.filename**: File name for the total market areas output (no suffix)
- **decimal**: the string to use for decimal points (as in write.table)
- **colsep**: the field separator string (as in write.table)
- **mat.ascrosstab**: Logical argument that indicates if the interaction matrix should be stored in the form of a crosstab (for further use in GIS)

Value

Two .csv files (interaction matrix, total market areas)
Note

The function is a wrapper of ijm.x.crosstab of the MCI package and write.table from utils. For further information see the package documentations and the corresponding RJ paper (Wieland 2017).

Author(s)

Thomas Wieland

Examples

Compilation of tcmat list from existing datasets:
(Results from the tcmat.create function)
data(Haslach_tcmatAirline)
airline distances
data(Haslach_coords_origins)
Coordinates of origins
data(Haslach_coords_destinations)
Coordinates of destinations

Component "tc.mode":
Airline_tc.mode <- list()
Airline_tc.mode$tc.type = "airline"
Airline_tc.mode$tc.unit = "km"
Airline_tc.mode$tc.constant = 0

tcmat with airline distances
Compilation as a list:
tcmat_haslach_airline <- list(tcm = Haslach_tcmatAirline,
coords_origins = Haslach_coords_origins,
coords_destinations = Haslach_coords_destinations,
tc.mode = Airline_tc.mode)

Drvtime_tc.mode <- list()
Drvtime_tc.mode$tc.type = "street"
Drvtime_tc.mode$tc.unit = "min"
Drvtime_tc.mode$tc.constant = 0

data(Haslach_tcmatDrvtime)
car driving times

tcmat with car driving times
Compilation as a list:
tcmat_haslach_drvtme <- list(tcm = Haslach_tcmatDrvtime,
coords_origins = Haslach_coords_origins,
coords_destinations = Haslach_coords_destinations,
tc.mode = Drvtme_tc.mode)

data(HaslachDistricts)
IDs and information about customer origins
data(HaslachStores)
IDs and information about destinations (grocery stores)
huffmodel <- huff(HaslachDistricts$WO, HaslachDistricts$WO_Einwohner, HaslachStores$LM, HaslachStores$LM_VKF, tcmat = tcmat_haslach_airline)
Huff Model with standard parameters
uses given transport costs matrix (tcmat_haslach_airline)

huffmodela <- huff(HaslachDistricts$WO, HaslachDistricts$WO_Einwohner, HaslachStores$LM, HaslachStores$LM_VKF, tcmat = tcmat_haslach_airline, atype = "pow", gamma = 0.9, dtype = "pow", lambda = -2.1)
Alternative weighting parameters

Not run:

huffmodel2 <- huff.newdest(huffmodel1, newdest.id = "LM_NEU", newdest.addr = "Bettakerstrasse 3, Freiburg, Germany", newdest.attract = 1500)
Adding a new destination with a given street address
Recalculation of the Huff Model
Needs internet access and accesses OpenStreetMap server(s)
If server not available, the function will produce an error

End(Not run)

huffmodel3 <- huff.updest(huffmodel1, dest.id = "LM01", dest.attrac = 1200)
Update the attraction value of one grocery stores
Recalculation of the Huff Model

Not run:

model.export(huffmodel3, "interactionmatrix", "totals")
export as CSV files

End(Not run)

rawdata.prep

Preparation of survey raw data

Description

Preparation of survey raw data for further use in a MCI interaction matrix.

Usage

```
rawdata.prep(cols.below1, cols.below2, cols.keep, colnames.new)
```

Arguments

- `cols.below1` First list of columns in a survey data frame to arrange one below the other (e.g. destination IDs)
cols.NbelowR Second list of columns in a survey data frame to arrange one below the other (e.g. obtained destination purchases)

cols.Nkeep Single column in a survey data frame that must be kept for all data (e.g. IDs of customer origins)

colnames.Nnew Character vector of new column names

Details

This function re-orders survey raw data for further use in the function \texttt{mcimat.create}. Sometimes, in a household survey, two or three destinations/stores are obtained instead of one, always arranged in different columns. This function re-orders survey raw data in single columns for further use in the function \texttt{mcimat.create}.

Value

A data frame containing three columns named corresponding to \texttt{colnames.Nnew}

Author(s)

Thomas Wieland

References

See Also

\texttt{mcimat.create}

Examples

data(HaslachSurvey)
survey raw data (Store choices and purchases)

Preparing raw data (HaslachSurvey)
HaslachSurvey_prepared <- rawdata.prep (cols.below1 =
list(HaslachSurvey$LM1_Text, HaslachSurvey$LM2_Text),
cols.below2 = list(HaslachSurvey$LM1E, HaslachSurvey$LM2E),
cols.keep = HaslachSurvey$WO,
colnames.new = c("LM", "LME", "Wohnort"))
"WO" and "Wohnort" = origin ID
"LM1_Text", "LM2_Text" and "LM" = destination IDs (grocery stores)
"LM1E", "LM2E" and "LME" = grocery store purchases

HaslachSurvey_prepared
tcmat.create Creation of a transport costs matrix

Description

Creation of a transport costs matrix (airline distance, car travel time)

Usage

```
tcmat.create(origins.id, origins.addr,
             destinations.id, destinations.addr,
             tc.type = "airline", tc.unit = "km",
             or.addr.format = "stradr", de.addr.format = "stradr",
             tc.constant = 0, show_proc = FALSE)
```

Arguments

- **origins.id**: ID of the origins
- **origins.addr**: Address of the origins, either street addresses (e.g. "Markgrafenstrasse 68, Freiburg, Germany") or coordinates (X_LON;X_LAT, e.g.: "7.82218;47.99387")
- **destinations.id**: ID of the destinations
- **destinations.addr**: Address of the destinations, either street addresses (e.g. "Markgrafenstrasse 68, Freiburg, Germany") or coordinates (X_LON;X_LAT, e.g.: "7.82218;47.99387")
- **tc.type**: Type of transportat costs: "airline" (airline distance) or "street" (car travel time)
- **tc.unit**: If tc.type = "airline": unit of distance ("m", "km" or "miles")
- **or.addr.format**: Origins address format. Default: "stradr" (street addresses))
- **de.addr.format**: Destinations address format. Default: "stradr" (street addresses))
- **tc.constant**: Adding a constant to the calculated/queried values (default: 0)
- **show_proc**: Logical argument that indicates if the function prints messages about the state of process during the work

Details

Creation of a tcmat list object (Transport costs matrix) for further use in huff and mcimat.create. Included geocoding of street addresses (from geocode.OSM in tmaptools) and travel time query (from ormsTable in osrm) or the calculation of airline distances (from dist.mat in REAT).
Value

A tcmat list (invisible) containing the following components:

- coords_origins
 - A data.frame containing the coordinates (lat, lon) of the origins
- coords_destinations
 - A data.frame containing the coordinates (lat, lon) of the destinations
- tcmat
 - A data.frame containing the transport costs matrix
- tcNmode
 - A list containing information about the transportation costs matrix

Note

This function is wrapper of the functions geocode_osm (for geocoding street addresses using OSM Nominatim) from the tmaptools package (Tennekes 2018), osrNTable (for creating travel time matrices between points while interfacing the table OSRM service) from the osrm package (Gi-raud 2018) and distNmat (for creating airline distances between points) from the REAT package (Wieland 2018). The OSM-related functions rely on the usage of a running OSRM service! For more information, see the related package documentations.

Author(s)

Thomas Wieland

References

See Also

huff, mcimat.create

Examples

data(HaslachSurvey)
survey raw data (Store choices and purchases)
data(HaslachDistricts)
IDs and information about customer origins
data(HaslachStores)
IDs and information about destinations (grocery stores)
Not run:

```r
tcmat_haslach_airline <- tcmat.create(origins.id = HaslachDistricts$WO, origins.addr = HaslachDistricts$WO_Adr, destinations.id = HaslachStores$LM, destinations.addr = HaslachStores$LM_Adr_zus, tc.type = "airline", tc.unit = "km", addr.format = "stradr", tc.constant = 0, show_proc = TRUE)
```

Creation of a transport costs matrix with airline distances
saving as list object "tcmat_haslach_airline"
Needs internet access and accesses OpenStreetMap server(s)
If server not available, the function will produce an error

```r
tcmat_haslach_drvtime <- tcmat.create(origins.id = HaslachDistricts$WO, origins.addr = HaslachDistricts$WO_Adr, destinations.id = HaslachStores$LM, destinations.addr = HaslachStores$LM_Adr_zus, tc.type = "street", addr.format = "stradr", tc.constant = 0, show_proc = TRUE)
```

Creation of a transport costs matrix with car driving times
saving as list object "tcmat_haslach_drvtime"
Needs internet access and accesses OpenStreetMap server(s)
If server not available, will produce an error

End(Not run)

to.tcmat

Creation of a transport costs matrix

Description

Creation of a tcmat list object from a given transport costs table

Usage

```r
to.tcmat(dataset, colname.from, colname.to, colname.tc)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dataset</td>
<td>A data frame containing the transport costs table</td>
</tr>
<tr>
<td>colname.from</td>
<td>Name of the column containing the origin IDs</td>
</tr>
<tr>
<td>colname.to</td>
<td>Name of the column containing the destination IDs</td>
</tr>
<tr>
<td>colname.tc</td>
<td>Name of the column containing the transport costs (e.g. airline distances, travel times)</td>
</tr>
</tbody>
</table>

Details

Creation of a tcmat list object (Transport costs matrix) from a given table for further use in huff and mcimat.create.
Value

A tcmat list (invisible) containing the following components:

- coords_origins: A data.frame
- coords_destinations: A data.frame
- tcmat: A data.frame containing the transport costs matrix
- tc.mode: A list containing information about the transportation costs matrix

Author(s)

Thomas Wieland

See Also

huff, mcimath.create, tcmath.create

Examples

data(Haslach_tcmatDrvtime)
Travel times from the Haslach example
Haslach_tcmat <- to.tcmat(Haslach_tcmatDrvtime, "from", "to", "tc")
Creating new tcmat object
Haslach_tcmat
Index

*Topic datasets

Haslach_coords_destinations, 10
Haslach_coords_origins, 11
Haslach_tcmatAirline, 13
Haslach_tcmatDrvtime, 15
HaslachDistricts, 3
HaslachStores, 5
HaslachSurvey, 7

Haslach_coords_destinations, 10
Haslach_coords_origins, 11
Haslach_tcmatAirline, 13
Haslach_tcmatDrvtime, 15
HaslachDistricts, 3
HaslachStores, 5
HaslachSurvey, 7
huff, 17, 22, 25, 28, 44, 46
huff.newdest, 19, 20, 25, 28
huff.optim, 24
huff.updest, 19, 22, 25, 27

mci, 30, 34, 38
mci.sim, 32
MCI2 (MCI2-package), 2
MCI2-package, 2
mcimat.create, 31, 34, 36, 42, 44, 46
model.export, 39

rawdata.prep, 41

tcmat.create, 19, 22, 28, 38, 43, 46
to.tcmat, 45