Package ‘MCPModPack’

March 19, 2020

Type Package

Title Simulation-Based Design and Analysis of Dose-Finding Trials

Version 0.1

Date 2020-02-24

Depends mvtnorm, R (>= 3.4.1)

Imports Rcpp, RcppNumerical, officer, flextable, devEMF, shiny, shinydashboard

Suggests testthat, devtools, DoseFinding

LinkingTo Rcpp, RcppEigen, RcppNumerical

Maintainer Alex Dmitrienko <admitrienko@medianainc.com>

Description An efficient implementation of the MCPMod (Multiple Comparisons and Modeling) method to support a simulation-based design and analysis of dose-finding trials with normally distributed, binary and count endpoints (Bretz et al. (2005) <doi:10.1111/j.1541-0420.2005.00344.x>).

License GPL-3

LazyLoad yes

LazyData true

NeedsCompilation yes

Repository CRAN

Author Alex Dmitrienko [aut, cre],
 Alun Bedding [ctb],
 John Cook [ctb]

Date/Publication 2020-03-19 13:20:12 UTC

URL https://github.com/medianainc/MCPModPack

BugReports https://github.com/medianainc/MCPModPack/issues
R topics documented:

- MCPModPack-package 2
- AnalysisApp 4
- AnalysisReport 5
- MCPModAnalysis 6
- MCPModSimulation 9
- SimulationApp 12
- SimulationReport 13

Index 16

MCPModPack-package Design and analysis of dose-finding trials

Description

The MCPModPack package facilitates the design and analysis of dose-finding clinical trials with normally distributed, binary and count endpoints using the MCPMod methodology.

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>MCPModPack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>0.1</td>
</tr>
<tr>
<td>Date</td>
<td>2020-01-24</td>
</tr>
<tr>
<td>License</td>
<td>GPL-3</td>
</tr>
</tbody>
</table>

Key functions included in the package:
- **MCPModAnalysis**: Analyze data from a dose-finding trial using MCPMod.
- **AnalysisReport**: Generate a detailed summary of MCPMod analysis results in a Microsoft Word format.
- **AnalysisApp**: Launch a Shiny-based graphical user interface to analyze data from a dose-finding trial.
- **MCPModSimulation**: Perform a simulation-based evaluation of dose-finding trial designs using MCPMod.
- **SimulationReport**: Generate a detailed summary of MCPMod simulation results in a Microsoft Word format.
- **SimulationApp**: Launch a Shiny-based graphical user interface to perform a simulation-based evaluation of dose-finding trial designs.

Author(s)

Alex Dmitrienko <admitrienko@medianainc.com>
References

Examples

```r
# MCPMod-based analysis of a dose-finding trial with a normally distributed endpoint

# Select the candidate dose-response models and initial values
# of the non-linear model parameters (linear, quadratic, exponential,
# emax, logistic and sigemax)
models = list(linear = NA,
              quadratic = -1,
              exponential = 2,
              emax = 0.2,
              logistic = c(0.1, 1),
              sigemax = c(0.1, 1))

# One-sided Type I error rate
alpha = 0.025

# Direction of the dose-response relationship
direction = "increasing"

# Model selection criterion
model_selection = "AIC"

# The treatment effect for identifying the target dose
# (this effect is defined relative to the placebo effect)
Delta = 0.5

# Perform an MCPMod-based analysis of the trial's data
# The data set normal is included in the package
results = MCPModAnalysis(endpoint_type = "Normal",
                          models = models,
                          alpha = alpha,
                          direction = direction,
                          model_selection = model_selection,
                          Delta = Delta)
```


models = models,
 dose = normal$dose,
 resp = normal$resp,
 alpha = alpha,
 direction = direction,
model_selection = model_selection,
 Delta = Delta)

Simple summary of the MCPMod analysis results
results

Detailed summary of the MCPMod analysis results
AnalysisReport(results,
 "MCPMod analysis summary (Normally distributed endpoint)",
 "MCPMod analysis summary (Normally distributed endpoint).docx")

AnalysisApp
Creation of a Shiny-based interface to perform an MCPMod analysis of a dose-finding trial

Description

This function creates a Shiny-based graphical user interface to perform MCPMod-based analysis of a dose-finding trial.

Usage

```
AnalysisApp()
```

Author(s)

Alex Dmitrienko <admitrienko@medianainc.com>

See Also

MCPModAnalysis, AnalysisReport

Examples

```
# Launch a Shiny-based interface to perform an MCPMod-based analysis of a dose-finding trial
AnalysisApp()
```
Description

This function creates a detailed summary of MCPMod analysis results in a Microsoft Word format.

Usage

AnalysisReport(results, report_title, report_filename)

Arguments

results Object of class 'MCPModAnalysisResults' created by the 'MCPModAnalysis' function.
report_title Character value defining the report’s title.
report_filename Character value defining the report’s filename. The report is saved in the current working directory.

Author(s)

Alex Dmitrienko <admitrienko@medianainc.com>

See Also

MCPModAnalysis, SimulationReport

Examples

MCPMod-based analysis of a dose-finding trial with a
binary endpoint

Endpoint type
dropout_type = "Binary"

Select the candidate dose-response models and initial values
of the non-linear model parameters (linear, quadratic, exponential,
emax, logistic and sigemax)
models = list(linear = NA,
 quadratic = -1,
 exponential = 2,
 emax = 0.2,
 logistic = c(0,1),
 sigemax = c(0,1))

One-sided Type I error rate
alpha = 0.025
Direction of the dose-response relationship
direction = "increasing"

Model selection criterion
model_selection = "AIC"

The treatment effect for identifying the target dose
Delta = 0.3

Perform an MCPMod-based analysis of the trial's data
results = MCPModAnalysis(endpoint_type = endpoint_type,
models = models,
 dose = binary$dose,
 resp = binary$resp,
 alpha = alpha,
 direction = direction,
 model_selection = model_selection,
 Delta = Delta)

Simple summary of the MCPMod analysis results
results

Detailed summary of the MCPMod analysis results
AnalysisReport(results,
 "MCPMod analysis summary (Binary endpoint)",
 "MCPMod analysis summary (Binary endpoint).docx")

MCPModAnalysis
MCPMod-based analysis of dose-finding clinical trials with normally distributed, binary and count endpoints

Description

This function implements the MCPMod-based analysis of dose-finding clinical trials with normally distributed, binary and count endpoints, including derivation of the optimal contrasts for the candidate dose-response models, evaluation of dose-response tests based on the optimal contrasts, selection of the significant dose-response models and estimation of the target dose. For more information, see the technical manual in the package’s doc folder.

Usage

MCPModAnalysis(endpoint_type, models, dose, resp,
alpha, direction, model_selection, Delta, theta)
Arguments

endpoint_type Character value defining the primary endpoint’s type. Possible values:
• "Normal": Normally distributed primary endpoint.
• "Binary": Binary primary endpoint.
• "Count": Count-type primary endpoint.

models List of candidate dose-response models with initial values of the non-linear model parameters. The package supports the following dose-response models: linear, quadratic, exponential, Emax, logistic and sigEmax. No initial value is required for the linear model, a single initial value is required for the quadratic, exponential and Emax models, and two initial values are required for the quadratic, logistic and sigEmax models.

dose, resp Numeric vectors of equal length specifying the dose and response values.

alpha Numeric value defining the one-sided significance level (default value is 0.025).

direction Character value defining the direction of the dose-response relationship. Possible values:
• "Increasing": A larger value of the treatment difference corresponds to a beneficial treatment effect.
• "Decreasing": A smaller value of the treatment difference indicates a beneficial treatment effect.

model_selection Character value defining the criterion for selecting the best dose-response model. Possible values:
• "AIC": Akaike information criterion (AIC).
• "maxT": Most significant test statistic.
• "aveAIC": Weighted AIC-based criterion.

Delta Numeric value specifying the treatment effect for identifying the target dose. The treatment effect is defined relative to the placebo effect. A positive value is required if direction = "Increasing" and a negative value is required otherwise.

theta Numeric vector defining the overdispersion parameter in each trial arm (required only with count-type primary endpoints).

Value

The function returns an object of class ‘MCPModAnalysisResults’. This object is a list with the following components:

input_parameters a list containing the user-specified parameters, e.g, endpoint type, model selection criteria, etc.

selected_models a logical vector defining the candidate dose-response models.

descriptive_statistics a list containing the descriptive statistics computed from the trial’s data set.
contrast_results
a list containing the contrast evaluation results for the candidate dose-response models, e.g., the model-specific optimal dose-response contrasts and contrast correlation matrix.

mcp_results
a list containing the multiplicity adjustment results for the candidate dose-response models, e.g., the model-specific test statistics and adjusted p-values.

mod_results
a list containing the modeling results for the candidate dose-response models, e.g., estimated model parameters, target dose estimate.

A detailed summary of the MCPMod analysis results can be generated using the AnalysisReport function.

Author(s)
Alex Dmitrienko <admitrienko@medianainc.com>

See Also
MCPModSimulation

Examples

MCPMod-based analysis of a dose-finding trial with a binary endpoint

Endpoint type
depoint_type = "Binary"

Select the candidate dose-response models and initial values
of the non-linear model parameters (linear, quadratic, exponential,
emax, logistic and sigemax)
models = list(linear = NA,
 quadratic = -1,
 exponential = 2,
 emax = 0.2,
 logistic = c(0.1, 1),
 sigemax = c(0.1, 1))

One-sided Type I error rate
alpha = 0.025

Direction of the dose-response relationship
direction = "increasing"

Model selection criterion
model_selection = "AIC"

The treatment effect for identifying the target dose
(this effect is defined relative to the placebo effect)
Delta = 0.3

Perform an MCPMod-based analysis of the trial's data
MCPModSimulation

The data set `binary` is included in the package
results = MCPModAnalysis(endpoint_type = endpoint_type,
models = models,
dose = binary$dose,
resp = binary$resp,
alpha = alpha,
direction = direction,
model_selection = model_selection,
Delta = Delta)

Simple summary of the MCPMod analysis results
results

Detailed summary of the MCPMod analysis results
AnalysisReport(results,
"MCPMod analysis summary (Binary endpoint)",
"MCPMod analysis summary (Binary endpoint).docx")

MCPModSimulation

MCPMod-based simulation of dose-finding trial designs

Description

This function implements the simulation-based analysis of dose-finding clinical trials with normally
distributed, binary and count endpoints using the MCPMod methodology. For more information,
see the technical manual in the package’s doc folder.

Usage

MCPModSimulation(endpoint_type, models, alpha, direction,
model_selection, Delta, theta, sim_models, sim_parameters)

Arguments

type| Character value defining the primary endpoint’s type. Possible values:
| "Normal": Normally distributed primary endpoint.
| "Binary": Binary primary endpoint.
| "Count": Count-type primary endpoint.
models| List of candidate dose-response models with initial values of the non-linear
model parameters. The package supports the following dose-response models:
linear, quadratic, exponential, emax, logistic and sigemax. No initial value is
required for the linear model, a single initial value is required for the quadratic,
exponential and Emax models, and two initial values are required for the quadratic,
logistic and sigEmax models.
alpha| Numeric value defining the one-sided significance level (default value is 0.025).
direction Character value defining the direction of the dose-response relationship. Possible values:

- "Increasing": A larger value of the treatment difference corresponds to a beneficial treatment effect.
- "Decreasing": A smaller value of the treatment difference indicates a beneficial treatment effect.

model_selection Character value defining the criterion for selecting the best dose-response model. Possible values:

- "AIC": Akaike information criterion (AIC).
- "maxT": Most significant test statistic.
- "aveAIC": Weighted AIC-based criterion.

Delta Numeric value specifying the treatment effect for identifying the target dose. The treatment effect is defined relative to the placebo effect. A positive value is required if direction = "Increasing" and a negative value is required otherwise.

theta Numeric vector defining the overdispersion parameter in each trial arm (required only with count-type primary endpoints).

sim_models List defining the assumed dose-response model and its parameters, including initial values of the non-linear model parameters. The package supports the following dose-response models: linear, quadratic, exponential, Emax, logistic and sigEmax. No initial value is required for the linear and quadratic models, a single initial value is required for the exponential and Emax models, and two initial values are required for the quadratic, logistic and sigEmax models. The following components are required:

- "placebo_effect": Numeric value defining the placebo effect in the assumed dose-response model.
- "max_effect": Numeric vector defining the effects at the maximum dose in the assumed dose-response model. Positive values are required if direction = "Increasing" and negative values are required otherwise.
- "sd": Numeric vector defining the standard deviations of the response variable in each trial arm (required for normally distributed endpoints).

sim_parameters List defining the design and simulation parameters. The following components are required:

- "n": Integer vector defining the number of patients in each trial arm.
- "doses": Numeric vector defining the dose levels in each trial arm.
- "dropout_rate": Numeric value defining the dropout rate in the simulated trial (between 0 and 1).
- "nsims": Integer value defining the number of simulation runs.
- "go_threshold": Numeric value specifying the threshold for computing go probabilities. The threshold is defined relative to the placebo effect. A positive value is required if direction = "Increasing" and a negative value is required otherwise.
Value

The function returns an object of class 'MCPModSimulationResults'. This object is a list with the following components:

- **input_parameters**: a list containing the user-specified parameters, e.g., endpoint type, model selection criteria, etc.
- **selected_models**: a logical vector defining the candidate dose-response models.
- **sim_results**: a list containing the simulation results based on the assumed dose-response model, e.g., power, target dose estimates, etc.

A detailed summary of the simulation results can be generated using the SimulationReport function.

Author(s)

Alex Dmitrienko <admitrienko@medianainc.com>

See Also

- MCPModAnalysis

Examples

```r
# Simulation-based evaluation of dose-finding trials with a count endpoint

# Endpoint type
dose_finding_type = "Count"

# Select the candidate dose-response models and initial values
# of the non-linear model parameters (linear, quadratic, exponential,
# emax, logistic and sigemax)
modes = list(linear = NA,
            quadratic = -1,
            exponential = 2,
            emax = 0.2,
            logistic = c(0.1, 1),
            sigemax = c(0.1, 1))

# One-sided Type I error rate
direction = "increasing"

# Direction of the dose-response relationship
direction = "increasing"

# Model selection criterion
model_selection = "AIC"

# The treatment effect for identifying the target dose
# (this effect is defined relative to the placebo effect)
```
Delta = 2

Vector of overdispersion parameters
theta = c(2, 2, 2, 2, 2)

Select the assumed dose-response model and values of the non-linear model parameters
sim_models = list(emax = 1,
 placebo_effect = 3,
 max_effect = seq(from = 0, to = 3, by = 1))

Simulation parameters
(go threshold is defined relative to the placebo effect)
sim_parameters = list(n = c(50, 50, 50, 50, 50),
 doses = c(0, 0.05, 0.2, 0.6, 1),
 dropout_rate = 0.05,
 nsims = 1000,
 go_threshold = 2)

Perform an MCPMod-based simulation
results = MCPModSimulation(endpoint_type = endpoint_type,
 models = models,
 alpha = alpha,
 direction = direction,
 model_selection = model_selection,
 Delta = Delta,
 theta = theta,
 sim_models = sim_models,
 sim_parameters = sim_parameters)

Simple summary of the MCPMod simulation results
results

Detailed summary of the MCPMod simulation results
SimulationReport(results,
 "MCPMod simulation summary (Count endpoint)",
 "MCPMod simulation summary (Count endpoint).docx")

SimulationApp

Creation of a Shiny-based interface to perform an MCPMod-based simulation of dose-finding trial designs

Description

This function creates a Shiny-based graphical user interface to perform a simulation-based evaluation of dose-finding trial designs using MCPMod.

Usage

SimulationApp()
SimulationReport

Author(s)
Alex Dmitrienko <admitrienko@medianainc.com>

See Also
MCPModSimulation, SimulationReport

Examples

Launch a Shiny-based interface to perform a simulation-based evaluation
of dose-finding trial designs
SimulationApp()

SimulationReport Generation of a Word-based summary of MCPMod simulation results

Description
This function creates a detailed summary of MCPMod simulation results in a Microsoft Word format.

Usage
SimulationReport(results, report_title, report_filename)

Arguments
results Object of class ‘MCPModSimulationResults’ created by the ‘MCPModSimulation’ function.
report_title Character value defining the report’s title.
report_filename Character value defining the report’s filename. The report is saved in the current working directory.

Author(s)
Alex Dmitrienko <admitrienko@medianainc.com>

See Also
MCPModSimulation, AnalysisReport
Examples

Simulation-based evaluation of dose-finding trials with a binary endpoint

Endpoint type
depnt_type = "Binary"

Select the candidate dose-response models and initial values
of the non-linear model parameters (linear, quadratic, exponential,
emax, logistic and sigmax)
models = list(linear = NA,
 quadratic = -1,
 exponential = 2,
 emax = 0.2,
 logistic = c(0.1, 1),
 sigmax = c(0.1, 1))

One-sided Type I error rate
alpha = 0.025

Direction of the dose-response relationship
direction = "increasing"

Model selection criterion
model_selection = "AIC"

The treatment effect for identifying the target dose
Delta = 0.3

Select the assumed dose-response model and values of the non-linear model parameters
sim_models = list(linear = NA,
 placebo_effect = 0.2,
 max_effect = seq(from = 0, to = 0.5, by = 0.1))

Simulation parameters
sim_parameters = list(n = rep(40, 5),
 doses = c(0, 0.05, 0.2, 0.6, 1),
 dropout_rate = 0.05,
 nsims = 1000,
 go_threshold = 0.3)

Perform an MCPMod-based simulation
results = MCPModSimulation(endpoint_type = endpoint_type,
 models = models,
 alpha = alpha,
 direction = direction,
 model_selection = model_selection,
 Delta = Delta,
 sim_models = sim_models,
 sim_parameters = sim_parameters)

Simple summary of the MCPMod simulation results
results

Detailed summary of the MCPMod simulation results
SimulationReport(results,
 "MCPMod simulation summary (Binary endpoint)",
 "MCPMod simulation summary (Binary endpoint).docx")
Index

*Topic package
 MCPModPack-package, 2

AnalysisApp, 2, 4
AnalysisReport, 2, 4, 5, 13

binary (MCPModPack-package), 2

ComputeDRFunctionParameters
 (MCPModSimulation), 9
count (MCPModPack-package), 2

EvaluateDRFunction (MCPModSimulation), 9

GenerateAnalysisReport
 (AnalysisReport), 5
GenerateSimulationReport
 (SimulationReport), 13

MCPModAnalysis, 2, 4, 5, 6, 11
MCPModPack (MCPModPack-package), 2
MCPModPack-package, 2
MCPModSimulation, 2, 8, 9, 13

normal (MCPModPack-package), 2

SimulationApp, 2, 12
SimulationReport, 2, 5, 13, 13

TestDoseResponseFunction
 (MCPModPack-package), 2
TestFindTargetDose
 (MCPModPack-package), 2