Package ‘MCS’

August 4, 2017

Type Package
Title Model Confidence Set Procedure
Version 0.1.3
Date 2014-10-20
Author Leopoldo Catania & Mauro Bernardi
Maintainer Leopoldo Catania <leopoldo.catania@gmail.com>
Depends R(>= 3.0.1)
License GPL-2
Imports methods
NeedsCompilation no
Repository CRAN
Date/Publication 2017-08-04 11:55:06 UTC

R topics documented:

MCS-package .. 2
Loss .. 3
LossLevel ... 3
LossVaR ... 4
LossVol ... 5
MCSprocedure ... 6
show,SSM-method ... 7
SSM-class .. 7
STOXXIndexesRet ... 8

Index 9
Description

Perform the Model Confidence Set procedure of Hansen et al. (2011) for a given set of loss series belonging to several different models that should be compared.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>MCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>0.1.3</td>
</tr>
<tr>
<td>Date:</td>
<td>2014-07-27</td>
</tr>
<tr>
<td>License:</td>
<td>GPL-2</td>
</tr>
</tbody>
</table>

The R package MCS aims to implement the Model Confidence Set (MCS) procedure recently developed by Hansen et al. (2011). The Hansen’s procedure consists on a sequence of tests which permits to construct a set of ‘superior’ models, where the null hypothesis of Equal Predictive Ability (EPA) is not rejected at a certain confidence level. The EPA statistic tests is calculated for an arbitrary loss function, meaning that we could test models on various aspects, for example punctual forecasts.

Author(s)

Leopoldo Catania & Mauro Bernardi

Maintainer: Leopoldo Catania <leopoldo.catania@gmail.com>

References

Examples

```r
## Not run:
library(MCS)
data(Loss)
MCS <- MCSprocedure(Loss=Loss[,1:5],alpha=0.2,B=5000,statistic='Tmax',cl=NULL)

## End(Not run)
```
Loss

Matrix of Value at Risk losses coming from 10 ARCH-type models

Description
Matrix of Losses associated to a forecast series of 2000 observation of the VaR calculated at the 1 confidence level. This is a 2000*10 matrix, the losses are calculated using the Asymmetric Loss function of Gonzales et.al. (2004).

Usage
Loss

Format
a matrix object.

Author(s)
Leopoldo Catania, 2014-07-27

References

LossLevel
Loss Function for level forecasts

Description
Calculate the losses associated with level forecasts

Usage
LossLevel(realized, evaluated, which = "SE")

Arguments
- **realized**: a vector with the realizations of the interest object.
- **evaluated**: a vector or a matrix of forecasts
- **which**: The loss function to use. possible choices are: ‘SE’ that coincides with Square Error and AE that coincides with Absolute Error
Value

A matrix with the forecast losses

Author(s)

Leopoldo Catania & Mauro Bernardi

LossVaR

Loss Function for VaR forecasts

Description

Calculate the losses associated with VaR forecasts.

Usage

```
LossVaR(realized, evaluated, which = 'asymmetricLoss', type = 'normal',
        delta = 25, tau)
```

Arguments

- **realized**: a vector of returns realization
- **evaluated**: a vector or a matrix of VaR forecasts
- **which**: The chosen VaR loss function. Only which = 'asymmetricLoss' is available.
- **type**: if which = 'asymmetricLoss' the type of the asymmetric loss function of Gonzalez-Riviera et.al. (2004). Possible choices are type = 'normal' which reports the quantile loss function used for example in Koenker and Bassett (1978) and type = 'differentiable' for the differentiable version of Gonzalez-Riviera et.al. (2004).
- **delta**: if type = 'differentiable' the delta parameter controls the smoothness of the function.
- **tau**: the VaR confidence level

Value

A matrix with the VaR losses

Author(s)

Leopoldo Catania & Mauro Bernardi
References

LossVol

Loss Function for volatility forecasts

Description

Calculate the losses associated with volatility (standard deviation) forecasts

Usage

LossVol(realized, evaluated, which = "SE1")

Arguments

realized a vector with some realized volatility measure
evaluated a vector or a matrix of volatility forecasts
which The loss function to use. possible choices are: "SE1", "SE2", "QLIKE", "R2LOG", "AE1", "AE2", for further information see Bernardi and Catania (2014) or Hansen and Lunde (2005).

Value

A matrix with the forecast losses

Author(s)

Leopoldo Catania & Mauro Bernardi

References

Description

Perform the Model Confidence Set procedure of Hansen et.al. (2011)

Usage

MCSprocedure(Loss, alpha = 0.15, B = 5000, cl = NULL,
 ram.allocation = TRUE, statistic = "Tmax", k = NULL, min.k = 3,
 verbose = TRUE)

Arguments

Loss A matrix or something coercible to that (as.matrix) which contains the loss series per each competing model
alpha a scalar in (0,1) indicating the confidence level of the tests
B an integer indicating the number of bootstrapped samples used to construct the statistic test
cl A cl object created by calling makecl from the parallel package. If it is not NULL, then this will be used for parallel processing (remember to stop the cl on completion)
ram.allocation Default TRUE, only considered if cl in not NULL. Let the function decide how to allocate memory when cl are supplied ? Usefull when many models are available.
statistic Possible choice are : Tmax and TR. See Hansen et.al. (2011) [pag. 465] and Bernardi M. and Catania L. (2014) for more information.
k The number of block bootstrap length. If NULL (default) the block length is determined by the max number of significants parameters resulted after fitting an AR(p) process on all the Loss differences as suggested by Hansen et.al. (2011)
min.k If k=NULL the minimum length of the the blocks, by default equal to 3
verbose Information about the MCS procedure should be printed ?

Value

A SSM object

Author(s)

Leopoldo Catania & Mauro Bernardi
References

Examples

```r
## Not run:
library(MCS)
data(Loss)
MCS <- MCSprocedure(Loss=Loss[,1:5], alpha=0.2, B=5000, statistic='Tmax', cl=NULL)
## End(Not run)
```

Description

SSM-methods

Usage

```r
## S4 method for signature 'SSM'
show(object)
```

Arguments

- `object` a SSM object

Description

Class for SSM object
STOXXIndexesRet

STOXX indexes logarithmic returns from 1992-01-02 to 2014-07-24

Description
Daily logarithmic returns of the STOXX North America 600 (SXA1E) the STOXX Asia/Pacific 600 (SXP1E) the STOXX Europe 600 (SXXP) and the STOXX Global 1800 (SXW1E) from 1992-01-02 to 2014-07-24.

Usage
STOXXIndexesRet

Format
a xts object.

Author(s)
Leopoldo Catania, 2014-07-27

Source
www.stoxx.com
Index

*Topic package
 MCS-package, 2

Loss, 3
LossLevel, 3
LossVaR, 4
LossVol, 5

MCS (MCS-package), 2
MCS-package, 2
MCSprocedure, 6

show, SSM-method, 7
SSM-class, 7
STOXXIndexesRet, 8