Package ‘MEGENA’

September 10, 2018

Type Package
Title Multiscale Clustering of Geometrical Network
Version 1.3.7
Date 2018-08-30
Author Won-Min Song, Bin Zhang
Maintainer Won-Min Song <wonmin1984@gmail.com>
URL https://github.com/songw01/MEGENA
License GPL (>= 3)
Imports Rcpp (>= 0.11.3), Matrix (>= 1.1-5), ggplot2 (>= 1.0.0), reshape (>= 0.8.5), fpc (>= 2.1-11), cluster (>= 2.0.7-1), ggrepel (>= 0.5), ggraph (>= 1.0.1)
Depends R (>= 3.4.0), doParallel (>= 1.0.11), foreach (>= 1.4.4), igraph (>= 1.2.1)
LinkingTo Rcpp, BH
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation yes
Repository CRAN
Date/Publication 2018-09-10 19:00:03 UTC

R topics documented:

MEGENA-package .. 2
calculate.correlation .. 3
calculate.PFN .. 4
compute.PFN.par ... 5
datExpr .. 6
MEGENA-package

Index

MEGENA-package co-expression network analysis

Description

construction of gene-gene interaction network and dissection into multi-scale functional modules, and network key drivers.

Details

Package: MEGENA
Type: Package
Version: 1.3
Date: 2015-12-18
License: GPL (>= 2)

Multiscale Embedded Gene Co-expression Network Analysis (MEGENA)

Author(s)

Won-Min Song
Maintainer: Won-Min Song <won-min.song@mssm.edu>

References

calculate.correlation

correlation calculation

Description

correlation analysis with FDR calculation

Usage

```r
calculate.correlation(datExpr, doPerm = 100, doPar = FALSE, num.cores = 8, method = "pearson",
FDR.cutoff = 0.05, n.increment = 100, is.signed = FALSE,
output.permFDR = TRUE, output.corTable = TRUE, saveto = NULL)
```

Arguments

- `datExpr`: gene expression data matrix
- `doPerm`: Number of permutations to perform. If `doPerm = NULL`, calculates BH FDR p-values instead of permutation based FDR.
- `doPar`: TRUE/FALSE logical variable to choose parallelization. Parallelization is utilized when BH FDR p-values are calculated for all pairs.
- `num.cores`: number of cores to use in parallelization.
- `method`: correlation method to be passed to `cor` for `method` argument.
- `FDR.cutoff`: FDR threshold to output final results of significant correlations.
- `n.increment`: When permutation is utilized, 0 <= |rho| <= 1 is broken down into `n.increment` to map each |rho| cutoff to respective FDR.
- `is.signed`: TRUE/FALSE to indicate using signed/unsigned correlation.
- `output.permFDR`, `output.corTable`: TRUE/FALSE to choose to output permutation indices and FDR table.
- `saveto`: folder to output results.

Details

If `doPar = TRUE`, then `num.cores` are registered for PCP.

Value

output is three column edgelist data.frame, third column being the weight.

Author(s)

Won-Min Song

Examples

```r
# test simplest case of planar network (a 3-clique).
data(Sample_Expression)
calculate.correlation(datExpr[1:100,], doPerm = 5)
```
calculate.PFN

PFN calculation

Description

main function to calculate PFN a ranked list of edge pairs

Usage

```r
calculate.PFN(edgelist, max.skipEdges = NULL, maxEnum = NULL, doPar = FALSE, num.cores = NULL, keep.track = TRUE)
```

Arguments

- `edgelist`: three column edgelist: first two columns are topological edges, and the third column is the weight. Must be a data.frame object.
- `max.skipEdges`: Maximum number of edges to be searched by planarity test without any inclusion to PFN. If set NULL, it will be automatically set to number of cores x 1000. It acts as a threshold to quicken PFN construction termination during PCP.
- `maxEnum`: maximum number of edges to include in final PFN. Default value is NULL, which invokes maximal number of edges allowed in planar network.
- `doPar`: TRUE/FALSE logical variable to choose parallelization.
- `num.cores`: number of cores to use in parallelization.
- `keep.track`: If TRUE, pfg_el.RData will be created in working folder. This file can be used later for restart in case PFN construction did not finish successfully. Default is TRUE.

Details

If `doPar = TRUE`, then `num.cores` are registered for PCP.

Value

output is three column edgelist data.frame, third column being the weight.

Author(s)

Won-Min Song

Examples

```r
# test simplest case of planar network (a 3-clique).
a <- c(1,1,2); b <- c(2,3,3); w <- runif(3,0,1);
el <- cbind(a,b,w); el <- as.data.frame(el[order(el[,3], decreasing = TRUE),])
calculate.PFN(edgelist = el, max.skipEdges = Inf, doPar = FALSE, num.cores = NULL)
```
Parallelized PFN computation

Description
PFN construction by parallelized edge screening.

Usage
compute.PFN.par(sortedEdge,Ng,maxNum,Njob,Ncore,max.skipEdges = NULL,
keep.track = TRUE,initial.links = NULL)

Arguments
sortedEdge 3-column matrix for the input edgelist (e.g. - correlation pair list). Must be sorted by third column, which is usually weight vector.
Ng integer. number of genes included in sortedEdge.
maxNum Maximum number of edges to include in final PFN. The theoretical maximal number enforced by Euler's formula is 3(Ng-2).
max.skipEdges Maximum number of edges to be counted before any valid edge to be included in PFN. This works as a termination condition to avoid exhaustive planarity testing over all edges provided in sortedEdge.
Njob Number of edges to be passed to each core for parallelized edge screening.
Ncore Number of cores to utilize.
keep.track TRUE/FALSE logical. Indicate if the record of PFN construction is saved in temporary file "pfg_el.RData". Default is TRUE.
initial.links If provided, PFN construction will restart by regarding these initial.links as already-built PFN.

Details
This is parallelized implementation of PFN construction, where it is possible to re-capture PFN construction by providing already computed edgelist into initial.links. Although provided, this function itself may require careful caution and users are encouraged to use more user-friendly "calculate.PFN()" instead.

Value
A 3-column matrices, where first two columns are integer indices for vertices, and third is the weight vector.

Author(s)
Won-Min Song
datExpr

Toy example data

Description

A portion of TCGA breast cancer data to test run MEGENA.

Usage

Sample_Expression.RData

Format

Contains a matrix object, "datExpr". Use data(Sample_Expression) to load.

Details

a gene expression matrix.

References

do.MEGENA

MEGENA clustering + MHA

Description

multiscale clustering analysis (MCA) and multiscale hub analysis (MHA) pipeline

Usage

do.MEGENA(g, do.hubAnalysis = TRUE, mod.pval = 0.05, hub.pval = 0.05, remove.unsig = TRUE, min.size = 10, max.size = 2500, doPar = FALSE, num.cores = 4, n.perm = 100, singleton.size = 3, save.output = FALSE)
Arguments

g: igraph object of PFN.
daugAnalysis: TRUE/FALSE indicating to perform multiscale hub analysis (MHA) in downstream. Default is TRUE.
mod.pval: cluster significance p-value threshold w.r.t random planar networks.
hub.pval: hub significance p-value threshold w.r.t random planar networks.
remove.unsig: TRUE/FALSE indicating to remove insignificant clusters in MHA.
min.size: minimum cluster size.
max.size: maximum cluster size.
doPar: TRUE/FALSE indicating parallelization usage.
num.cores: number of cores to use in parallelization.
n.perm: number of permutations to calculate hub significance p-values/cluster significance p-values.
singleton.size: Minimum module size to regard as non-singleton module. Default is 3.
save.output: TRUE/FALSE to save outputs from each step of analysis.

Details

Performs MCA and MHA by taking PFN as input. Returns a list object containing clustering outputs, hub analysis outputs, and node summary table.

Value

A series of output files are written in wkdir. Major outputs are,

module.output: outputs from MCA.
hub.output: outputs from MHA.
node.summary: node table summarizing clustering results.

Author(s)

Won-Min Song

Examples

```r
# Not run:
rm(list = ls())
data(Sample_Expression)
ijw <- calculate.correlation(datExpr[1:100,,],doPerm = 2)
el <- calculate.PFN(ijw[,1:3])
g <- graph.data.frame(el,directed = FALSE)
MEGENA.output <- do.MEGENA(g = g,remove.unsig = FALSE,doPar = FALSE,n.perm = 10)

# End(Not run)
```
draw_sunburst_wt_fill Draw sunburst plot showing MEGENA module hierarchy.

Description

Sunburst plot and colored heatmaps

Usage

```r
draw_sunburst_wt_fill(module.df, 
    parent.col = "module.parent", id.col = "id", 
    min.angle = 5, 
    feat.col, 
    fill.type = "continuous", log.transform = TRUE, 
    fill.scale = NULL, 
    theme.adjust = NULL 
)
```

Arguments

- `module.df` A data.frame table summarizing module information. Must contain module parent and child relation for hierarchy visualization.
- `parent.col` Character object, name for the parent module column in module.df.
- `id.col` Character object for the module id column in module df.
- `min.angle` Minimum angle that rectangles in the sunburst are labeled with respective module id.
- `feat.col` Character object, for the feature column in module.df to color the heatmaps.
- `fill.type` continuous/discrete, is the variable numeric (continuous) or factor (discrete)?
- `log.transform` TRUE/FALSE. do log10 transform for p-values?
- `fill.scale` A ggplot object to specify heatmap coloring scheme. Permissible functions are: scale_fill_gradient,scale_fill_gradient2,scale_fill_gradientn,scale_fill_manual.
- `theme.adjust` A ggplot object to specify theme for plotting.

Details

makes use of gggraph scheme to manipulate and draw sunburst plot in ggplot2 framework. fill.scale and theme.adjust provide flexibility to designate heatmap coloring schemes and figure aesthetics.

Value

ggplot object for the figure

Author(s)

Won-Min Song
get.DegreeHubStatistic

get.DegreeHubStatistic

calculate module degree statistics based on random triangulation model via T1 and T2 moves.

Description

calculation of module p-values.
Usage

```r
get.DegreeHubStatistic(subnetwork, n.perm = 100, doPar = FALSE, n.core = 4)
```

Arguments

- `subnetwork`: a planar network as an igraph object.
- `n.perm`: number of random networks generated, constraint with number of links and nodes same to "subnetwork".
- `doPar`: TRUE/FALSE to parallelize.
- `n.core`: number of cores/threads to use.

Details

Hub significance calculation functionality. Make sure that, if doPar = TRUE, register cores using registerDoParallel() from doParallel package.

Value

a data.frame table showing node-wise statistics.

Author(s)

Won-Min Song

Examples

```r
# Not run:
rm(list = ls())
data(Sample_Expression)
ijw <- calculate.correlation(datExpr[1:100,], doPerm = 2)
el <- calculate.PFN(ijw[,1:3])
g <- graph.data.frame(el, directed = FALSE)

out <- get.DegreeHubStatistic(subnetwork = g, n.perm = 100, doPar = FALSE, n.core = 4)
```

get.hub.summary

summarize hub information.

Description

hubs in different scales are summarized.

Usage

```r
get.hub.summary(MEGENA.output)
```
get.union.cut

Arguments

- `MEGENA.output`: A list object. The output from `do.MEGENA()`.

Details

returns a data.frame object

Value

A data.frame object with columns:

- `node`: hub gene node names
- `S1,..`: binary vector indicating hubs in each scale
- `frequency`: number of scales that respective gene emerges as hub.
- `scale.summary`: list of scales that respective gene as hub.

Author(s)

Won-Min Song

get.union.cut

Scale-thresholding of multiscale modules.

Description

obtain a discrete, disjoint clustering results from multiscale MEGENA modules for a given alpha value.

Usage

```r
get.union.cut(module.output, alpha.cut, output.plot = T, plotfname = "validModules_alpha", module.pval = 0.05, remove.unsig = T)
```

Arguments

- `module.output`: A direct output from "do.MEGENA". (i.e. MEGENA.output$module.output).
- `alpha.cut`: Resolution parameter cut-off (i.e. alpha) value. alpha.cut = 1 corresponds to classical definition of "small-world" compactness.
- `output.plot`: TRUE/FALSE to indicate outputting a .png file showing hierarchical structure with final outputted modules highlighted in red.
- `plotfname`: .png file outputname.
- `module.pval`: module significance p-value.
- `remove.unsig`: TRUE/FALSE indicating to remove insignificant clusters.
MEGENA.ModuleSummary

Details
Returns a list object where each entry is a module.

Author(s)
Won-Min Song

Examples
```r
# Not run:
rm(list = ls())
data(Sample_Expression)
ijw <- calculate.correlation(datExpr[1:100,],doPerm = 2)
e1 <- calculate.PFN(ijw[,1:3])
g <- graph.data.frame(e1,directed = FALSE)
MEGENA.output <- do.MEGENA(g = g,remove.unsig = FALSE,doPar = FALSE,n.perm = 10)
get.union.cut(module.output = MEGENA.output$module.output,alpha.cut = 1,
output.plot = FALSE,plotfname = NULL,module.pval = 0.05,remove.unsig = TRUE)

# End(Not run)
```

MEGENA.ModuleSummary MEGENA module summary

Description
Summarizes modules into a table.

Usage
```r
MEGENA.ModuleSummary(MEGENA.output,
mod.pvalue = 0.05,hub.pvalue = 0.05,
min.size = 10,max.size = 2500,
annot.table = NULL,symbol.col = NULL,id.col = NULL,
output.sig = TRUE)
```

Arguments
- **MEGENA.output** A list object. The output from "do.MEGENA()".
- **mod.pvalue** module compactness significance p-value, to identify modules with significant compactness.
- **hub.pvalue** node degree significance p-value to identify nodes with significantly high degree.
- **min.size** minimum module size allowed to finalize in the summary output.
- **max.size** maximum module size allowed to finalize in the summary output.
MGENA::ModuleSummary

annot.table Default value is NULL, indicating no mapping is provided between node names to gene symbols. If provided, the mapping between node names (id.col) and gene symbol (symbol.col) are used.

id.col column index of annot.table for node names.

symbol.col column index of annot.table for gene symbols.

output.sig Default value is TRUE, indicating significant modules are outputted.

Details

output$module.table contains many important information including module hierarchy, as indicated by

Value

A list object with the components:

modules Final set of modules obtained upon apply mod.pvalue for significance, min.size and max.size for module size thresholding.

mapped.modules gene symbol mapped modules when "annot.table" is provided.

module.table data.frame object for module summary table. Columns include: id, module.size, module.parent, module.hub, module.scale and module.pvalue.

Author(s)

Won-Min Song

Examples

```#
## Not run:
rm(list = ls())
data(Sample_Expression)
ijw <- calculate.correlation(datExpr[1:100,,doPerm = 2)
el <- calculate.PFN(ijw[,1:3])
g <- graph.data.frame(el,directed = FALSE)
MEGENA.output <- do.MEGENA(g = g,remove.unsig = FALSE,doPar = FALSE,n.perm = 10)
output.summary <- MEGENA.ModuleSummary(MEGENA.output,
mod.pvalue = 0.05,hub.pvalue = 0.05,
min.size = 10,max.size = 5000,
annot.table = NULL,id.col = NULL,symbol.col = NULL,
output.sig = TRUE)
## End(Not run)
```
module_convert_to_table

conversion of module list object to a data.frame table format

Description

Summarizes module hub/hierarchy/membership into a data.frame table format.

Usage

module_convert_to_table(MEGENA.output, mod.pval = 0.05, hub.pval = 0.05, min.size = 10, max.size)

Arguments

MEGENA.output A list object. The output from "do.MEGENA()".
mod.pval module compactness significance p-value, to identify modules with significant compactness.
hub.pval node degree significance p-value to identify nodes with significantly high degree.
min.size minimum module size allowed to finalize in the summary output.
max.size maximum module size allowed to finalize in the summary output.

Details

the resulting data.frame contains the following essential columns: id, module.parent and module. If the co-expression network bears significant hubs, it will additionally have node.degree (connectivity), node.strength (sum of edge weights) and is.hub column to supplement hub information.

Value

A data.frame with the columns:

id gene name
module.parent parent module id
module module name.

Author(s)

Won-Min Song
Examples

```r
## Not run:
rmlist = ls()
data(Sample_Expression)
ijw <- calculate.correlation(datExpr[1:100,,],doPerm = 2)
el <- calculate.PFN(ijw[,1:3])
g <- graph.data.frame(el, directed = FALSE)
MEGENA.output <- do.MEGENA(g = g, remove.unsig = FALSE, doPar = FALSE, n.perm = 10)
output.summary <- MEGENA.ModuleSummary(MEGENA.output, mod.pvalue = 0.05, hub.pvalue = 0.05,
min.size = 10, max.size = 5000,
annot.table = NULL, id.col = NULL, symbol.col = NULL,
output.sig = TRUE)
module.df = module_convert_to_table(MEGENA.output, module.pval = 0.05, hub.pval = 0.05, min.size = 10, max.size)
head(module.df)

## End(Not run)
```

output.geneSet.file **output gene signatures into .gmt file format**

Description

An interface function to output .gmt format gene signature file.

Usage

```r
output.geneSet.file(geneSet, outputfname)
```

Arguments

- **geneSet** a list object
- **outputfname** output file name

Details

Outputs each signature into a single line of lists in `outputfname`.

Author(s)

Won-Min Song
planaritytest

Boyer-Myvold Planarity test of a network

Description

wrapper function of _MEGENA_planaritytest. imports from Boost graph library, and test planarity of a network

Usage

planaritytest(N, rows, cols)

Arguments

- **N**
 - must be an integer. number of nodes in the network.
- **rows**
 - first column of edgelist. a vector of integers.
- **cols**
 - second column of edgelist. a vector of integers.

Details

cbind(rows,cols) is equivalent to the two column edge list of the network. We assume that the network is undirected.

Value

TRUE/FALSE is returned to indicate planarity. (TRUE -> network is planar).

Author(s)

Won-Min Song

Examples

```r
# test simplest case of planar network (a 3-clique).
planaritytest(as.integer(3),c(1,1,2),c(2,3,3))
```
plot_module

Module plotting function.

Description

Extract subnetworks for modules and plot.

Usage

```r
plot_module(output.summary,PFN,subset.module = NULL,col.names,
  gene.set = NULL,color.code = "logFC",show.legend = TRUE,
  label.hubs.only = TRUE,hubLabel.col = "red",hubLabel.sizeProp = 0.5,show.topn.hubs = 10,
  node.sizeProp = 13,label.sizeProp = 13,label.scaleFactor = 10,label.alpha = 0.5,
  layout = "kamada.kawai",output.plot = TRUE,out.dir = "modulePlot")
```

Arguments

- `output.summary`: output from summary function, "MEGENA.ModuleSummary".
- `PFN`: igraph object retaining PFN topology.
- `subset.module`: A character vector for list of module names to plot. Default = NULL plots all modules in output.summary.
- `col.names`: a character vector for list of colors to be used for coloring children modules.
- `gene.set`: A list object containing signatures for customized coloring of nodes in resulting network plot.
- `color.code`: A character vector with matched length to "gene.set", to specify colors for each signature.
- `label.hubs.only`: TRUE/FALSE to show labels for significant hub genes only, or all genes. Default is TRUE.
- `hubLabel.col`: Label color for hubs. Default is "red".
- `show.legend`: TRUE/FALSE for showing node legend on the bottom of the figure.
- `hubLabel.sizeProp`: A multiplicative factor to adjust hub label sizes with respect to node size values. Default is 0.5.
- `show.topn.hubs`: Maximal number of hubs to label on module subnetwork. Default is 10.
- `node.sizeProp`: A multiplicative factor to adjust node sizes with respect to 90th percentile degree node size. Default is 13.
- `label.sizeProp`: A multiplicative factor to adjust node label sizes with respect to 90th percentile degree node size. Default is 13.
- `label.scaleFactor`: Overall scale factor to control the final size of node labels appearing in figure. Default is 10.
- `label.alpha`: Transparency value ranging from 0 (transparent) to 1 (solid). Default is 0.5.
plot_module

layout Network layout algorithm to apply. Options are: "kamada.kawai", "fruchterman.reingold".

output.plot logical value. output.plot = TRUE generates figure files under folder, "modulePlot".

out.dir if output.plot = TRUE, then out.dir is created and resulting figures are exported to .png files to the folder.

Details

Subnetwork plot functionality with application of "ggrepel" package for node labeling. The most effective way to control overall node label size is through label.scaleFactor.

Value

A list object holding ggplot objects for plotted modules.

Author(s)

Won-Min Song

Examples

```r
## Not run:
rm(list = ls())
library(MEGENA)

data(Sample_Expression)
ijw <- calculate.correlation(datExpr[1:100],doPerm = 2)
el <- calculate.PFN(ijw[,1:3])
g <- graph.data.frame(el, directed = FALSE)
MEGENA.output <- do.MEGENA(g = g, remove.unsig = FALSE, doPar = FALSE, n.perm = 10)
output.summary <- MEGENA.ModuleSummary(MEGENA.output,
mod.pvalue = 0.05, hub.pvalue = 0.05,
min.size = 10, max.size = 5000,
annot.table = NULL, id.col = NULL, symbol.col = NULL,
output.sig = TRUE)

pnet.obj <- plot_module(output = output.summary, PFN = g, subset.module = "comp1_2",
layout = "kamada.kawai", label.hubs.only = FALSE,
gene.set = list("hub.set" = c("CD3E","CD2")), color.code = c("red"),
output.plot = FALSE, out.dir = "modulePlot", col.names = c("grey","grey","grey"),
hubLabel.col = "black", hubLabel.sizeProp = 1, show.topn.hubs = Inf, show.legend = TRUE)

pnet.obj
## End(Not run)
```
plot_module_hierarchy Plot module hierarchy

Description

visualized module hierarchical structure.

Usage

plot_module_hierarchy(module.table, plot.coord = NULL,
edge.color = "grey", node.color = "black", node.label.color = "black",
label.scaleFactor = 0.5, node.scaleFactor = 0.2, arrow.size = 0.015,
data.col = NULL, low.color = "blue", mid.color = "white",
high.color = "red", mid.value = 0.05)

Arguments

module.table output from MEGENA.ModuleSummary. Specifically $module.table component of the output.
plot.coord Two column coordinate matrix. rownames must be labelled according to module.table$id.
edge.color Edge color to be shown.
node.color If data.col = NULL, node.color is used to color nodes in figure.
node.label.color Node label color.
lable.scaleFactor scale number to adjust node label sizes.
node.scaleFactor scale number to adjust node sizes.
arro.size scale number to arrow size.
data.col A character to specify data vector to color nodes in module.table.
low.color If data.col != NULL, color to be used in lower value spectrum.
mid.color If data.col != NULL, color to be used in middle value spectrum.
high.color If data.col != NULL, color to be used in high value spectrum.
mid.value If data.col != NULL, value to define middle value spectrum.

Details

Module hierarchy plotting functionality using ggplot2.

Value

A list containing output$hierarchy.obj = ggplot2 object, output$node.data = node attributes, output$edge.data = edge attributes.
Author(s)
Won-Min Song

Examples
```r
## Not run:
rm(list = ls())
data(Sample_Expression)
ijw <- calculate.correlation(datExpr, doPerm = 2)
el <- calculate.PFN(ijw[,1:3])
g <- graph.data.frame(el, directed = FALSE)
MEGENA.output <- do.MEGENA(g = g, remove.unsig = FALSE, doPar = FALSE, n.perm = 10)
output.summary <- MEGENA.ModuleSummary(MEGENA.output, mod.pvalue = 0.05, hub.pvalue = 0.05, min.size = 10, max.size = 5000, annot.table = NULL, id.col = NULL, symbol.col = NULL, output.sig = TRUE)

module.table = output.summary$module.table
colnames(module.table)[1] <- "id"
output.obj <- plot_module_hierarchy(module.table = module.table, label.scaleFactor = 0.15, arrow.size = 0.005, node.label.color = "blue")

print(output.obj[[1]])
## End(Not run)
```

Description
A modification of plot_module() function for more general subnetwork plotting purpose.

Usage
```r
plot_subgraph(module, hub = NULL, PFN, node.default.color = "black", gene.set = NULL, color.code = "grey", show.legend = TRUE, label.hubs.only = TRUE, hubLabel.col = "red", hubLabel.sizeProp = 0.5, show.topn.hubs = 10, node.sizeProp = 13, label.sizeProp = 13, label.scaleFactor = 10, layout = "kamada.kawai")
```

Arguments
- **module**: A character vector containing gene names to be subsetted.
- **hub**: If provided, genes in hub will be highlighted as triangles in resulting figure.
- **PFN**: igraph object retaining PFN topology.
- **node.default.color**: Default node colors for those that do not intersect with signatures in gene.set.
gene.set A list object containing signatures for customized coloring of nodes in resulting network plot.

color.code A character vector with matched length to "gene.set", to specify colors for each signature.

show.legend TRUE/FALSE for showing node legend on the bottom of the figure.

label.hubs.only TRUE/FALSE to show labels for significant hub genes only, or all genes. Default is TRUE.

hubLabel.col Label color for hubs. Default is "red"

hubLabel.sizeProp A multiplicative factor to adjust hub label sizes with respect to node size values. Default is 0.5

show.topn.hubs Maximal number of hubs to label on module subnetwork. Default is 10.

node.sizeProp A multiplicative factor to adjust node sizes with respect to 90th percentile degree node size. Default is 13

label.sizeProp A multiplicative factor to adjust node label sizes with respect to 90th percentile degree node size. Default is 13

label.scaleFactor Overall scale factor to control the final size of node labels appearing in figure. Default is 10.

layout Network layout algorithm to apply. Options are: "kamada.kawai", "fruchterman.reingold".

Details

Subnetwork plot functionality with application of "ggrepel" package for node labeling. The most effective way to control overall node label size is through label.scaleFactor.

Value

A list object holding ggplot object and node annotation table.

Author(s)

Won-Min Song

Examples

```r
## Not run:
rm(list = ls())
library(MEGENA)

data(Sample_Expression)
ijw <- calculate.correlation(datExpr[1:100,],doPerm = 2)
el <- calculate.PFN(ijw[,1:3])
g <- graph.data.frame(el,directed = FALSE)
MEGENA.output <- do.MEGENA(g = g,remove.unsig = FALSE,doPar = FALSE,n.perm = 10)
output.summary <- MEGENA.ModuleSummary(MEGENA.output,
```
read.geneSet

Description
An interface function to read-in .gmt format gene signature file.

Usage
read.geneSet(geneset.file)

Arguments

geneset.file text file containing gene signatures in .gmt format

Details
Each line of lists in geneset.file is a single set of signature.

Value
loads signatures into a list object.

Author(s)
Won-Min Song
Sample_Expression

Sample_Expression
Toy example data

Description

A portion of TCGA breast cancer data to test run MEGENA.

Usage

```
data(Sample_Expression)
```

Format

Contains a matrix object, "datExpr". Use `data(Sample_Expression)` to load.

Details

a gene expression matrix.

References

Index

*Topic **co-expression**
 MEGENA-package, 2

*Topic **network**
 MEGENA-package, 2

*Topic **package**
 MEGENA-package, 2

*Topic **regulatory network**
 MEGENA-package, 2

calculate.correlation, 3
calculate.PFN, 4
compute.PFN.par, 5
datExpr, 6
do.MEGENA, 6
draw_sunburst_wt_fill, 8
get.DegreeHubStatistic, 9
get.hub.summary, 10
get.union.cut, 11

MEGENA (MEGENA-package), 2
MEGENA-package, 2
MEGENA.ModuleSummary, 12
module_convert_to_table, 14

output.geneSet.file, 15

planaritytest, 16
plot_module, 17
plot_module_hierarchy, 19
plot_subgraph, 20

read.geneSet, 22

Sample_Expression, 23