Package ‘MIDN’

October 28, 2016

Type Package

Title Nearly Exact Sample Size Calculation for Exact Powerful Nonrandomized Tests for Differences Between Binomial Proportions

Version 1.0

Date 2016-10-18

Author Stefan Wellek,
Peter Ziegler

Maintainer Peter Ziegler <peter.ziegler@zi-mannheim.de>

Description Implementation of the mid-n algorithms presented in

License CC0

Depends BiasedUrn

NeedsCompilation no

Repository CRAN

Date/Publication 2016-10-28 11:31:15

R topics documented:

MIDN-package .. 2
fisher_boschloo_midN 2
McNem_Score_midn 4

Index 6
fisher_boschloo_midN

Description

Author(s)

Stefan Wellek <stefan.wellek@zi-mannheim.de>

Peter Ziegler <peter.ziegler@zi-mannheim.de>

Maintainer:

Peter Ziegler <peter.ziegler@zi-mannheim.de>

References

Examples

```r
result1 <- fisher_boschloo_midn(0.025, 0.001, 0.95, 0.8, 0.8, 2, 1)
POWEX <- result1[5]
result1  # shows values of vector result1
POWEX    # shows value of POWEX

result2 <- McNem_Score_midn(0.025, 0.001, 0.585, 0.315, 0.9)
POWEX <- result2[3]
result2  # shows values of vector result2
POWEX    # shows value of POWEX
```

Description

The function computes the exact sample sizes required in the randomized UMPU test and its conservative nonrandomized version for attaining prespecified power. In a final step, the mean of both quantities is output as an nearly exact value required in the Fisher-Boschloo test, a powerful nonrandomized version of the exact Fisher-type test.
Usage

fisher_boschloo_midN(alpha, SW, p1, p2, POWO, mton_a, mton_b)

Arguments

- alpha: target significance level
- SW: step width for increasing p2 in the search for the size of a given critical region in the sample space of (X,Y)
- p1: true value of the responder rate for Population 1
- p2: true value of the responder rate for Population 2
- POWO: power to be obtained against the alternative (p1,p2)
- mton_a: desired ratio of sample sizes: numerator
- mton_b: desired ratio of sample sizes: denominator

Value

- mstart: initial value of 1st sample size
- nstart: initial value of 2nd sample size
- Mex: size of Sample 1 for randomized UMPU test
- Nex: size of Sample 2 for randomized UMPU test
- POWEX: power of randomized UMPU test attained with m=Mex,n=Nex
- Mnr: size of Sample 1 for conservative nonrandomized Fisher-type test
- Nnr: size of Sample 2 for conservative nonrandomized Fisher-type test
- POWNR: power of conservative nonrandomized Fisher-type test attained with m=Mnr,n=Nnr
- midN_m: nearly exact size of Sample 1 for Boschloo-Fisher test
- midN_n: nearly exact size of Sample 1 for Boschloo-Fisher test

Author(s)

Stefan Wellek <stefan.wellek@zi-mannheim.de>
Peter Ziegler <peter.ziegler@zi-mannheim.de>

References

Examples

```r
result1 <- fisher_boschloo_midN(0.025, 0.0001, 0.95, 0.8, 0.8, 2, 1)
POWEX <- result1[5]
result1 # shows values of vector result1
POWEX # shows value of POWEX
```
McNem_Score_midn

Nearly exact sample size calculation for the level-corrected score test for differences between binomial proportions estimated from paired data

Description

Again, the function computes the exact sample sizes required in the randomized UMPU test and its conservative nonrandomized counterpart for attaining prespecified power. However, in contrast to the parallel group setting, the midpoint of the interval between these two numbers shall now used as an nearly exact value of the number of pairs to be observed in the asymptotic test based on the score-statistic corrected for possible exceedances of the nominal significance level.

Usage

McNem_Score_midn(alpha, SW, ppl, pmi, POWO)

Arguments

alpha target significance level, 1-sided
SW width of search grid for determining the size of a given critical region in the sample space of N+ [= number of pairs with (Xi,Yi) = (1,0)] and N0 [= number of tied pairs]
ppl true value of Pr[(X,Y) = (1,0)]
pmi true value of Pr[(X,Y) = (0,1)]
POWO power to be attained in the level-corrected score test against the alternative (ppl,pmi)

Value

nstart initial value for the iteration algorithm
Nex sample size required in the exact randomized McNemar test
POWEX power of the exact randomized McNemar test performed with Nex pairs
Nnr sample size required in the conservative nonrandomized McNemar test
POWNR power of the nonrandomized McNemar test performed with Nnr pairs
mid_n midpoint of the interval [Nex,Nnr], rounded to the next integer

Author(s)

Stefan Wellek <stefan.wellek@zi-mannheim.de>
Peter Ziegler <peter.ziegler@zi-mannheim.de>

References

Examples

result2 <- McNem_Score_midn(0.025, 0.0001, 0.585, 0.315, 0.9)
POWEX <- result2[3]
result2 # shows values of vector result2
POWEX # shows value of POWEX
Index

*Topic **Boschloo’s approach**
 fisher_boschloo_midN, 2

*Topic **McNemar setting**
 McNem_Score_midn, 4

*Topic **binomial two-sample problem**
 fisher_boschloo_midN, 2

*Topic **exact Fisher-type test**
 fisher_boschloo_midN, 2

*Topic **exact nonconditional test**
 McNem_Score_midn, 4

*Topic **score statistic**
 McNem_Score_midn, 4

fisher_boschloo_midN, 2

McNem_Score_midn, 4
MIDN (MIDN-package), 2
MIDN-package, 2