Package ‘MKLE’

August 21, 2023

Type Package
Title Maximum Kernel Likelihood Estimation
Version 1.0.1
Author Thomas Jaki
Maintainer Thomas Jaki <thomas.jaki@protonmail.com>
Description Package for fast computation of the maximum kernel likelihood estimator (mkle).
License GPL
NeedsCompilation no
Repository CRAN
Date/Publication 2023-08-21 08:02:38 UTC

R topics documented:

<table>
<thead>
<tr>
<th>R</th>
<th>Start Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MKLE-package</td>
<td>1</td>
</tr>
<tr>
<td>klik</td>
<td>3</td>
</tr>
<tr>
<td>mkle</td>
<td>4</td>
</tr>
<tr>
<td>mkle.ci</td>
<td>5</td>
</tr>
<tr>
<td>opt.bw</td>
<td>6</td>
</tr>
<tr>
<td>state</td>
<td>8</td>
</tr>
</tbody>
</table>

Index

1

Description

Computes the maximum kernel likelihood estimator using fast fourier transforms.
The maximum kernel likelihood estimator is defined to be the value \(\hat{\theta} \) that maximizes the estimated kernel likelihood based on the general location model,

\[
f(x; \theta) = f_0(x - \theta).
\]

This model assumes that the mean associated with \(f_0 \) is zero which of course implies that the mean of \(X_i \) is \(\theta \). The kernel likelihood is the estimated likelihood based on the above model using a kernel density estimate, \(\hat{f}(\cdot| h, X_1, \ldots, X_n) \), and is defined as

\[
\hat{L}(\theta|X_1, \ldots, X_n) = \prod_{i=1}^{n} \hat{f}(X_i - (\bar{X} - \theta)|h, X_1, \ldots, X_n).
\]

The resulting estimator therefore is an estimator of the mean of \(X_i \).

Author(s)

Thomas Jaki

Maintainer: Thomas Jaki <jaki.thomas@gmail.com>

References

Examples

data(state)
mkle(state$CRIME)
klik
Kernel log likelihood

Description

The function computes the kernel log likelihood for a given \(\hat{\theta} \).

Usage

```
klik(delta, data, kde, grid, min)
```

Arguments

- `delta`: the difference of the parameter theta for which the kernel log likelihood will be computed and the sample mean.
- `data`: the data for which the kernel log likelihood will be computed.
- `kde`: an object of the class "density".
- `grid`: the stepsize between the x-values in kde.
- `min`: the smallest x-value in kde.

Details

This function is intended to be called through the function `mkle` and is optimized for fast computation.

Value

The log likelihood based on the shifted kernel density estimator.

Author(s)

Thomas Jaki

References

See Also

- `mkle`
Examples

```r
data(state)
attach(state)
bw<-2*sd(CRIME)
kdensity<-density(CRIME,bw=bw,kernel="biweight",
   from=min(CRIME)-2*bw,to=max(CRIME)+2*bw,n=2^12)
min<-kdensity$x[1]
grid<-kdensity$x[2]-min

# finds the kernel log likelihood at the sample mean
klik(0,CRIME, kdensity, grid, min)
```

Description

Computes the maximum kernel likelihood estimator for a given dataset and bandwidth.

Usage

```r
mkle(data,bw=2*sd(data),kernel=c("gaussian", "epanechnikov", "rectangular", "triangular",
   "biweight", "cosine", "optcosine"),gridsize=2^14)
```

Arguments

- `data`: the data for which the estimator should be found.
- `bw`: the smoothing bandwidth to be used.
- `kernel`: a character string giving the smoothing kernel to be used. This must be one of "gaussian", "rectangular", "triangular", "epanechnikov", "biweight", "cosine" or "optcosine", with default "gaussian". May be abbreviated to a unique prefix (single letter).
- `gridsize`: the number of points at which the kernel density estimator is to be evaluated with 2^{14} as the default.

Details

The default for the bandwidth is $2s$, which is the near-optimal value if a Gaussian kernel is used. If the bandwidth is zero, the sample mean will be returned.

Larger gridsize results in more accurate estimates but also longer computation times. The use of gridsizes between 2^{11} and 2^{20} is recommended.

Value

The maximum kernel likelihood estimator.
Note

`optimize` is used for the optimization and `density` is used to estimate the kernel density.

Author(s)

Thomas Jaki

References

See Also

`klik`

Examples

```r
data(state)
pplot(density(state$CRIME))
abline(v=mean(state$CRIME), col='red')
abline(v=mkle(state$CRIME), col='blue')
```

mkle.ci

Confidence intervals for the maximum kernel likelihood estimator

Description

Computes different confidence intervals for the maximum kernel likelihood estimator for a given dataset and bandwidth.

Usage

```r
mkle.ci(data, bw=2*sd(data), alpha=0.1, kernel=c("gaussian", "epanechnikov", "rectangular", "triangular", "biweight", "cosine", "optcosine"), method=c("percentile", "wald", "boott"), B=1000, gridsize=2^14)
```

Arguments

- `data`: the data for which the confidence interval should be found.
- `bw`: the smoothing bandwidth to use.
- `alpha`: the significance level.
- `kernel`: a character string giving the smoothing kernel to be used. This must be one of "gaussian", "rectangular", "triangular", "epanechnikov", "biweight", "cosine" or "optcosine", with default "gaussian", and may be abbreviated to a unique prefix (single letter).
method a character string giving the type of interval to be used. This must be one of
"percentile", "wald" or "boott".
B number of resamples used to estimate the mean squared error with 1000 as the
default.
gridsize the number of points at which the kernel density estimator is to be evaluated
with 2^{14} as the default.

Details
The method can be a vector of strings containing the possible choices.
The bootstrap-t-interval can be very slow for large datasets and a large number of resamples as a
two layered resampling is necessary.

Value
A dataframe with the requested intervals.

Author(s)
Thomas Jaki

References
Graphical Statistics Vol. 17(No 4), 976-993.
Davison, A. C. and Hinkley, D. V. (1997), Bootstrap Methods and their Applications, Cambridge

See Also
mkle

Examples
data(state)
mkle.ci(state$CRIME,method=c('wald','percentile'),B=100,gridsize=2^11)

opt.bw

Description
Estimates the optimal bandwidth for the maximum kernel likelihood estimator using a Gaussian
kernel for a given dataset using the bootstrap.

Usage
opt.bw(data, bws=c(sd(data),4*sd(data)), B=1000, gridsize=2^14)
Arguments

- `data` the data for which the optimal bandwidth should be found.
- `bws` a vector with the upper and lower bound for the bandwidth.
- `B` number of resamples used to estimate the mean squared error with 1000 as the default.
- `gridsize` the number of points at which the kernel density estimator is to be evaluated with 2^{14} as the default.

Details

The bandwidth considered fall between one and 4 standard deviations. In addition the mse of the `mkle` for a bandwidth of zero will also be included.

The estimation of the optimal bandwidth might take several minutes depending on the number of bootstrap resamples and the gridsize used.

Value

The estimated optimal bandwidth.

Note

The `optimize` is used for the optimization.

Author(s)

Thomas Jaki

References

See Also

`mkle`

Examples

```r
data(state)
opt.bw(state$CRIME, B=10)
```
state

Violent death in the USA

Description

The dataset gives the number of violent death per 100,000 population per state

Usage

```r
data(state)
```

Format

A data frame with 50 observations on the following 2 variables.

- **STATE** a factor with levels AK AL AR AZ CA CO CT DE FL GA HI IA ID IL IN KS KY LA MA MD ME MI MN MO MS MT NC ND NE NH NJ NM NV NY OH OK OR PA RI SC SD TN TX UT VA VT WA WI WV WY
- **CRIME** a numeric vector

Source

Examples

```r
data(state)
hist(state$CRIME)
mkle(state$CRIME)
```
Index

* datasets
 state, 8
* distribution
 klik, 3
* htest
 mkle.ci, 5
* nonparametric
 klik, 3
 mkle, 4
 mkle.ci, 5
 opt.bw, 6
* package
 MKLE-package, 1
* univar
 mkle, 4

density, 5

klik, 3, 5

MKLE (MKLE-package), 1
mkle, 3, 4, 6, 7
MKLE-package, 1
mkle.ci, 5

opt.bw, 6
optimize, 5, 7

state, 8