Package ‘ML.MSBD’

September 26, 2019

Type Package
Title Maximum Likelihood Inference on Multi-State Trees
Version 1.2.0
Date 2019-09-26
Description Inference of a multi-states birth-death model from a phylogeny, comprising a number of states N, birth and death rates for each state and on which edges each state appears. Inference is done using a hybrid approach: states are progressively added in a greedy approach. For a fixed number of states N the best model is selected via maximum likelihood. Reference: J. Barido-Sottani and T. Stadler (2017) <doi:10.1101/215491>.

License GPL-3
Imports ape (>= 5.1), foreach
Suggests knitr, doParallel
RoxygenNote 6.1.1
VignetteBuilder knitr
NeedsCompilation no
Author Joelle Barido-Sottani [aut, cre]
Maintainer Joelle Barido-Sottani <joelle.barido-sottani@m4x.org>
Repository CRAN
Date/Publication 2019-09-26 19:40:08 UTC

R topics documented:

ML.MSBD-package .. 2
likelihood_MSBD .. 3
likelihood_MSBD_unresolved 5
ML_MSBD .. 7

Index 11
Description

Inference of a multi-states birth-death model from a phylogeny, comprising a number of states \(N\), birth and death rates for each state and on which edges each state appears. Inference is done using a hybrid approach: states are progressively added in a greedy approach. For a fixed number of states \(N\) the best model is selected via maximum likelihood. Reference: J. Barido-Sottani and T. Stadler (2017) <doi:10.1101/215491>.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>ML.MSBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Title:</td>
<td>Maximum Likelihood Inference on Multi-State Trees</td>
</tr>
<tr>
<td>Version:</td>
<td>1.2.0</td>
</tr>
<tr>
<td>Date:</td>
<td>2019-09-26</td>
</tr>
<tr>
<td>Authors@R:</td>
<td>person("Joelle", "Barido-Sottani", email = "joelle.barido-sottani@m4x.org", role = c("aut", "cre"))</td>
</tr>
<tr>
<td>Description:</td>
<td>Inference of a multi-states birth-death model from a phylogeny, comprising a number of states (N), birth and death rates for each state and on which edges each state appears.</td>
</tr>
<tr>
<td>License:</td>
<td>GPL-3</td>
</tr>
<tr>
<td>Imports:</td>
<td>ape (>= 5.1), foreach</td>
</tr>
<tr>
<td>Suggests:</td>
<td>knitr, doParallel</td>
</tr>
<tr>
<td>RoxygenNote:</td>
<td>6.1.1</td>
</tr>
<tr>
<td>VignetteBuilder:</td>
<td>knitr</td>
</tr>
<tr>
<td>Author:</td>
<td>Joelle Barido-Sottani [aut, cre]</td>
</tr>
<tr>
<td>Maintainer:</td>
<td>Joelle Barido-Sottani joelle.barido-sottani@m4x.org</td>
</tr>
</tbody>
</table>

Index of help topics:

- **ML.MSBD-package**
 - Maximum Likelihood Inference on Multi-State Trees
- **ML_MSBD**
 - Full Maximum Likelihood inference of birth and death rates together with their changes along a phylogeny under a multi-type birth-death model.
- **likelihood_MSBD**
 - Likelihood calculation for randomly sampled trees
- **likelihood_MSBD_unresolved**
 - Likelihood calculation for unresolved trees

Author(s)

NA

Maintainer: NA
References

See Also

ape

Examples

Simulate a random phylogeny
set.seed(25)
tree <- ape::rtree(10)

Calculate the log likelihood under a multi-states model with 2 states
and full extant & extinct sampling
likelihood_MSBD(tree, shifts = matrix(c(2,1.8,2), nrow = 1),
 gamma = 0.05, lambdas = c(10, 6), mus = c(1, 0.5), sigma = 1)

Infer the most likely multi-states birth-death model with full extant & extinct sampling
Not run: ML_MSBD(tree, initial_values = c(0.1, 10, 1), sigma = 1, time_mode = "mid")
Infer the most likely multi-states birth-death model with exponential decay
and full extant & extinct sampling
Not run: ML_MSBD(tree, initial_values = c(0.1, 10, 0.5, 1), sigma = 1,
 stepsize = 0.1, time_mode = "mid")
End(Not run)

likelihood_MSBD
Likelihood calculation for randomly sampled trees

Description

Calculates the negative log likelihood of a multi-states model given a tree. This function is designed to work with constant extant and/or extinct sampling.

Usage

```r
likelihood_MSBD(tree, shifts, gamma, lambdas, mus, lambda_rates = NULL,
 stepsize = NULL, uniform_weights = TRUE, p_lambda = 0, p_mu = 0,
 rho = 1, sigma = 0, rho_sampling = TRUE, add_time = 0,
 unresolved = FALSE)
```

Arguments

- `tree`: Phylogenetic tree (in ape format) to calculate the likelihood on.
- `shifts`: Matrix describing the positions (edges and times) of shifts. See ’Details’.
- `gamma`: Rate of state change.
likelihood_MSBD

- **lambdas** Birth rates of all states.
- **mus** Death rates of all states.
- **lambda_rates** Rates of decay of birth rate for all states. To use exponential decay, stepsize should also be provided.
- **stepsize** Size of the step to use for time discretization with exponential decay, default NULL. To use exponential decay, lambda_rates should also be provided.
- **uniform_weights** Whether all states are weighted uniformly in shifts, default TRUE. If FALSE, the weights of states are calculated from the distributions p_lambda and p_mu. See 'Details'.
- **p_lambda** Prior probability distribution on lambdas, used if uniform_weights = FALSE.
- **p_mu** Prior probability distribution on mus, used if uniform_weights = FALSE.
- **rho** Sampling proportion on extant tips, default 1.
- **sigma** Sampling probability on extinct tips (tips are sampled upon extinction), default 0.
- **rho_sampling** Whether the most recent tips should be considered extant tips, sampled with sampling proportion rho. If FALSE, all tips will be considered extinct tips, sampled with sampling probability sigma. Should be TRUE for most macroevolution datasets and FALSE for most epidemiology datasets.
- **add_time** The time between the most recent tip and the end of the process (>=0). This is an internal variable used in calculations for unresolved trees.
- **unresolved** Whether this tree is the backbone of an unresolved tree. This is an internal variable used in calculations for unresolved trees.

Details

It is to be noted that all times are counted backwards, with the most recent tip positioned at 0.

The 'shifts' matrix is composed of 3 columns and a number of rows. Each row describes a shift: the first column is the index of the edge on which the shift happens, the second column is the time of the shift, and the third column is the index of the new state. For example the row vector (3,0.5,2) specifies a shift on edge number 3, at time 0.5, towards the state that has parameters lambdas[2], lambda_rates[2] and mus[2].

The weights w are used for calculating the transition rates q from each state i to j: $q_{i,j} = \gamma \cdot w_{i,j}$. If uniform_weights = TRUE, $w_{i,j} = \frac{1}{N-1}$ for all i,j, where N is the total number of states. If uniform_weights = FALSE, $w_{i,j} = \frac{p_{\lambda}(\lambda_i)p_{\mu}(\mu_j)}{\sum_{k \neq i} p_{\lambda}(\lambda_k)p_{\mu}(\mu_k)}$ where the distributions p_{λ} and p_{μ} are provided by the inputs p_lambda and p_mu.

Value

The value of the negative log likelihood of the model given the tree.
Examples

Input a phylogeny
```r
tree <- ape::read.tree(text = "(((t4:0.7293960718,(t1:0.450904974,t3:0.09259337652)
:0.04068535892):0.4769176776,t8:0.1541864066:0.7282000314,((t7:0.07264320855,
((t5:0.8231869878,t6:0.3492440532):0.2380232813,t10:0.2367582193):0.5329497182,
t9:0.1016243151):0.5929288475):0.3003101915,t2:0.8320755605):0.2918686506;")
```

Calculate the log likelihood under a constant birth-death model (i.e, no shifts)
with full extant & extinct sampling
likelihood_MSBD(tree, shifts = c(), gamma = 0, lambdas = 10, mus = 1, sigma = 1)

Calculate the log likelihood under a multi-states model with 2 states
and full extant & extinct sampling
likelihood_MSBD(tree, shifts = matrix(c(2,1.8,2), nrow = 1),
 gamma = 0.05, lambdas = c(10, 6), mus = c(1, 0.5), sigma = 1)

Calculate the log likelihood under a multi-states model with 2 states and exponential decay
with full extant & extinct sampling
likelihood_MSBD(tree, shifts = matrix(c(2,1.8,2), nrow = 1),
 gamma = 0.05, lambdas = c(10, 6), mus = c(1, 0.5),
 sigma = 1, stepsize = 0.01, lambda_rates = c(0.1, 0.1))

likelihood_MSBD_unresolved

Likelihood calculation for unresolved trees

Description

Calculates the negative log likelihood of a multi-states model given a tree. This function is designed to work with unresolved trees, where tips represent collapsed clades. This sampling scheme is not recommended for epidemiology datasets. The MRCA times of collapsed clades and the number of collapsed lineages need to be provided for all tips. If neither is provided the function will default to random sampling. Extinct tips can be present outside of the unresolved parts, but not below the time(s) set for tcut.

Usage

```r
likelihood_MSBD_unresolved(tree, shifts, gamma, lambdas, mus,
    lambda_rates = NULL, stepsize = NULL, uniform_weights = TRUE,
    p_lambda = 0, p_mu = 0, rho = 1, sigma = 0,
    rho_sampling = TRUE, lineage_counts = c(), tcut = NULL)
```

Arguments

- **tree**: Phylogenetic tree (in ape format) to calculate the likelihood on.
- **shifts**: Matrix describing the positions (edges and times) of shifts. See 'Details'.
- **gamma**: Rate of state change.
- **lambdas**: Birth rates of all states.
mus

Death rates of all states.

lambda_rates

Rates of decay of birth rate for all states. To use exponential decay, stepsize should also be provided.

stepsize

Size of the step to use for time discretization with exponential decay, default NULL. To use exponential decay, lambda_rates should also be provided.

uniform_weights

Whether all states are weighted uniformly in shifts, default TRUE. If FALSE, the weights of states are calculated from the distributions p_lambda and p_mu. See 'Details'.

p_lambda

Prior probability distribution on lambdas, used if uniform_weights = FALSE.

p_mu

Prior probability distribution on mus, used if uniform_weights = FALSE.

rho

Sampling proportion on extant tips, default 1.

sigma

Sampling probability on extinct tips (tips are sampled upon extinction), default 0.

rho_sampling

Whether the most recent tips should be considered extant tips, sampled with sampling proportion rho. If FALSE, all tips will be considered extinct tips, sampled with sampling probability sigma. Should be TRUE for most macroevolution datasets and FALSE for most epidemiology datasets.

lineage_counts

Number of lineages collapsed on each tip. Should be set to 1 for extinct tips.

tcut

Times of clade collapsing for each tip (i.e time of the MRCA of all collapsed lineages). Can be a single number or a vector of length the number of tips.

Details

It is to be noted that all times are counted backwards, with the most recent tip positioned at 0.

The 'shifts' matrix is composed of 3 columns and a number of rows. Each row describes a shift: the first column is the index of the edge on which the shift happens, the second column is the time of the shift, and the third column is the index of the new state. For example the row vector (3,0.5,2) specifies a shift on edge number 3, at time 0.5, towards the state that has parameters lambdas[2], lambda_rates[2] and mus[2].

The weights w are used for calculating the transition rates q from each state i to j: \(q_{i,j} = \gamma * w_{i,j} \).

If uniform_weights = TRUE, \(w_{i,j} = \frac{1}{N-1} \) for all i,j, where N is the total number of states. If uniform_weights = FALSE, \(w_{i,j} = \frac{p\lambda(\lambda_j)p\mu(\mu_j)}{\sum_k p\lambda(\lambda_k)p\mu(\mu_k)} \) where the distributions \(p\lambda \) and \(p\mu \) are provided by the inputs p_lambda and p_mu.

Value

The value of the negative log likelihood of the model given the tree.

Examples

Input a phylogeny
tree <- ape::read.tree(text = "(t3:0.9703302342,(t4:0.1999577823,(t2:0.1287530271,
(t7:0.08853561159,(t8:0.07930237712,t9:0.07930237712):0.009233234474):0.04021741549):0.04021741549):0.04021741549):"
ML_MSBD

Full Maximum Likelihood inference of birth and death rates together with their changes along a phylogeny under a multi-type birth-death model.

Description

Infers a complete MSBD model from a phylogeny, including the most likely number of states, positions and times of state changes, and parameters associated with each state. Uses a greedy approach to add states and Maximum Likelihood inference for the other parameters.

Usage

ML_MSBD(tree, initial_values, uniform_weights = TRUE, p_lambda = 0, p_mu = 0, rho = 1, sigma = 0, rho_sampling = TRUE, lineage_counts = c(), tcut = 0, stepsize = NULL, no_extinction = FALSE, fixed_gamma = NULL, unique_lambda = FALSE, unique_mu = FALSE, optim_control = list(), attempt_remove = TRUE, max_nshifts = Inf, saved_state = NULL, save_path = NULL, time_mode = c("3pos", "tip", "mid", "root"), fast_optim = FALSE, parallel = FALSE, ncores = getOption("mc.cores", 2L))

Arguments

tree

Phylogenetic tree (in ape format) to calculate the likelihood on.

initial_values

Initial values for the optimizer, to be provided as a vector in this order: gamma (optional), lambda, lambda decay rate (optional), mu (optional). See 'Details'.

uniform_weights

Whether all states are weighted uniformly in shifts, default TRUE. If FALSE, the weights of states are calculated from the distributions p_lambda and p_mu. See 'Details'.

p_lambda

Prior probability distribution on lambdas, used if uniform_weights = FALSE.

p_mu

Prior probability distribution on mus, used if uniform_weights = FALSE.

rho

Sampling proportion on extant tips, default 1.
sigma Sampling probability on extinct tips (tips are sampled upon extinction), default 0.
 rho_sampling Whether the most recent tips should be considered extant tips, sampled with sampling proportion rho. If FALSE, all tips will be considered extinct tips, sampled with sampling probability sigma. Should be TRUE for most macroevolution datasets and FALSE for most epidemiology datasets.
 lineage_counts For trees with clade collapsing. Number of lineages collapsed on each tip. Should be set to 1 for extinct tips.
 tcut For trees with clade collapsing. Times of clade collapsing for each tip (i.e time of the MRCA of all collapsed lineages). Can be a single number or a vector of length the number of tips.
 stepsize Size of the step to use for time discretization with exponential decay, default NULL. To use exponential decay, an initial value for lambda_rates should also be provided.
 no_extinction Whether to use the Yule process (mu=0) for all states, default FALSE. If TRUE no initial value for mu is needed.
 fixed_gamma Value to which gamma should be fixed, default NULL. If provided no initial value for gamma is needed.
 unique_lambda Whether to use the same value of lambda for all states, default FALSE. If TRUE and exponential decay is active all states will also share the same value for lambda_rate.
 unique_mu Whether to use the same value of mu for all states, default FALSE.
 optim_control Control list for the optimizer, corresponds to control input in optim function, see ?optim for details.
 attempt_remove Whether to attempt to remove shifts at the end of the inference, default TRUE. If FALSE, use a pure greedy algorithm.
 max_nshifts Maximum number of shifts to test for, default Inf.
 saved_state If provided, the inference will be restarted from this state.
 save_path If provided, the progress of the inference will be saved to this path after each optimization step.
 time_mode String controlling the time positions of inferred shifts. See 'Details'.
 fast_optim Whether to use the faster mode of optimization, default FALSE. If TRUE only rates associated with the state currently being added to the tree and its ancestor will be optimized at each step, otherwise all rates are optimized.
 parallel Whether the computation should be run in parallel, default FALSE. Will use a user-defined cluster if one is found, otherwise will define its own.
 ncores Number of cores to use for a parallel computation.

Details

It is to be noted that all times are counted backwards, with the most recent tip positioned at 0.
Five time modes are possible for the input time_mode. In tip mode, the shifts will be placed at 10% of the length of the edge. In mid mode, the shifts will be placed at 50% of the length of the edge. In root mode, the shifts will be placed at 90% of the length of the edge. In 3pos mode, the three "tip", "mid" and "root" positions will be tested.

The weights \(w \) are used for calculating the transition rates \(q \) from each state \(i \) to \(j \): \(q_{i,j} = \gamma \ast w_{i,j} \). If \(\text{uniform_weights} = \text{TRUE} \), \(w_{i,j} = \frac{1}{N-1} \) for all \(i,j \), where \(N \) is the total number of states. If \(\text{uniform_weights} = \text{FALSE} \), \(w_{i,j} = \frac{p_{\lambda}(\lambda_i)p_{\mu}(\mu_j)}{\sum_{k=1}^{N-1} p_{\lambda}(\lambda_k)p_{\mu}(\mu_k)} \) where the distributions \(p_{\lambda} \) and \(p_{\mu} \) are provided by the inputs \(p_{\lambda} \) and \(p_{\mu} \).

Initial values for the optimization need to be provided as a vector and contain the following elements (in order): an initial value for gamma, which is required unless fixed_gamma is provided, an initial value for lambda which is always required, an initial value for lambda decay rate, which is required if stepsize is provided, and an initial value for mu, which is required unless no_extinction = TRUE. An error will be raised if the number of initial values provided does not match the one expected from the rest of the settings, and the function will fail if the likelihood cannot be calculated at the initial values.

Value

Returns a list describing the most likely model found, with the following components:

- **likelihood** the negative log likelihood of the model
- **shifts.edge** the indexes of the edges where shifts happen, 0 indicates the root state
- **shifts.time** the time positions of shifts
- **gamma** the rate of state change
- **lambdas** the birth rates of all states
- **lambda_rates** if exponential decay was activated, the rates of decay of birth rate for all states
- **mus** the death rates of all states
- **best_models** a vector containing the negative log likelihood of the best model found for each number of states tested (best_models[i] corresponds to i states, i.e i-1 shifts)

All vectors are indexed in the same way, so that the state with parameters lambdas[i], lambda_rates[i] and mus[i] starts on edge shifts.edge[i] at time shifts.time[i].

Examples

```r
# Input a phylogeny
tree <- ape::read.tree(text = "(((t4:0.7293960718,(t1:0.450904974,t3:0.09259337652):0.04068535892):0.4769176776,t8:0.1541864066):0.7282000314,((t7:0.07264320855,(((t5:0.8231869878,t6:0.3492440532):0.2380232813,t10:0.2367582193):0.5329497182,t9:0.1016243151):0.5929288475,t2:0.8320755605):0.2918686506);")

# Infer the most likely multi-states birth-death model
# with full extant & extinct sampling
```
Not run: ML_MSBD(tree, initial_values = c(0.1, 10, 1), sigma = 1, time_mode = "mid")
Infer the most likely multi-states birth-death model with exponential decay
and full extant & extinct sampling
Not run: ML_MSBD(tree, initial_values = c(0.1, 10, 0.5, 1), sigma = 1,
stepsize = 0.1, time_mode = "mid")
End(Not run)

Input a phylogeny with extant samples
tree2 <- ape::read.tree(text = "(t3:0.9703302342,((t4:0.1999577823,(t2:0.1287530271,
(t7:0.08853561159,(t8:0.07930237712,t9:0.07930237712):0.009233234474):0.004021741549):
0.07120475526):0.4269919425,(((t10:0.0191876225,t5:0.0191876225):0.04849906822,
(t6:0.06768669072):0.1672340445,t1:0.2349207353):0.3920289896):0.3433805094);")

Infer the most likely multi-states Yule model with partial extant sampling
Not run: ML_MSBD(tree2, initial_values = c(0.1, 10), no_extinction = TRUE,
rho = 0.5, time_mode = "mid")
End(Not run)

Infer the most likely multi-states birth-death model with full extant sampling
and unresolved extant tips
Not run: ML_MSBD(tree2, initial_values = c(0.1, 10, 1),
lineage_counts = c(2,5,1,3,1,1,1,1,2,6), tcut = 0.05, time_mode = "mid")
End(Not run)
Index

*Topic package
 ML.MSBD-package, 2

ape, 3

likelihood_MSBD, 3
likelihood_MSBD_unresolved, 5

ML.MSBD (ML.MSBD-package), 2
ML.MSBD-package, 2
ML_MSBD, 7