Package ‘MLMusingR’

May 10, 2022

Type Package

Title Practical Multilevel Modeling

Version 0.2.0

Date 2022-05-10

Maintainer Francis Huang <flhuang2000@yahoo.com>

License GPL-2

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

BugReports https://github.com/flh3/MLMusingR/issues

Depends R (>= 3.5)

Imports lme4, stats, nlme, Matrix, methods

NeedsCompilation no

Author Francis Huang [aut, cre]

Repository CRAN

Date/Publication 2022-05-10 13:40:02 UTC
R topics documented:

- cdata.ex .. 2
- engage .. 3
- engage.miss .. 3
- group_center ... 4
- group_mean ... 4
- hdp .. 5
- Htest ... 6
- MatSqrtInverse .. 7
- nmiss ... 7
- ri_test1 .. 8
- ri_test2 .. 8
- robust_mixed .. 9
- satdf .. 10
- sch29 ... 10
- suspend ... 11
- thai .. 12
- thai.sm .. 13
- wide .. 13

Index 15

cdata.ex Clustered dataset for centering example

Description

Dataset of 60 observations from 3 clusters.

Usage

 cdata.ex

Format

A wide data frame of 60 observations. Used for discussing within and between group effects.

x The predictor.

y The outcome of interest.
engage

Description
Example data used to investigate missing data (this is the complete dataset).

Usage
data(engage)

Format
A data frame with 528 observations from 40 groups and 7 variables:

- **eng** Student engagement.
- **mot** Student motivation.
- **gpa** Student grade point average.
- **grade** Student grade level (6-8; a factor).
- **rural** School level rural variable indicator; 1 = yes/0 = no.
- **frpm** Percent of students eligible for free or reduced price meals at the school.
- **school** School indicator (clustering variable).

engage.miss

Description
Example data used to investigate missing data (this has missing data).

Usage
data(engage.miss)

Format
A data frame with 528 observations from 40 groups and 7 variables:

- **eng** Student engagement.
- **mot** Student motivation.
- **gpa** Student grade point average.
- **grade** Student grade level (6-8; a factor).
- **rural** School level rural variable indicator; 1 = yes/0 = no.
- **frpm** Percent of students eligible for free or reduced price meals at the school.
- **school** School indicator (clustering variable).
group_center

Group-mean center a variable

Description

Also referred to as centering within cluster (or within context) or demeaning the variable. By default, uses `na.rm = TRUE` when computing group means.

Usage

```r
group_center(x, grp)
```

Arguments

- `x`: Variable to center (e.g., `dataframe$varname`).
- `grp`: Cluster/grouping variable (e.g., `dataframe$cluster`).

Value

A vector of group-mean centered variables.

Examples

```r
data(mtcars)
# create a group centered variable
mtcars$mpg.gpc <- group_center(mtcars$mpg, mtcars$cyl)
```

group_mean

Computes the group mean of a variable

Description

Computes the group means of a variable by a specified cluster/group. Can also be used with factors that have two levels.

Usage

```r
group_mean(x, grp, lm = FALSE)
```

Arguments

- `x`: Variable to compute the mean for (e.g., `dataframe$varname`).
- `grp`: Cluster/grouping variable (e.g., `dataframe$cluster`).
- `lm`: Compute reliability (lambda) adjusted means.
Value

Outputs a vector of group means.

Examples

data(mtcars)
create a group mean aggregated variable
mtcars$mpg.barj <- group_mean(mtcars$mpg, mtcars$cyl)

hdp

Hospital, doctor, patient (hdp) dataset

Description

This dataset has a three-level, hierarchical structure with patients nested within doctors within hospitals. The simulation code can be found at <https://stats.idre.ucla.edu/r/codefragments/mesimulation/#setup>.

Usage

data(hdp)

Format

A data frame with 8,525 rows and 17 variables:

- **Age** Continuous in years but recorded at a higher degree of accuracy.
- **Married** Binary, married/living with partner or single.
- **FamilyHx** Binary (yes/no), does the patient have a family history (Hx) of cancer?
- **SmokingHx** Categorical with three levels, current smoker, former smoker, never smoked.
- **Sex** Binary (female/male).
- **CancerStage** Categorical with four levels, stages 1-4.
- **LengthofStay** Count number of days patients stayed in the hospital after surgery.
- **WBC** Continuous, white blood count. Roughly 3,000 is low, 10,000 is middle, and 30,000 per microliter is high.
- **RBC** Continuous, red blood count.
- **BMI** Body mass index given by the formula (frackgmeters^2).
- **IL6** Continuous, interleukin 6, a proinflammatory cytokine commonly examined as an indicator of inflammation, cannot be lower than zero.
- **CRP** Continuous, C-reactive protein, a protein in the blood also used as an indicator of inflammation. It is also impacted by BMI.
- **HID** Hospital identifier.
- **DID** Doctor identifier
- **Experience** Years as a doctor.
- **School** Whether the school doctor trained at was high quality or not.
- **remission** Cancer in remission? 1 = yes, 0 = no.
Htest

Test for homoskedasticity at level one

Description

Based on Raudenbush and Bryk (2002) and Hoffman (2007). A statistically significant Chisq indicates heteroskedasticity. Output shows the H statistic, degrees of freedom, and p value.

Usage

Htest(newdata,.fml, group)

Arguments

newdata data to be used.
FML level 1 formula.
Group grouping variable (in quotes).

Value

Returns a data frame which contains:

H The computed H statistic.
DF The degrees of freedom.
P The p-value (< .05 indicates heteroskedasticity is present).

References

Examples

```r
set.seed(123)
x1 <- rnorm(400)
y <- x1 * .3 + rnorm(400)
gr <- rep(1:20, each = 20)
dat <- data.frame(x1, y, gr)
Htest(dat, y ~ x1, "gr") # no violation
y <- x1 * .3 + rnorm(400, 0, sqrt(x1^2)) # add violation
dat <- data.frame(x1, y, gr)
Htest(dat, y ~ x1, "gr")
```
MatSqrtInverse

Description
From Imbens and Kolesar (2016).

Usage
MatSqrtInverse(A)

Arguments
A The matrix object.

nmiss

Description
Amount of missing data per variable

Usage
nmiss(dat)

Arguments
dat Data frame that you want to inspect.

Value
By default, this function will print the following items to the console

- The percent of missing data per variable.
- The percent of complete cases (range: 0 to 1).
- Suggested number of datasets to impute when using multiple imputation.

Examples

data(mtcars)
mtcars[c(2:3), 4] <- NA #create NAs
nmiss(mtcars)
ri_test1

Sample dataset 1 for testing the likelihood ratio test

Description
Example data for testing the need for a random intercept. Illustrates the need to adjust the p values for a modified LRT.

Usage
data(ri_test1)

Format
A data frame with 900 observations from 30 groups and 4 variables:

- **y**: The outcome variable.
- **w1**: A level-2 predictor.
- **x1**: A level-1 predictor
- **group**: The cluster identifier

ri_test2

Sample dataset 2 for testing the likelihood ratio test (LRT)

Description
Example data for testing the need for a random intercept. LRT results show that a random slope is not warranted.

Usage
data(ri_test2)

Format
A data frame with 3,000 observations from 30 groups and 4 variables:

- **y**: The outcome variable.
- **w1**: A level-2 predictor.
- **x1**: A level-1 predictor
- **group**: The cluster identifier
robust_mixed

Cluster robust standard errors with degrees of freedom adjustments for lmerMod/lme objects

Description

Function to compute the CR2/CR0 cluster robust standard errors (SE) with Bell and McCaffrey (2002) degrees of freedom (dof) adjustments. Suitable even with a low number of clusters. The model based (mb) and cluster robust standard errors are shown for comparison purposes.

Usage

robust_mixed(m1, digits = 3, type = "CR2", satt = TRUE, Gname = NULL)

Arguments

m1 The lmerMod or lme model object.
digits Number of decimal places to display.
type Type of cluster robust standard error to use ("CR2" or "CR0").
satt If Satterthwaite degrees of freedom are to be computed (if not, between-within df are used).
Gname Group/cluster name if more than two levels of clustering (does not work with lme).

Value

A data frame (results) with the cluster robust adjustments with p-values.

Estimate The regression coefficient.
mb.se The model-based (regular, unadjusted) SE.
cr.se The cluster robust standard error.
df degrees of freedom: Satterthwaite or between-within.
p.val p-value using CR0/CR2 standard error.
stars stars showing statistical significance.

Author(s)

Francis Huang, <huangf@missouri.edu>
Bixi Zhang, <bixizhang@missouri.edu>

References

Examples

```r
require(lme4)
data(sch29, package = 'MLMusingR')
robust_mixed(lmer(math ~ male + minority + mses + mhmwk + (1|schid), data = sch29))
```

satdf

Compute Satterthwaite degrees of freedom

Description

Function to compute empirical degrees of freedom based on Bell and McCaffrey (2002).

Usage

```r
satdf(m1, type = "none", Vinv2, Vm2, br2, Gname = NULL)
```

Arguments

- `m1`: The `lmerMod` or `lme` model object.
- `type`: The type of cluster robust correction used (i.e., CR2 or none).
- `Vinv2`: Inverse of the variance matrix.
- `Vm2`: The variance matrix.
- `br2`: The bread component.
- `Gname`: The group (clustering variable) name'

Author(s)

Francis Huang. <huangf@missouri.edu>
Bixi Zhang. <bixizhang@missouri.edu>

sch29

Data from 29 schools (based on the NELS dataset) used for regression diagnostics

Description

For examining the association between amount homework done per week and math outcome.

Usage

```r
data(sch29)
```
Format

A data frame with 648 rows and 8 variables:

schid The school identifier (the grouping variable)

ses Student-level socioeconomic status

byhomewk Total amount of time the student spent on homework per week. 1 = None, 2 = Less than one hour, 3 = 1 hour, 4 = 2 hours, 5 = 3 hours, 6 = 4-6 hours, 7 = 7 - 9 hours, 8 = 10 or more

math Mathematics score.

male Dummy coded gender, 1 = male, 0 = female

minority Dummy coded minority status, 1 = yes, 0 = no

mces Aggregated socioeconomic status at the school level

mhmwk Aggregated time spent on homework at the school level

Source

Description

Data from 8465 students from 100 schools in Virginia

Usage

data(suspend)

Format

Dataset:

school School identifier

pminor Percent minority enrollment at school

male 1 = male, 0 = female

sus Whether the student was suspended (1 = yes) in the school year or not (0 = no). Self reported.

fight If the student got into one or more fights (1 = yes) in the school year

gpa Students self-reported GPA; 1 = D to 4 = A
Thai data from PISA

Description
Example data to be used for centering

Usage
data(thai)

Format
A data frame with 6606 rows and 18 variables:

- **pv1math** First plausible value in mathematics.
- **escs** Index of economic, social, and cultural status.
- **hisei** Highest parent occupational status.
- **sex** Student gender. 1 = Female, 2 = Male.
- **intmat** Mathematics interest.
- **matheff** Mathematics self-efficacy.
- **schoolid** School identifier.
- **othl** Spoke another language at home other than Thai. 1 = yes, 0 = no.
- **books** How many books at home.
- **pared** Highest parental education in years.
- **w_fstuwt** Student weight.
- **pv1read** Plausible value #1 for reading.
- **pv2read** Plausible value #2 for reading.
- **pv3read** Plausible value #3 for reading.
- **pv4read** Plausible value #4 for reading.
- **pv5read** Plausible value #5 for reading.
- **private** Private school. 1 = yes, 0 = no.
- **schsize** Total school enrolment.

Source
Thai data from PISA (reduced)

Description

Example data to be used for centering

Usage

data(thai)

Format

A data frame with 4271 rows and 7 variables:

- **math** First plausible value in mathematics.
- **escs** Index of economic, social, and cultural status.
- **intmat** Mathematics interest.
- **schoolid** School identifier
- **othl** Spoke another language at home other than Thai. 1 = yes, 0 = no.
- **private** Private school. 1 = yes, 0 = no.
- **schsize** Total school enrolment.

Source

Wide dataset to be used for growth modeling

Description

A dataset containing 30 observations with reading scores taken in the fall kindergarten, spring kindergarten, and spring first grade

Usage

wide
Format

A wide data frame of 30 observations:

- **studentid** Factor indicating student identification
- **int** treatment or control
- **female** 1 = female, 0 = male
- **fall_k** Reading scores in fall kindergarten
- **spring_k** Reading scores in spring kindergarten
- **spring_g1** Reading scores in spring first grade
Index

* datasets
 cdata.ex, 2
 engage, 3
 engage.miss, 3
 hdp, 5
 ri_test1, 8
 ri_test2, 8
 sch29, 10
 suspend, 11
 thai, 12
 thai.sm, 13
 wide, 13

 cdata.ex, 2
 engage, 3
 engage.miss, 3

 group_center, 4
 group_mean, 4

 hdp, 5
 Htest, 6

 MatSqrtInverse, 7

 nmiss, 7

 ri_test1, 8
 ri_test2, 8
 robust_mixed, 9

 satdf, 10
 sch29, 10
 suspend, 11

 thai, 12
 thai.sm, 13

 wide, 13