Package ‘MLmetrics’

May 13, 2016

Type Package

Title Machine Learning Evaluation Metrics

Version 1.1.1

Description A collection of evaluation metrics, including loss, score and utility functions, that measure regression, classification and ranking performance.

URL http://github.com/yanyachen/MLmetrics

BugReports http://github.com/yanyachen/MLmetrics/issues

Depends R (>= 2.10)

Imports stats, utils, ROCR

Suggests e1071

License GPL-2

LazyData true

RoxygenNote 5.0.1

NeedsCompilation no

Author Yachen Yan [aut, cre]

Maintainer Yachen Yan <yanyachen21@gmail.com>

Repository CRAN

Date/Publication 2016-05-13 23:57:26

R topics documented:

Accuracy ... 2
Area_Under_Curve ... 3
AUC ... 4
ConfusionMatrix .. 4
F1_Score .. 5
FBeta_Score .. 6
GainAUC .. 6
Gini ... 7
KS_Stat .. 8
Accuracy

LiftAUC ... 8
LogLoss ... 9
MAE .. 9
MAPE ... 10
MedianAE .. 11
MedianAPE .. 11
MLmetrics ... 12
MSE .. 12
MultiLogLoss .. 13
NormalizedGini .. 13
Poisson_LogLoss ... 14
PRAUC ... 14
Precision ... 15
R2_Score ... 16
RAE .. 16
Recall ... 17
RMSE ... 18
RMSLE ... 18
RMSPE ... 19
RRSE ... 19
Sensitivity ... 20
Specificity ... 21
ZeroOneLoss ... 21

Index ... 23

Accuracy

Description

Compute the accuracy classification score.

Usage

Accuracy(y_pred, y_true)

Arguments

y_pred Predicted labels vector, as returned by a classifier
y_true Ground truth (correct) 0-1 labels vector

Value

Accuracy
Examples

data(cars)
logreg <- glm(formula = vs ~ hp + wt,
 family = binomial(link = "logit"), data = mtcars)
pred <- ifelse(logreg$fitted.values < 0.5, 0, 1)
Accuracy(y_pred = pred, y_true = mtcars$vs)

Description

Calculate the area under the curve.

Usage

Area_Under_Curve(x, y, method = c("trapezoid", "step", "spline"),
 na.rm = FALSE)

Arguments

x the x-points of the curve
y the y-points of the curve
method can be "trapezoid" (default), "step" or "spline"
na.rm a logical value indicating whether NA values should be stripped before the com-
 putation proceeds

Value

Area Under the Curve (AUC)

Examples

x <- seq(0, pi, length.out = 200)
plot(x = x, y = sin(x), type = "l")
Area_Under_Curve(x = x, y = sin(x), method = "trapezoid", na.rm = TRUE)
ConfusionMatrix

4

AUC

Area Under the Receiver Operating Characteristic Curve (ROC AUC)

Description

Compute the Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.

Usage

```r
AUC(y_pred, y_true)
```

Arguments

- `y_pred` Predicted probabilities vector, as returned by a classifier
- `y_true` Ground truth (correct) 0-1 labels vector

Value

Area Under the ROC Curve (ROC AUC)

Examples

```r
data(cars)
logreg <- glm(formula = vs ~ hp + wt, 
              family = binomial(link = "logit"), data = mtcars)
AUC(y_pred = logreg$fitted.values, y_true = mtcars$vs)
```

ConfusionMatrix

Confusion Matrix

Description

Compute confusion matrix to evaluate the accuracy of a classification.

Usage

```r
ConfusionMatrix(y_pred, y_true)
```

Arguments

- `y_pred` Predicted labels vector, as returned by a classifier
- `y_true` Ground truth (correct) 0-1 labels vector

Value

a table of Confusion Matrix
F1.Score

Examples

```r
data(cars)
logreg <- glm(formula = vs ~ hp + wt,
              family = binomial(link = "logit"), data = mtcars)
pred <- ifelse(logreg$fitted.values < 0.5, 0, 1)
ConfusionMatrix(y_pred = pred, y_true = mtcars$vs)
```

Description

Compute the F1 Score.

Usage

```r
F1.Score(y_true, y_pred, positive = NULL)
```

Arguments

- `y_true` Ground truth (correct) 0-1 labels vector
- `y_pred` Predicted labels vector, as returned by a classifier
- `positive` An optional character string for the factor level that corresponds to a "positive" result

Value

F1 Score

Examples

```r
data(cars)
logreg <- glm(formula = vs ~ hp + wt,
              family = binomial(link = "logit"), data = mtcars)
pred <- ifelse(logreg$fitted.values < 0.5, 0, 1)
F1.Score(y_pred = pred, y_true = mtcars$vs, positive = "0")
F1.Score(y_pred = pred, y_true = mtcars$vs, positive = "1")
```
FBeta_Score F-Beta Score

Description
Compute the F-Beta Score

Usage
FBeta_Score(y_true, y_pred, positive = NULL, beta = 1)

Arguments
- **y_true** Ground truth (correct) 0-1 labels vector
- **y_pred** Predicted labels vector, as returned by a classifier
- **positive** An optional character string for the factor level that corresponds to a "positive" result
- **beta** Weight of precision in harmonic mean

Value
F-Beta Score

Examples
```r
data(cars)
logreg <- glm(formula = vs ~ hp + wt,
              family = binomial(link = "logit"), data = mtcars)
pred <- ifelse(logreg$fitted.values < 0.5, 0, 1)
FBeta_Score(y_pred = pred, y_true = mtcars$vs, positive = "0", beta = 2)
FBeta_Score(y_pred = pred, y_true = mtcars$vs, positive = "1", beta = 2)
```

GainAUC Area Under the Gain Chart

Description
Compute the Area Under the Gain Chart from prediction scores.

Usage
GainAUC(y_pred, y_true)
Gini

Arguments

- `y_pred` Predicted probabilities vector, as returned by a classifier
- `y_true` Ground truth (correct) 0-1 labels vector

Value

Area Under the Gain Chart

Examples

```r
data(cars)
logreg <- glm(formula = vs ~ hp + wt,
             family = binomial(link = "logit"), data = mtcars)
GainAUC(y_pred = logreg$fitted.values, y_true = mtcars$vs)
```

Gini
Gini Coefficient

Description

Compute the Gini Coefficient.

Usage

```r
Gini(y_pred, y_true)
```

Arguments

- `y_pred` Predicted probabilities vector, as returned by a classifier
- `y_true` Ground truth (correct) 0-1 labels vector

Value

Gini Coefficient

Examples

```r
data(cars)
logreg <- glm(formula = vs ~ hp + wt,
              family = binomial(link = "logit"), data = mtcars)
Gini(y_pred = logreg$fitted.values, y_true = mtcars$vs)
```
KS_Stat | Kolmogorov-Smirnov Statistic

Description

Compute the Kolmogorov-Smirnov statistic.

Usage

```
KS_Stat(y_pred, y_true)
```

Arguments

- `y_pred` | Predicted probabilities vector, as returned by a classifier
- `y_true` | Ground truth (correct) 0-1 labels vector

Value

Kolmogorov-Smirnov statistic

Examples

```r
data(cars)
logreg <- glm(formula = vs ~ hp + wt,
             family = binomial(link = "logit"), data = mtcars)
KS_Stat(y_pred = logreg$fitted.values, y_true = mtcars$vs)
```

LiftAUC | Area Under the Lift Chart

Description

Compute the Area Under the Lift Chart from prediction scores.

Usage

```
LiftAUC(y_pred, y_true)
```

Arguments

- `y_pred` | Predicted probabilities vector, as returned by a classifier
- `y_true` | Ground truth (correct) 0-1 labels vector

Value

Area Under the Lift Chart
LogLoss

Examples

```r
data(cars)
logreg <- glm(formula = vs ~ hp + wt,
             family = binomial(link = "logit"), data = mtcars)
LiftAUC(y_pred = logreg$fitted.values, y_true = mtcars$vs)
```

LogLoss

Log loss / Cross-Entropy Loss

Description

Compute the log loss/cross-entropy loss.

Usage

```r
LogLoss(y_pred, y_true)
```

Arguments

- `y_pred`: Predicted probabilities vector, as returned by a classifier
- `y_true`: Ground truth (correct) 0-1 labels vector

Value

Log loss/Cross-Entropy Loss

Examples

```r
data(cars)
logreg <- glm(formula = vs ~ hp + wt,
             family = binomial(link = "logit"), data = mtcars)
LogLoss(y_pred = logreg$fitted.values, y_true = mtcars$vs)
```

MAE

Mean Absolute Error Loss

Description

Compute the mean absolute error regression loss.

Usage

```r
MAE(y_pred, y_true)
```
Arguments

- `y_pred`: Estimated target values vector
- `y_true`: Ground truth (correct) target values vector

Value

Mean Absolute Error Loss

Examples

```r
data(cars)
reg <- lm(log(dist) ~ log(speed), data = cars)
MAE(y_pred = exp(reg$fitted.values), y_true = cars$dist)
```

MAPE

Mean Absolute Percentage Error Loss

Description

Compute the mean absolute percentage error regression loss.

Usage

```r
MAPE(y_pred, y_true)
```

Arguments

- `y_pred`: Estimated target values vector
- `y_true`: Ground truth (correct) target values vector

Value

Mean Absolute Percentage Error Loss

Examples

```r
data(cars)
reg <- lm(log(dist) ~ log(speed), data = cars)
MAPE(y_pred = exp(reg$fitted.values), y_true = cars$dist)
```
MedianAE

* **Median Absolute Error Loss**

Description

Compute the median absolute error regression loss.

Usage

```r
MedianAE(y_pred, y_true)
```

Arguments

- `y_pred`: Estimated target values vector
- `y_true`: Ground truth (correct) target values vector

Value

Median Absolute Error Loss

Examples

```r
data(cars)
reg <- lm(log(dist) ~ log(speed), data = cars)
MedianAE(y_pred = exp(reg$fitted.values), y_true = cars$dist)
```

MedianAPE

* **Median Absolute Percentage Error Loss**

Description

Compute the Median absolute percentage error regression loss.

Usage

```r
MedianAPE(y_pred, y_true)
```

Arguments

- `y_pred`: Estimated target values vector
- `y_true`: Ground truth (correct) target values vector

Value

Median Absolute Percentage Error Loss
Examples

```r
data(cars)
reg <- lm(log(dist) ~ log(speed), data = cars)
MedianAPE(y_pred = exp(reg$fitted.values), y_true = cars$dist)
```

MLmetrics

MLmetrics: Machine Learning Evaluation Metrics

Description

A collection of evaluation metrics, including loss, score and utility functions, that measure regression and classification performance.

MSE

Mean Square Error Loss

Description

Compute the mean squared error regression loss.

Usage

```r
MSE(y_pred, y_true)
```

Arguments

- `y_pred`: Estimated target values vector
- `y_true`: Ground truth (correct) target values vector

Value

Mean Square Error Loss

Examples

```r
data(cars)
reg <- lm(log(dist) ~ log(speed), data = cars)
MSE(y_pred = exp(reg$fitted.values), y_true = cars$dist)
```
MultiLogLoss

Multi Class Log Loss

Description

Compute the multi class log loss.

Usage

`multilogloss(y_pred, y_true)`

Arguments

- `y_pred`: Predicted probabilities matrix, as returned by a classifier
- `y_true`: Ground truth (correct) labels vector or a matrix of correct labels indicating by 0-1, same format as probabilities matrix

Value

Multi Class Log Loss

Examples

```r
data(iris)
svm.model <- e1071::svm(Species~., data = iris, probability = TRUE)
pred <- predict(svm.model, iris, probability = TRUE)
multilogloss(y_true = iris$Species, y_pred = attr(pred, "probabilities"))
```

NormalizedGini

Normalized Gini Coefficient

Description

Compute the Normalized Gini Coefficient.

Usage

`normalizedgini(y_pred, y_true)`

Arguments

- `y_pred`: Predicted labels vector, as returned by a model
- `y_true`: Ground truth (correct) labels vector

Value

Normalized Gini Coefficient
Examples

```r
d_AD <- data.frame(treatment = gl(3,3), outcome = gl(3,1,9),
                   counts = c(18,17,15,20,10,20,25,13,12))
glm_poisson <- glm(counts ~ outcome + treatment,
                   family = poisson(link = "log"), data = d_AD)
NormalizedGini(y_pred = glm_poisson$fitted.values, y_true = d_AD$counts)
```

Poisson LogLoss
Poisson Log loss

Description

Compute the log loss/cross-entropy loss.

Usage

```r
Poisson_LogLoss(y_pred, y_true)
```

Arguments

- `y_pred` Predicted labels vector, as returned by a model
- `y_true` Ground truth (correct) labels vector

Value

Log loss/Cross-Entropy Loss

Examples

```r
d_AD <- data.frame(treatment = gl(3,3), outcome = gl(3,1,9),
                   counts = c(18,17,15,20,10,20,25,13,12))
glm_poisson <- glm(counts ~ outcome + treatment,
                   family = poisson(link = "log"), data = d_AD)
Poisson_LogLoss(y_pred = glm_poisson$fitted.values, y_true = d_AD$counts)
```

PRAUC
Area Under the Precision-Recall Curve (PR AUC)

Description

Compute the Area Under the Precision-Recall Curve (PR AUC) from prediction scores.

Usage

```r
PRAUC(y_pred, y_true)
```
Precision

Arguments
- `y_pred` Predicted probabilities vector, as returned by a classifier
- `y_true` Ground truth (correct) 0-1 labels vector

Value
Area Under the PR Curve (PR AUC)

Examples
```
data(cars)
logreg <- glm(formula = vs ~ hp + wt,
              family = binomial(link = "logit"), data = mtcars)
PRAUC(y_pred = logreg$fitted.values, y_true = mtcars$vs)
```

<table>
<thead>
<tr>
<th>Precision</th>
<th>Precision</th>
</tr>
</thead>
</table>

Description
Compute the precision score.

Usage
```
Precision(y_true, y_pred, positive = NULL)
```

Arguments
- `y_true` Ground truth (correct) 0-1 labels vector
- `y_pred` Predicted labels vector, as returned by a classifier
- `positive` An optional character string for the factor level that corresponds to a "positive" result

Value
Precision

Examples
```
data(cars)
logreg <- glm(formula = vs ~ hp + wt,
              family = binomial(link = "logit"), data = mtcars)
pred <- ifelse(logreg$fitted.values < 0.5, 0, 1)
Precision(y_pred = pred, y_true = mtcars$vs, positive = "0")
Precision(y_pred = pred, y_true = mtcars$vs, positive = "1")
```
R2_Score
R-Squared (Coefficient of Determination) Regression Score

Description
Compute the R-Squared (Coefficient of Determination) Regression Score.

Usage
```r  
R2_Score(y_pred, y_true)  
```

Arguments
- `y_pred`: Estimated target values vector
- `y_true`: Ground truth (correct) target values vector

Value
R^2 Score

Examples
```r  
data(cars)  
reg <- lm(log(dist) ~ log(speed), data = cars)  
R2_Score(y_pred = exp(reg$fitted.values), y_true = cars$dist)  
```

RAE
Relative Absolute Error Loss

Description
Compute the relative absolute error regression loss.

Usage
```r  
RAE(y_pred, y_true)  
```

Arguments
- `y_pred`: Estimated target values vector
- `y_true`: Ground truth (correct) target values vector

Value
Relative Absolute Error Loss
Recall

Examples

```r
data(cars)
reg <- lm(log(dist) ~ log(speed), data = cars)
RAE(y_pred = exp(reg$fitted.values), y_true = cars$dist)
```

Description

Compute the recall score.

Usage

```r
Recall(y_true, y_pred, positive = NULL)
```

Arguments

- `y_true`: Ground truth (correct) 0-1 labels vector
- `y_pred`: Predicted labels vector, as returned by a classifier
- `positive`: An optional character string for the factor level that corresponds to a "positive" result

Value

Recall

Examples

```r
data(cars)
logreg <- glm(formula = vs ~ hp + wt,
             family = binomial(link = "logit"), data = mtcars)
pred <- ifelse(logreg$fitted.values < 0.5, 0, 1)
Recall(y_pred = pred, y_true = mtcars$vs, positive = "0")
Recall(y_pred = pred, y_true = mtcars$vs, positive = "1")
```
RMSE

Root Mean Square Error Loss

Description

Compute the root mean squared error regression loss.

Usage

\[
\text{RMSE}(y_pred, y_true)
\]

Arguments

- `y_pred`: Estimated target values vector
- `y_true`: Ground truth (correct) target values vector

Value

Root Mean Square Error Loss

Examples

```r
data(cars)
reg <- lm(log(dist) ~ log(speed), data = cars)
RMSE(y\_pred = exp(reg$fitted.values), y\_true = cars$dist)
```

RMSLE

Root Mean Squared Logarithmic Error Loss

Description

Compute the root mean squared logarithmic error regression loss.

Usage

\[
\text{RMSLE}(y_pred, y_true)
\]

Arguments

- `y_pred`: Estimated target values vector
- `y_true`: Ground truth (correct) target values vector

Value

Root Mean Squared Logarithmic Error Loss

Examples

```r
data(cars)
reg <- lm(log(dist) ~ log(speed), data = cars)
RMSLE(y\_pred = exp(reg$fitted.values), y\_true = cars$dist)
```
RMSPE

Description

Compute the root mean squared percentage error regression loss.

Usage

```r
RMSPE(y_pred, y_true)
```

Arguments

- `y_pred`: Estimated target values vector
- `y_true`: Ground truth (correct) target values vector

Value

Root Mean Squared Percentage Error Loss

Examples

```r
data(cars)
reg <- lm(log(dist) ~ log(speed), data = cars)
RMSPE(y_pred = exp(reg$fitted.values), y_true = cars$dist)
```

RRSE

Description

Compute the root relative squared error regression loss.

Usage

```r
RRSE(y_pred, y_true)
```

Arguments

- `y_pred`: Estimated target values vector
- `y_true`: Ground truth (correct) target values vector

Value

Root Relative Squared Error Loss

Examples

```r
data(cars)
reg <- lm(log(dist) ~ log(speed), data = cars)
RRSE(y_pred = exp(reg$fitted.values), y_true = cars$dist)
```
Sensitivity

Value

Root Relative Squared Error Loss

Examples

data(cars)
reg <- lm(log(dist) ~ log(speed), data = cars)
RRSE(y_pred = exp(reg$fitted.values), y_true = cars$dist)

Sensitivity	Sensitivity

Description

Compute the sensitivity score.

Usage

Sensitivity(y_true, y_pred, positive = NULL)

Arguments

- **y_true**
 Ground truth (correct) 0-1 labels vector
- **y_pred**
 Predicted labels vector, as returned by a classifier
- **positive**
 An optional character string for the factor level that corresponds to a "positive" result

Value

Sensitivity

Examples

data(cars)
logreg <- glm(formula = vs ~ hp + wt,
 family = binomial(link = "logit"), data = mtcars)
pred <- ifelse(logreg$fitted.values < 0.5, 0, 1)
Sensitivity(y_pred = pred, y_true = mtcars$vs, positive = "0")
Sensitivity(y_pred = pred, y_true = mtcars$vs, positive = "1")
Specificity

Description

Compute the specificity score.

Usage

```
Specificity(y_true, y_pred, positive = NULL)
```

Arguments

- `y_true` : Ground truth (correct) 0-1 labels vector
- `y_pred` : Predicted labels vector, as returned by a classifier
- `positive` : An optional character string for the factor level that corresponds to a "positive" result

Value

Specificity

Examples

```r
data(cars)
logreg <- glm(formula = vs ~ hp + wt,
              family = binomial(link = "logit"), data = mtcars)
pred <- ifelse(logreg$fitted.values < 0.5, 0, 1)
Specificity(y_pred = pred, y_true = mtcars$vs, positive = "0")
Specificity(y_pred = pred, y_true = mtcars$vs, positive = "1")
```

ZeroOneLoss

Normalized Zero-One Loss (Classification Error Loss)

Description

Compute the normalized zero-one classification loss.

Usage

```
ZeroOneLoss(y_pred, y_true)
```

Arguments

- `y_pred` : Predicted labels vector, as returned by a classifier
- `y_true` : Ground truth (correct) 0-1 labels vector
Value

Zero-One Loss

Examples

data(cars)
logreg <- glm(formula = vs ~ hp + wt,
 family = binomial(link = "logit"), data = mtcars)
pred <- ifelse(logreg$fitted.values < 0.5, 0, 1)
ZeroOneLoss(y_pred = pred, y_true = mtcars$vs)
Index

Accuracy, 2
Area_Under_Curve, 3
AUC, 4

ConfusionMatrix, 4
F1_Score, 5
FBeta_Score, 6
GainAUC, 6
Gini, 7
KS_Stat, 8
LiftAUC, 8
LogLoss, 9

MAE, 9
MAPE, 10
MedianAE, 11
MedianAPE, 11
MLmetrics, 12
MLmetrics-package (MLmetrics), 12
MSE, 12
MultiLogLoss, 13

NormalizedGini, 13
Poisson_LogLoss, 14
PRAUC, 14
Precision, 15

R2_Score, 16
RAE, 16
Recall, 17
RMSE, 18
RMSLE, 18
RMSPE, 19
RRSE, 19

Sensitivity, 20
Specificity, 21
ZeroOneLoss, 21