Package ‘MMeM’

February 3, 2019

Title Multivariate Mixed Effects Model
Version 0.1.0
Depends R (>= 3.3.0)
Maintainer Luyao Peng <luyaopeng.cn@gmail.com>
Description Analyzing data under multivariate mixed effects model using multivariate REML and multivariate Henderson3 methods.
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Imports stats, MASS, Matrix, jointDiag, lme4, matrixcalc, psych, stringr
BugReports https://github.com/pengluyaoyao/MMeM/issues
NeedsCompilation no
Author Luyao Peng [aut, cre],
 Rui Yang [aut]
Repository CRAN
Date/Publication 2019-02-03 15:03:15 UTC

R topics documented:

 MMMeM . 2
 MMMeM_henderson3 . 2
 MMMeM_reml . 3
 MMMeM_terms . 5
 simdata . 5

Index 6
Description

Author(s)

Luyao Peng <luyaopeng.cn@gmail.com>
Rui Yang <ray.cn.us@gmail.com>

See Also

Useful links:
- Report bugs at https://github.com/opengluyao/MMeM/issues

Usage

```r
MMeM_henderson3(fml, data, factor_X)
```

Arguments

- `fml`: two-sided linear formula object describing both the fixed-effects and random-effects parts of the model, with the response on the left of a `~` operator. For univariate response, put variable name directly; for multivariate responses combine variables using concatenate operator, for example, for bivariate responses, `c(var1, var2)`. The predictor terms are separated by `+` operators, on the right. Random-effects terms are distinguished by vertical bars `'|'` separating expressions for design matrices from grouping factors.
- `data`: data frame containing the variables named in formula.
- `factor_X`: (logical) indicating whether predictor is a factor or continuous. By default is TRUE.
Value

The function returns a list with the following objects:

- `T.estimates` is the estimated variance covariance components (T.estimated) of the variance covariance matrix of the block random effects with corresponding sampling variances (T.variance)
- `E.estimates` is the estimated variance covariance components (E.estimated) of the variance covariance matrix of the residuals with corresponding sampling variances (E.variance)

References

Examples

data(simdata)
results_henderson <- MMeM_henderson3(fml = c(V1,V2) ~ X_vec + (1|Z_vec),
data = simdata, factor_X = TRUE)

Description

Estimating the variance components under the multivariate mixed effects model using REML methods

Usage

MMeM_reml(fml, data, factor_X, T.start, E.start, maxit = 50,
tol = 1e-09)

Arguments

- `fml` a two-sided linear formula object describing both the fixed-effects and random-effects parts of the model, with the response on the left of a ~ operator. For univariate response, put variable name directly; for multivariate responses combine variables using concatenate operator, for example, for bivariate responses, c(var1, var2). The predictor terms are separated by + operators, on the right. Random-effects terms are distinguished by vertical bars '|' separating expressions for design matrices from grouping factors.
- `data` data frame containing the variables named in formula.
- `factor_X` (logical) indicating whether predictor is a factor or continuous. By default is TRUE
- `T.start` the starting matrix for the variance covariance matrix of the block random effects, it has to be positive definite q by q symmetric matrix.
Details

Suppose \(n \) observational units, \(q \) variates, \(p \) fixed effects coefficients and \(s \) random effects units. The model supports multivariate mixed effects model for one-way randomized block design with equal design matrices:

\[
Y = XB + ZU + E
\]

where \(Y \) is \(n \) by \(q \) response variates matrix; \(X \) is \(n \) by \(p \) design matrix for the fixed effects; \(B \) is \(p \) by \(q \) coefficients matrix for the fixed effects; \(Z \) is \(n \) by \(s \) design matrix for the random effects; \(U \) is \(s \) by \(q \) matrix for the random effects; \(E \) is \(n \) by \(q \) random errors matrix.

The model also supports simple OLS multivariate regression:

\[
y = Xb + Zu + e
\]

where \(y \) is \(n \) by 1 response vector; \(b \) is \(p \) by 1 coefficients vector for the fixed effects; \(u \) is \(s \) by 1 matrix for the random effects.

Value

The function returns a list with the following objects:

- \(\text{T.estimates} \) is the estimated variance covariance components of the variance covariance matrix of the block random effects
- \(\text{E.estimates} \) is the estimated variance covariance components of the variance covariance matrix of the residuals
- \(\text{VCOV} \) is the asymptotic dispersion matrix of the estimated variance covariance components for the block random effects and the residuals.

References

Examples

data(simdata)
T.start <- matrix(c(10,5,5,15),2,2)
E.start <- matrix(c(10,1,1,3),2,2)
results_reml <- MMeM_reml(fml = c(V1,V2) ~ X.vec + (1|Z.vec), data = simdata, factor_X = TRUE, T.start = T.start, E.start = E.start, maxit = 10)
MMeM_terms

parses formulas to creates model matrices

Description

parses formulas to creates model matrices

Usage

```r
MMeM_terms(fml, data, factor_X)
```

Arguments

- **fml**: a two-sided linear formula object describing both the fixed-effects and random-effects parts of the model, with the response on the left of a ~ operator. For univariate response, put variable name directly; for multivariate responses combine variables using concatenate operator, for example, for bivariate responses, `c(var1, var2)`. The predictor terms are separated by `+` operators, on the right. Random-effects terms are distinguished by vertical bars `|` separating expressions for design matrices from grouping factors.
- **data**: data frame containing the variables named in formula.
- **factor_X**: (logical) indicating whether predictor is a factor or continuous. By default is `TRUE`

simdata

simulated bivariate data

Description

This is a simulated data with 2 dependent variables and one fixed effects and one random effects

Usage

```r
data(simdata)
```

Details

simulated datasets
Index

*Topic *datasets
 simdata, 5

MMeM, 2
MMeM-package (MMeM), 2
MMeM_henderson3, 2
MMeM_reml, 3
MMeM_terms, 5

simdata, 5