Package ‘MMeM’

October 12, 2022

Title Multivariate Mixed Effects Model
Version 0.1.1
Depends R (>= 3.3.0)
Maintainer Luyao Peng <luyaopeng.cn@gmail.com>
Description Analyzing data under multivariate mixed effects model using multivariate REML and multivariate Henderson3 methods.
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Imports stats, MASS, Matrix, jointDiag, lme4, matrixcalc, psych,
 stringr
BugReports https://github.com/pengluyaoyao/MMeM/issues
NeedsCompilation no
Author Luyao Peng [aut, cre],
 Rui Yang [aut]
Repository CRAN
Date/Publication 2021-09-08 08:00:14 UTC

R topics documented:

 MMeM ... 2
 MMeM_henderson3 ... 2
 MMeM_reml .. 3
 MMeM_terms ... 5
 simdata .. 5

Index 6
MMeM: Estimating the variance covariance components of the multivariate mixed effects model

Description

Author(s)

Luyao Peng <luyaopeng.cn@gmail.com>
Rui Yang <ray.cn.us@gmail.com>

See Also

Useful links:

- Report bugs at https://github.com/pengluyaoyao/MMeM/issues

MMeM_henderson3

Multivariate Henderson3 method

Usage

```r
MMeM_henderson3(fml, data, factor_X)
```

Arguments

- **fml**: two-sided linear formula object describing both the fixed-effects and random-effects parts of the model, with the response on the left of a ~ operator. For univariate response, put variable name directly; for multivariate responses combine variables using concatenate operator, for example, for bivariate responses, c(var1, var2). The predictor terms are separated by + operators, on the right. Random-effects terms are distinguished by vertical bars '|' separating expressions for design matrices from grouping factors.
- **data**: data frame containing the variables named in formula.
- **factor_X**: (logical) indicating whether predictor is a factor or continuous. By default is TRUE.
Value

The function returns a list with the following objects:

- **T.estimates** is the estimated variance covariance components (T. estimates) of the variance covariance matrix of the block random effects with corresponding sampling variances (T.variance)
- **E.estimates** is the estimated variance covariance components (E. estimates) of the variance covariance matrix of the residuals with corresponding sampling variances (E.variance)

References

Examples

```r
data(simdata)
results_henderson <- MMeM_henderson3(fml = c(V1,V2) ~ X_vec + (1|Z_vec),
data = simdata, factor_X = TRUE)
```

MMMeM_reml

Multivariate REML Method

Description

Estimating the variance components under the multivariate mixed effects model using REML methods

Usage

```r
MMeM_reml(fml, data, factor_X, T.start, E.start, maxit = 50,
tol = 1e-09)
```

Arguments

- **fml**: a two-sided linear formula object describing both the fixed-effects and random-effects parts of the model, with the response on the left of a ~ operator. For univariate response, put variable name directly; for multivariate responses combine variables using concatenate operator, for example, for bivariate responses, c(var1, var2). The predictor terms are separated by + operators, on the right. Random-effects terms are distinguished by vertical bars '|' separating expressions for design matrices from grouping factors.
- **data**: data frame containing the variables named in formula.
- **factor_X**: (logical) indicating whether predictor is a factor or continuous. By default is TRUE.
- **T.start**: the starting matrix for the variance covariance matrix of the block random effects, it has to be positive definite q by q symmetric matrix.
E.start
the starting matrix for the variance covariance matrix of the block random effects, it has to be positive definite q by q symmetric matrix.

maxit
the maximum number of iterations

tol
the convergence tolerance

Details

Suppose n observational units, q variates, p fixed effects coefficients and s random effects units. The model supports multivariate mixed effects model for one-way randomized block design with equal design matrices:

\[
Y = XB + ZU + E
\]

where \(Y \) is n by q response variates matrix; \(X \) is n by p design matrix for the fixed effects; \(B \) is p by q coefficients matrix for the fixed effects; \(Z \) is n by s design matrix for the random effects; \(U \) is s by q matrix for the random effects; \(E \) is n by q random errors matrix.

The model also supports simple OLS multivariate regression:

\[
y = Xb + Zu + e
\]

where \(y \) is n by 1 response vector; \(b \) is p by 1 coefficients vector for the fixed effects; \(u \) is s by 1 matrix for the random effects.

Value

The function returns a list with the following objects:

- **T.estimates** is the estimated variance covariance components of the variance covariance matrix of the block random effects
- **E.estimates** is the estimated variance covariance components of the variance covariance matrix of the residuals
- **VCOV** is the asymptotic dispersion matrix of the estimated variance covariance components for the block random effects and the residuals.

References

Examples

```r
data(simdata)
T.start <- matrix(c(10,5,5,15),2,2)
E.start <- matrix(c(10,1,1,3),2,2)
results_reml <- MMeM_reml(fml = c(V1,V2) ~ X_vec + (1|Z_vec), data = simdata, factor_X = TRUE, T.start = T.start, E.start = E.start, maxit = 10)
```
MMeM_terms

Description

parses formulas to creates model matrices

Usage

```r
MMeM_terms(fml, data, factor_X)
```

Arguments

- `fml`: a two-sided linear formula object describing both the fixed-effects and random-effects parts of the model, with the response on the left of a `~` operator. For univariate response, put variable name directly; for multivariate responses combine variables using concatenate operator, for example, for bivariate responses, `c(var1, var2)`. The predictor terms are separated by `+` operators, on the right. Random-effects terms are distinguished by vertical bars `|` separating expressions for design matrices from grouping factors.
- `data`: data frame containing the variables named in formula.
- `factor_X`: (logical) indicating whether predictor is a factor or continuous. By default is TRUE

simdata

simulated bivariate data

Description

This is a simulated data with 2 dependent variables and one fixed effects and one random effects

Usage

```r
data(simdata)
```

Details

simulated datasets
Index

* datasets
 simdata, 5

 MMEM, 2
 MMEM-package (MMEM), 2
 MMEM_henderson3, 2
 MMEM_reml, 3
 MMEM_terms, 5

 simdata, 5