Package ‘MOCHA’
June 12, 2023

Type Package
Title Modeling for Single-Cell Open Chromatin Analysis
Version 1.0.0
Maintainer Imran McGrath <imran.mcgrath@alleninstitute.org>

Description A statistical framework and analysis tool for open chromatin analysis designed specifically for single cell ATAC-seq (Assay for Transposase-Accessible Chromatin) data, after cell type/cluster identification. These novel modules remove unwanted technical variation, identify open chromatin, robustly models repeated measures in single cell data, implement advanced statistical frameworks to model zero-inflation for differential and co-accessibility analyses, and integrate with existing databases and modules for downstream analyses to reveal biological insights. MOCHA provides a statistical foundation for complex downstream analysis to help advance the potential of single cell ATAC-seq for applied studies.

Methods for zero-inflated statistics are as described in:

License GPL (>= 3)
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
Depends R (>= 4.1.0)
Imports data.table, plyranges (>= 1.14.0), dplyr, GenomicRanges, RaggedExperiment, MultiAssayExperiment, SummarizedExperiment, stringr, ggbio, wCorr, magrittr, rlang, AnnotationDbi, BiocGenerics, GenomeInfoDb, GenomicFeatures, IRanges, OrganismDbi, S4Vectors, assertthat, biovizBase, ensembldb, ggplot2, ggrepel, matrixStats, methods, qvalue, scales, tidyr, ggridges, pbapply, BSgenome, tidyselect, purrr
Suggests ArchR, RMariaDB, motifmatchr, BiocManager, TxDb.Hsapiens.UCSC.hg38.refGene, org.Hs.eg.db, BSgenome.Hsapiens.UCSC.hg19, withr, knitr, rmarkdown, chromVAR, testthat (>= 3.0.0), uwot, irlba, glmmTMB, Matrix, ImerTest
AdditionalRepositories https://imran-aifi.github.io/drat

biocViews Data analysis, Chromatin Accessibility, Single cell, scATAC, Software, Visualization

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Samir Rachid Zaim [aut, ctb],
Mark-Phillip Pebworth [aut, ctb],
Imran McGrath [aut, cre],
Lauren Okada [aut, ctb],
Xiaojun Li [aut, ctb]

Repository CRAN

Date/Publication 2023-06-12 12:30:07 UTC

R topics documented:

.counts_plot_default_theme ... 3
.gene_plot_theme .. 3
addAccessibilityShift .. 4
addMotifSet .. 4
annotateTiles .. 5
bulkDimReduction ... 6
bulkUMAP .. 7
callOpenTiles .. 8
combineSampleTileMatrix ... 11
differentialsToGRanges ... 12
exampleBlackList ... 13
exampleCellColData .. 13
exampleFragments .. 13
extractRegion ... 14
filterCoAccessibleLinks ... 15
finalModelObject ... 16
getAltTSS ... 16
cellPopMatrix .. 17
coAccessibleLinks .. 18
coverage ... 19
differentialAccessibleTiles .. 20
g ModelValues .. 22
getPopFrags ... 22
getSampleTileMatrix .. 23
GRangesToString ... 25
MotifEnrichment ... 25
MotifSetEnrichmentAnalysis 26
pilotLMEM .. 27
pilotZIGLMM .. 27
plotConsensus ... 28
.counts_plot_default_theme

Description
Default ggplot theme for counts plot

Usage
.counts_plot_default_theme

Format
An object of class list of length 10.

.gene_plot_theme Common theme for gene plots

Description
Common theme for gene plots

Usage
gene_plot_theme

Format
An object of class list of length 5.
addAccessibilityShift

Description

addAccessibilityShift will add a new condition to the SummarizedExperiment output of extractRegion, which will contain the difference in accessibility between two conditions.

Usage

```
addAccessibilityShift(CountSE, foreground, background, assayName = NULL)
```

Arguments

- **CountSE**: The SummarizedExperiment object output from extractRegion.
- **foreground**: Group that will be used as the foreground for the subtraction of accessibility.
- **background**: Group that will be used as the background for the subtraction of accessibility.
- **assayName**: The name given to the new assay that is difference in accessibility between foreground and background.

Value

countSE a SummarizedExperiment containing coverage for the given input cell populations.

Examples

```
## Not run:
# CountSE is a SummarizedExperiment generated by extractRegion()
countSE <- MOCHA::addAccessibilityShift(
  CountSE = CountSE,
  foreground = "Condition1",
  background = "Condition2",
  assayName = "AccessibilityChanges"
)
## End(Not run)
```

addMotifSet

Description

addMotifSet Identify motifs within your peakset.
annotateTiles

Usage

addMotifSet(
 SampleTileObj,
 motifPWMs,
 w = 7,
 returnSTM = TRUE,
 motifSetName = "Motifs"
)

Arguments

SampleTileObj A SummarizedExperiment, specifically the output of getSampleTileMatrix
motifPWMs A pwms object for the motif database. Either PFMatrix, PFMatrixList, PWMa-
 trix, or PWMatrixList
w Parameter for motifmatchr controlling size in basepairs of window for filtration. Default is 7.
returnSTM If TRUE, return the modified SampleTileObj with motif set added to metadata (default). If FALSE, return just the motifs from motifmatchr.
motifSetName Name to give motifList in the SampleTileObj’s metadata if ‘returnSTM=TRUE’. Default is ‘Motifs’.

Value

the modified SampleTileObj with motifs added to the metadata

Examples

Not run:
load a curated motif set from library(chromVARmotifs)
included with ArchR installation
data(human_pwms_v2)
SE_with_motifs <- addMotifSet(
 SampleTileObj,
 motifPWMs = human_pwms_v2,
 returnSTM = TRUE, motifSetName = "Motifs", w = 7
)
End(Not run)

Description

annotateTiles annotates a set of sample-tile matrices given with gene annotations. Details on
TxDb and Org annotation packages and available annotations can be found at Bioconductor: https://bioconductor.org/package
annotateTiles(Obj, TxDb = NULL, Org = NULL, promoterRegion = c(2000, 100))

Arguments

Obj
A RangedSummarizedExperiment generated from getSampleTileMatrix, containing TxDb and Org in the metadata. This may also be a GRanges object.

TxDb
The annotation package for TxDb object for your genome. Optional, only required if Obj is a GRanges.

Org
The genome-wide annotation for your organism. Optional, only required if Obj is a GRanges.

promoterRegion
Optional list containing the window size in basepairs defining the promoter region. The format is (upstream, downstream). Default is (2000, 100).

Value

Obj, the input data structure with added gene annotations (whether GRanges or SampleTileObj)

Examples

Not run:
library(TxDb.Hsapiens.UCSC.hg38.refGene)
library(org.Hs.eg.db)
SampleTileMatricesAnnotated <- MOCHA::annotateTiles(
 SampleTileMatrices,
 TxDb = TxDb.Hsapiens.UCSC.hg38.refGene,
 Org = org.Hs.eg.db
)

End(Not run)

bulkDimReduction runs dimensionality reduction (either PCA or LSI). We adapt Signac’s

Usage

bulkDimReduction(
 SampleTileObj,
 cellType = "All",
 componentNumber = 30,
 method = "LSI",
 verbose = FALSE
)
bulkUMAP

Arguments

- **SampleTileObj**: The SummarizedExperiment object output from `getSampleTileMatrix`
- **cellType**: vector of strings. Cell subsets for which to call peaks. This list of group names must be identical to names that appear in the SampleTileObj. Optional, if `cellPopulations='ALL'`, then peak calling is done on all cell populations. Default is 'ALL'.
- **componentNumber**: integer. Number of components to include in LSI, or PCA. This must be strictly less than
- **method**: a string. Represents the method to use. Includes LSI or PCA, but we do not recommend PCA for scATAC pseudobulk.
- **verbose**: Set TRUE to display additional messages. Default is FALSE.

Value

SEObj a SummarizedExperiment containing PC components from dimensionality reduction and metadata from the SampleTileObj

References

LSI method adapted from Andrew Hill: http://andrewjohnhill.com/blog/2019/05/06/dimensionality-reduction-for-scatac-data/

Examples

```r
## Not run:
LSIObj <- MOCHA::bulkDimReduction(SampleTileObj, cellType = "CD16_Mono")
## End(Not run)
```

bulkUMAP

Description

bulkUMAP generates UMAP from pseudobulk LSIObj object, and merges in metadata.

Usage

```r
bulkUMAP(
  SEObj,
  assay = "LSI",
  components = c(1:30),
  nNeighbors = 15,
  returnModel = FALSE,
  seed = 1,
  ...
)
```
callOpenTiles

Perform peak-calling on a set of fragments or an ArchR Project.

callOpenTiles

Description

callOpenTiles is the main peak-calling function in MOCHA that serves as a wrapper function to call peaks provided a set of fragment files and an ArchR Project for meta-data purposes.

Usage

callOpenTiles(
 ATACFragments,
 cellColData,
 blackList,
 genome,
 cellPopLabel,
 cellPopulations = "ALL",
 studySignal = NULL,
 cellCol = "RG",
 ...)

Arguments

- **SEObj**: The SummarizedExperiment object output from bulkDimReduction, or an STM, subsetted down to just one cell type.
- **assay**: A string, describing the name of the assay within SEObj to run UMAP (‘PCA’, ‘LSI’, or ’counts’).
- **components**: A vector of integers. Number of components to include in LSI (1:30 typically).
- **nNeighbors**: See `umap`. The size of local neighborhood (in terms of number of neighboring sample points) used for manifold approximation. Default is 15.
- **returnModel**: A boolean. Default is FALSE. If set to true, it will return a list, where the first is the UMAP coordinates with metadata for plotting, and the second is the full UMAP model so further projection can occur.
- **seed**: an integer. Represents the random seed to pass to the UMAP. Default seed is 1.
- **...**: Additional arguments to be passed to `umap`.

Value

fullUMAP data.frame of UMAP values with metadata attached.

Examples

```r
# Not run:
UMAPvalues <- MOCHA::bulkUMAP(LSIObj)
```

End(Not run)
callOpenTiles

 TxDB,
 OrgDb,
 outDir,
 numCores = 30,
 verbose = FALSE,
 force = FALSE
)

S4 method for signature 'GRangesList'
callOpenTiles(
 ATACFragments,
 cellColData,
 blackList,
 genome,
 cellPopLabel,
 cellPopulations = "ALL",
 studySignal = NULL,
 cellCol = "RG",
 TxDB,
 OrgDb,
 outDir,
 numCores = 30,
 verbose = FALSE,
 force = FALSE
)

S4 method for signature 'list'
callOpenTiles(
 ATACFragments,
 cellColData,
 blackList,
 genome,
 cellPopLabel,
 cellPopulations = "ALL",
 studySignal = NULL,
 cellCol = "RG",
 TxDB,
 OrgDb,
 outDir,
 numCores = 30,
 verbose = FALSE,
 force = FALSE
)

.callOpenTiles_ArchR(
 ATACFragments,
 cellPopLabel,
 cellPopulations = "ALL",

callOpenTiles

studySignal = NULL,
TxDb,
OrgDb,
outdir = NULL,
numCores = 30,
verbose = FALSE,
force = FALSE
)

Arguments

ATACFragments an ArchR Project, or a GRangesList of fragments. Each GRanges in the GRanges list must have unique cell IDs in the column given by 'cellCol'.
cellColData A DataFrame containing cell-level metadata. This must contain both a column 'Sample' with unique sample IDs and the column specified by 'cellPopLabel'.
blackList A GRanges of blacklisted regions
genome A BSgenome object, or the full name of an installed BSgenome data package, or a short string specifying the name of an NCBI assembly (e.g. "GRCh38", "TAIR10.1", etc...) or UCSC genome (e.g. "hg38", "bosTau9", "galGal6", "ce11", etc...). The supplied short string must refer unambiguously to an installed BSgenome data package. See getBSgenome.
cellPopLabel string indicating which column in the ArchRProject metadata contains the cell population label.
cellPopulations vector of strings. Cell subsets for which to call peaks. This list of group names must be identical to names that appear in the ArchRProject metadata. Optional, if cellPopulations='ALL', then peak calling is done on all cell populations in the ArchR project metadata. Default is 'ALL'.
studySignal The median signal (number of fragments) in your study. If not set, this will be calculated using the input ArchR project but relies on the assumption that the ArchR project encompasses your whole study (i.e. is not a subset).
cellCol The column in cellColData specifying unique cell ids or barcodes. Default is "RG", the unique cell identifier used by ArchR.
TxDb The exact package name of a TxDb-class transcript annotation package for your organism (e.g. "TxDb.Hsapiens.UCSC.hg38.refGene"). This must be installed. See Bioconductor AnnotationData Packages.
OrgDb The exact package name of a OrgDb-class genome wide annotation package for your organism (e.g. "org.Hs.eg.db"). This must be installed. See Bioconductor AnnotationData Packages
outdir is a string describing the output directory for coverage files. Must be a complete directory string. With ArchR input, setoutdir to NULL to create a directory within the input ArchR project directory named MOCHA for saving files.
numCores integer. Number of cores to parallelize peak-calling across multiple cell populations.
verbose Set TRUE to display additional messages. Default is FALSE.
force Optional, whether to force creation of coverage files if they already exist. Default is FALSE.
Value

tileResults A MultiAssayExperiment object containing ranged data for each tile

Examples

```r
## Not run:
# Starting from an ArchR Project:
tileResults <- MOCHA::callOpenTiles(
  ArchRProj = myArchRProj,
  cellPopLabel = "cellype_labeling",
  cellPopulations = "CD4",
  TxDb = "TxDb.Hsapiens.UCSC.hg38.refGene",
  OrgDb = "org.Hs.eg.db",
  numCores = 1
)

## End(Not run)

# Starting from GRangesList
if (requireNamespace("BSgenome.Hsapiens.UCSC.hg19") &
    requireNamespace("TxDb.Hsapiens.UCSC.hg38.refGene") &
    requireNamespace("org.Hs.eg.db")
) {
tiles <- MOCHA::callOpenTiles(
  ATACFragments = MOCHA::exampleFragments,
  cellColData = MOCHA::exampleCellColData,
  blackList = MOCHA::exampleBlackList,
  genome = "BSgenome.Hsapiens.UCSC.hg19",
  TxDb = "TxDb.Hsapiens.UCSC.hg38.refGene",
  OrgDb = "org.Hs.eg.db",
  outDir = tempdir(),
  cellPopLabel = "Clusters",
  cellPopulations = c("C2", "C5"),
  numCores = 1
)
}
```

Description

combineSampleTileMatrix combines all celltypes in a SampleTileMatrix object into a SummarizedExperiment with one single matrix across all cell types and samples, annotating GC bias using chromVAR.
differentialsToGRanges

Usage

combineSampleTileMatrix(SampleTileObj, NAtoZero = TRUE, verbose = FALSE)

Arguments

SampleTileObj The SummarizedExperiment object output from getSampleTileMatrix containing your sample-tile matrices
NAtoZero Set NA values in the sample-tile matrix to zero
verbose Set TRUE to display additional messages. Default is FALSE.

Value

TileCorr A data.table correlation matrix

differentialsToGRanges
differentialsToGRanges Converts a data.frame matrix to a GRanges, preserving additional columns as GRanges metadata

Description

differentialsToGRanges Converts a data.frame matrix to a GRanges, preserving additional columns as GRanges metadata

Usage

differentialsToGRanges(differentials, tileColumn = "Tile")

Arguments

differentials a matrix/data.frame with a column tileColumn containing region strings in the format "chr:start-end"
tileColumn name of column containing region strings. Default is "Tile".

Value

a GRanges containing all original information
Description

Example input of a blackList extracted from the PBMC_Small dataset consisting of 2k cells and spanning chr1 and 2 (~2-300MB). The data is publicly available with the ArchR package at <https://www.archrproject.com/reference/getTestProject.html>

Usage

```r
eexampleBlackList
```

Format

A GRanges object with 210 ranges and 2 metadata columns

Description

Example input of cellColData extracted from the PBMC_Small dataset consisting of 2k cells and spanning chr1 and 2 (~2-300MB). The data is publicly available with the ArchR package at <https://www.archrproject.com/reference/getTestProject.html>

Usage

```r
eexampleCellColData
```

Format

A DataFrame with 2217 rows and 3 columns

Description

Example input of ATAC fragments extracted from the PBMC_Small dataset consisting of 2k cells and spanning chr1 and 2 (~2-300MB). This subset consists of two cell populations: Clusters C2 and C5. The data is publicly available with the ArchR package at <https://www.archrproject.com/reference/getTestProject.html>

Usage

```r
eexampleFragments
```
Format

A list of 2 GRanges objects

extractRegion extractRegion

Description

extractRegion will extract the coverage files created by callOpenTiles and return a specific region’s coverage

Usage

extractRegion(
 SampleTileObj,
 region,
 cellPopulations = "ALL",
 groupColumn = NULL,
 subGroups = NULL,
 sampleSpecific = FALSE,
 approxLimit = 1e+05,
 binSize = 250,
 numCores = 1,
 verbose = FALSE
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SampleTileObj</td>
<td>The SummarizedExperiment object output from getSampleTileMatrix</td>
</tr>
<tr>
<td>region</td>
<td>a GRanges object or vector or strings containing the regions of interest. Strings must be in the format "chr:start-end", e.g. "chr4:1300-2222".</td>
</tr>
<tr>
<td>cellPopulations</td>
<td>vector of strings. Cell subsets for which to call peaks. This list of group names must be identical to names that appear in the SampleTileObj. Optional, if cellPopulations='ALL', then peak calling is done on all cell populations. Default is 'ALL'.</td>
</tr>
<tr>
<td>groupColumn</td>
<td>Optional, the column containing sample group labels for returning coverage within sample groups. Default is NULL, all samples will be used.</td>
</tr>
<tr>
<td>subGroups</td>
<td>a list of subgroup(s) within the groupColumn from the metadata. Optional, default is NULL, all labels within groupColumn will be used.</td>
</tr>
<tr>
<td>sampleSpecific</td>
<td>If TRUE, get a sample-specific count dataframe out. Default is FALSE, average across samples and get a dataframe out.</td>
</tr>
<tr>
<td>approxLimit</td>
<td>Optional limit to region size, where if region is larger than approxLimit basepairs, binning will be used. Default is 100000.</td>
</tr>
<tr>
<td>binSize</td>
<td>Optional, size of bins in basepairs when binning is used. Default is 250.</td>
</tr>
</tbody>
</table>
filterCoAccessibleLinks

numCores integer. Number of cores to parallelize peak-calling across multiple cell populations

verbose Set TRUE to display additional messages. Default is FALSE.

Value

countSE a SummarizedExperiment containing coverage for the given input cell populations.

Examples

```r
## Not run:
countSE <- MOCHA::extractRegion(
  SampleTileObj = SampleTileMatrices,
  cellPopulations = "ALL",
  region = "chr1:18137866-38139912",
  numCores = 30,
  sampleSpecific = FALSE
)

## End(Not run)
```

filterCoAccessibleLinks

Description

filterCoAccessibleLinks will filter the output from getCoAccessibleLinks by a threshold, retaining links with an absolute correlation greater than the threshold. This function also adds the chr, start, and end site of each link to the output table.

Usage

```r
filterCoAccessibleLinks(TileCorr, threshold = 0.5)
```

Arguments

- **TileCorr** The correlation table output from getCoAccessibleLinks
- **threshold** Keep

Value

FilteredTileCorr The filtered correlation table with chr, start, and end site of each link
Examples

```r
## Not run:
# links is the output of MOCHA::getCoAccessibleLinks
MOCHA::filterCoAccessibleLinks(links, threshold = 0.5)

## End(Not run)
```

finalModelObject finalModelObject

Description

Trained MOCHA models - LOESS and linear regression

Usage

```r
finalModelObject
```

Format

A list of lists containing 2 items: "Loess" and "Linear" each with "Total", "Max", and "Intercept"

- **Loess** LOESS model
- **Linear** Linear model

getAltTSS Annotate Peaks falling in Transcription Start Sites (TSS) and identify alternatively regulated TSSs for each gene.

Description

getAltTSS Pulls out all peaks that fall in TSS, annotates them with the name of gene, and identifies genes that have evidence for alternatively regulated TSSs, including both type i (only some of the open TSSs for a gene are significantly more (or less) accessible), and type ii (multiple TSSs are significant different, with some being more accessible and others less). Alternatively, this function will return all open TSSs with differential measurements if the returnAllTSS flag is set to TRUE.

Usage

```r
getAltTSS(
  completeDAPs,
  returnAllTSS = FALSE,
  nuancedTSS = TRUE,
  nuancedTSSGap = 150,
  threshold = 0.2,
  TxDb,
  OrgDb
)
```
getCellPopMatrix

Arguments

- **completeDAPs**
 GRanges object that contains the differential measurements across all peaks (unfiltered DAPs). Will also work with data.frame or data.table version of a GRanges object. If you want alternatively regulated TSSs, the object must include a column names 'FDR', and 'Log2FC_C', which is standard for MOCHA differentials.

- **returnAllTSS**
 Flag to return all TSSs with DAPs measurements, without filtering for alternative TSS usage. If multiple TSSs fall within the same tile, then that tile will be repeated for each TSS.

- **nuancedTSS**
 True/False flag to determine if alternative TSS genes should be filtered out if all their differential TSS usage falls within too small of a range. Default is TRUE.

- **nuancedTSSGap**
 Minimum distance between TSSs needed for them to considered distinctly regulated TSSs. If two TSSs are too close, it is unclear and highly unlikely that ATAC data can distinguish between them. Default is 150 bp.

- **threshold**
 FDR Threshold for determining significant vs non-significant changes in accessibility. Following MOCHA’s standards, default is 0.2.

- **TxDb**
 The TxDb-class transcript annotation package for your organism (e.g. "TxDb.Hsapiens.UCSC.hg38.refGene"). This must be installed. See Bioconductor AnnotationData Packages.

- **OrgDb**
 The OrgDb-class genome wide annotation package for your organism (e.g. "org.Hs.eg.db"). This must be installed. See Bioconductor AnnotationData Packages.

Value

tpeaks A GRanges containing annotated peaks falling in TSS

Description

getCellPopMatrix pulls out the SampleTileMatrix of tiles called in one given cell population.

Usage

```
getCellPopMatrix(
  SampleTileObj,
  cellPopulation,
  dropSamples = TRUE,
  NAtoZero = TRUE
)
```
getCoAccessibleLinks

Arguments

SampleTileObj: The output from getSampleTileMatrix, a SummarizedExperiment of pseudobulk intensities across all tiles & cell types.

cellPopulation: The cell population you want to pull out.
dropSamples: Boolean flag to determine whether to drop samples that were too small for peak calling.

NAtoZero: Boolean flag to determine whether to replace NAs with zero

Value

sampleTileMatrix: a matrix of samples by called tiles for a given cell population.

Description

getCoAccessibleLinks takes an input set of regions (tiles) and finds co-accessible neighboring regions within a window. Co-accessibility is defined as the correlation between two region intensity (openness) across samples.

Usage

getCoAccessibleLinks(
 SampleTileObj,
 cellPopulation = "All",
 regions,
 chrChunks = 1,
 windowSize = 1 * 10^6,
 numCores = 1,
 ZI = TRUE,
 approximateTile = FALSE,
 verbose = FALSE
)

Arguments

SampleTileObj: The SummarizedExperiment object output from getSampleTileMatrix containing your sample-tile matrices.

cellPopulation: A string denoting the cell population of interest, which must be present in SampleTileObj.

regions: a GRanges object or vector or strings containing the regions on which to compute co-accessible links. Strings must be in the format "chr:start-end", e.g., "chr4:1300-2222". Can be the output from getDifferentialAccessibleTiles.
getCoverage

chrChunks
This functions subsets by groups of chromosome, and then parallelizes within each group of chromosomes when running correlations. This method keeps memory low. To speed things up on high performing platforms, you can chunk out more than one chromosome at a time. Default is chrChunks = 1, so only one chromosome at a time.

windowSize
the size of the window, in basepairs, around each input region to search for co-accessible links

numCores
Optional, the number of cores to use with multiprocessing. Default is 1.

ZI
boolean flag that enables zero-inflated (ZI) Spearman correlations to be used. Default is TRUE. If FALSE, skip zero-inflation and calculate the normal Spearman.

approximateTile
If set to TRUE, it will use all tiles that overlap with the regions given, instead of finding an exact match to the regions variable. Default is FALSE.

verbose
Set TRUE to display additional messages. Default is FALSE.

Details
The technical details of the zero-inflated correlation can be found here:
while the implementation (scHOT R package), can be found here: http://www.bioconductor.org/packages/release/bioc/html/scHOT.html

Value
TileCorr A data.table correlation matrix

getCoverage

Get sample-specific coverage files for each sample-cell population.

Description
getCoverage takes the output of MOCHA::getPopFrags and returns a GRanges of single-basepair resolution coverage.

Usage
getCoverage(
 popFrags,
 normFactor,
 TxDb,
 cl,
 filterEmpty = FALSE,
 verbose = FALSE
)
getDifferentialAccessibleTiles

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>popFrags</td>
<td>GRangesList of fragments for all sample/cell populations</td>
</tr>
<tr>
<td>normFactor</td>
<td>Normalization factor. Can be either be one, in which case all coverage files will be normalized by the same value, or the same length as the GRangesList</td>
</tr>
<tr>
<td>TxDb</td>
<td>The TxDb-class transcript annotation package for your organism (e.g. "TxDb.Hsapiens.UCSC.hg38.refGene")</td>
</tr>
<tr>
<td>cl</td>
<td>cl argument to <code>pblapply</code></td>
</tr>
<tr>
<td>filterEmpty</td>
<td>True/False flag on whether or not to carry forward regions without coverage.</td>
</tr>
<tr>
<td>verbose</td>
<td>Boolean variable to determine verbosity of output.</td>
</tr>
</tbody>
</table>

Value

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>popCounts</td>
<td>A GRangesList of coverage for each sample and cell population</td>
</tr>
</tbody>
</table>

Description

gGetDifferentialAccessibleTiles allows you to determine whether regions of chromatin are differentially accessible between groups by conducting a test

Usage

```r
getDifferentialAccessibleTiles(
  SampleTileObj,
  cellPopulation,
  groupColumn,
  foreground,
  background,
  signalThreshold = 12,
  minZeroDiff = 0.5,
  fdrToDisplay = 0.2,
  outputGRanges = TRUE,
  numCores = 1,
  verbose = FALSE
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SampleTileObj</td>
<td>The SummarizedExperiment object output from <code>getSampleTileMatrix</code></td>
</tr>
<tr>
<td>cellPopulation</td>
<td>A string denoting the cell population of interest</td>
</tr>
<tr>
<td>groupColumn</td>
<td>The column containing sample group labels</td>
</tr>
</tbody>
</table>
getDifferentialAccessibleTiles

foreground The foreground group of samples for differential comparison
background The background group of samples for differential comparison
signalThreshold Minimum median intensity required to keep tiles for differential testing to increase statistical power in small sample cohorts. Default is 12.
minZeroDiff Minimum difference in average dropout rates across groups require to keep tiles for differential testing. Default is 0.5 (50%).
fdrToDisplay False-discovery rate used only for standard output messaging. Default is 0.2.
outputGRanges Outputs a GRanges if TRUE and a data.frame if FALSE. Default is TRUE.
numCores The number of cores to use with multiprocessing. Default is 1.
verbose Set TRUE to display additional messages. Default is FALSE.

Value

full_results The differential accessibility results as a GRanges or matrix data.frame depending on the flag `outputGRanges`.

Examples

```r
## Not run:
cellPopulation <- "MAIT"
foreground <- "Positive"
background <- "Negative"
# Standard output will display the number of tiles found below a false-discovery rate threshold.
# This parameter does not filter results and only affects the aforementioned message.
fdrToDisplay <- 0.2
# Choose to output a GRanges or data.frame.
# Default is TRUE
outputGRanges <- TRUE
# SampleTileMatrices is the output of MOCHA::getSampleTileMatrix
differentials <- MOCHA::getDifferentialAccessibleTiles(
  SampleTileObj = SampleTileMatrices,
  cellPopulation = cellPopulation,
  groupColumn = groupColumn,
  foreground = foreground,
  background = background,
  fdrToDisplay = fdrToDisplay,
  outputGRanges = outputGRanges,
  numCores = numCores
)
## End(Not run)
```
getModelValues

getModelValues Pull out a data.frame of model values (slope, significance, and std.error) for a given factor from the SummarizedExperiment output of runZIGLMM.

Usage

getModelValues(object, specificVariable)

Arguments

object A SummarizedExperiment object generated from runZIGLMM.
specificVariable A string, describing the factor of influence.

Value

A data.frame of slopes, significance, and standard error for one factor.

Examples

Not run:
age_df <- getModelValues(runZIGLMM_output, "Age")
End(Not run)

getPopFrags

Extract fragments by populations from an ArchR Project

Description

getPopFrags returns a list of sample-specific fragments per cell population as a GRangesList.

Usage

getPopFrags(
 ArchRProj,
 cellPopLabel,
 cellSubsets = "ALL",
 poolSamples = FALSE,
 numCores = 1,
 verbose = FALSE
)
Arguments

- **ArchRProj**: The ArchR Project.
- **cellPopLabel**: The name of the metadata column of the ArchR Project that contains the populations of cells you want to extract fragments from.
- **cellSubsets**: Default is 'ALL'. If you want to export only some populations, then give it a list of group names. This needs to be unique - no duplicated names. This list of group names must be identical to names that appear in the given cellPopLabel metadata column of the ArchR Project.
- **poolSamples**: Set TRUE to pool sample-specific fragments by cell population. By default this is FALSE and sample-specific fragments are returned.
- **numCores**: Number of cores to use.
- **verbose**: Set TRUE to display additional messages. Default is FALSE.

Value

A list of GRanges containing fragments. Each GRanges corresponds to a population defined by cellSubsets and sample.

Description

getSampleTileMatrix takes the output of peak calling with callOpenTiles and creates sample-tile matrices containing the signal intensity at each tile.

Usage

getSampleTileMatrix(
 tileResults,
 cellPopulations = "ALL",
 groupColumn = NULL,
 threshold = 0.2,
 numCores = 1,
 verbose = FALSE
)

Arguments

- **tileResults**: a MultiAssayExperiment returned by callOpenTiles containing containing peak calling results.
- **cellPopulations**: vector of strings. Cell subsets in TileResults for which to generate sample-tile matrices. This list of group names must be identical to names that appear in the ArchRProject metadata. If cellPopulations='ALL', then peak calling is done on all cell populations in the ArchR project metadata. Default is 'ALL'.
getSampleTileMatrix

groupColumn Optional, the column containing sample group labels for determining consensus tiles within sample groups. Default is NULL, all samples will be used for determining consensus tiles.

threshold Threshold for consensus tiles, the minimum % of samples (within a sample group, if groupColumn is set) that a peak must be called in to be retained. If set to 0, retain the union of all samples’ peaks (this is equivalent to a threshold of 1/numSamples). It is recommended to tune this parameter to omit potentially spurious peaks.

numCores Optional, the number of cores to use with multiprocessing. Default is 1.

verbose Set TRUE to display additional messages. Default is FALSE.

Value

SampleTileMatrices a MultiAssayExperiment containing a sample-tile intensity matrix for each cell population

Examples

Starting from GRangesList
if (
 require(BSgenome.Hsapiens.UCSC.hg19) &&
 require(TxDb.Hsapiens.UCSC.hg38.refGene) &&
 require(org.Hs.eg.db)
) {
 tiles <- MOCHA::callOpenTiles(
 ATACFragments = MOCHA::exampleFragments,
 cellColData = MOCHA::exampleCellColData,
 blackList = MOCHA::exampleBlackList,
 genome = "BSgenome.Hsapiens.UCSC.hg19",
 TxDb = "TxDb.Hsapiens.UCSC.hg38.refGene",
 Org = "org.Hs.eg.db",
 outDir = tempdir(),
 cellPopLabel = "Clusters",
 cellPopulations = c("C2", "C5"),
 numCores = 1
)

 SampleTileMatrices <- MOCHA::getSampleTileMatrix(
 tiles,
 cellPopulations = c("C2", "C5"),
 threshold = 0 # Take union of all samples' open tiles
)
}
GRangesToString

Description

GRangesToString converts a GRanges object to a string in the format 'chr1:100-200'.

Usage

GRangesToString(GR_obj)

Arguments

GR_obj the GRanges object to convert to a string

Value

A string or list of strings in the format 'chr1:100-200' representing ranges in the input GRanges.

MotifEnrichment

Description

Test for enrichment of motifs within Group1 against a background Group2 using a hypergeometric t-test.

Usage

MotifEnrichment(Group1, Group2, motifPosList, type = NULL)

Arguments

Group1 A GRanges object, such as a set of significant differential tiles.
Group2 A GRanges object containing background regions, non-overlapping with Group1
motifPosList A GRangesList of motifs and positions for each motif. Must be named for each motif.
type Optional, name of a metadata column in Group1 and Group2 to test for enrichment the number of unique entries in column given by 'type'. Default is NULL, which tests the number of Ranges.

Value

A data.frame containing enrichment for each group.
MotifSetEnrichmentAnalysis

Description

This analogous to Gene Set Enrichment Analysis. Instead of testing for enrichment of a geneset with a given gene set in a pathway, we are testing the enrichment of a given TF motif set against a motif set downstream of a multiple ligands. If there is enrichment, it’s a sign that that ligand could drive that set of motifs.

Usage

MotifSetEnrichmentAnalysis(
 ligandTFMatrix,
 motifEnrichmentDF,
 motifColumn,
 ligands,
 statColumn,
 statThreshold,
 annotationName = "CellType",
 annotation = "none",
 numCores = 1,
 verbose = FALSE
)

Arguments

ligandTFMatrix NicheNet Ligand-TF matrix
motifEnrichmentDF Dataframe (unfiltered) from ArchR’s peakAnnoEnrich step. Expected to have a column with motif names, and a column with the -log10 adjusted p-values.
motifColumn Column name within the motifEnrichmentDF that has motif names.
ligands Vector of ligands to test
statColumn Column name in motifEnrichmentDF containing the statistic to test
statThreshold Significance threshold used to select significant motif set
annotationName Optional column name for the annotation. Default is "CellType".
annotation Optional annotation value added to all rows of the output motif dataframe. Can be character vector or numeric. Default is "none".
numCores The number of cores to use with multiprocessing. Default is 1.
verbose Set TRUE to display additional messages. Default is FALSE.

Value

specDF A dataframe containing enrichment analysis results
pilotLMEM

Execute a pilot run of single linear model on a subset of data

Description

pilotLMEM Runs linear mixed-effects modeling for continuous, non-zero inflated data using lmer

Usage

pilotLMEM(
ExperimentObj,
cellPopulation = NULL,
modelFormula = NULL,
pilotIndices = 1:10,
verbose = FALSE
)

Arguments

ExperimentObj A SummarizedExperiment object generated from getSampleTileMatrix, chromVAR, or other.
cellPopulation A single cell population on which to run this pilot model
modelFormula The formula to use with lmerTest::lmer, in the format (exp ~ factors). All factors must be found in column names of the ExperimentObj metadata.
pilotIndices A vector of integers defining the subset of the ExperimentObj matrix. Default is 1:10.
verbose Set TRUE to display additional messages. Default is FALSE.

Value

modelList a list of outputs from lmerTest::lmer

pilotZIGLMM

Execute a pilot run of model on a subset of data

Description

pilotLMEM Runs linear mixed-effects modeling for zero inflated data using glmmTMB. TryCatch will catch errors, and return the error and dataframe for troubleshooting.
Usage

pilotZIGLMM(
 TSAM_Object,
 cellPopulation = NULL,
 continuousFormula = NULL,
 ziformula = NULL,
 zi_threshold = 0,
 verbose = FALSE,
 pilotIndices = 1:10
)

Arguments

TSAM_Object A SummarizedExperiment object generated from getSampleTileMatrix, chrom-
 VAR, or other.

cellPopulation A single cell population on which to run this pilot model

continuousFormula

The formula, see glmmTMB. Combined fixed and random effects formula, follow-
 ing lme4 syntax.

ziformula The zero-inflated formula, see glmmTMB. a one-sided (i.e., no response variable)
 formula for zero-inflation combining fixed and random effects: the default ~0
 specifies no zero-inflation. Specifying ~. sets the zero-inflation formula identi-
 cal to the right-hand side of formula (i.e., the conditional effects formula); terms
 can also be added or subtracted. When using ~. as the zero-inflation formula in
 models where the conditional effects formula contains an offset term, the offset
 term will automatically be dropped. The zero-inflation model uses a logit link.

zi_threshold Zero-inflated threshold (range = 0-1), representing the fraction of samples with
 zeros. When the percentage of zeros in the tile is between 0 and zi_threshold,
 samples with zeroes are dropped and only the continous formula is used. Use
 this parameter at your own risk. Default is 0.

verbose Set TRUE to display additional messages. Default is FALSE.

pilotIndices A vector of integers defining the subset of the ExperimentObj matrix. Default is
 1:10.

Value

modelList a list of outputs from glmmTMB::glmmTMB

plotConsensus

Description

plotConsensus Extracts the peak reproducibility and generates a heuristic plots that can be used to
determine the reproducibility threshold used within getSampleTileMatrix.
Usage

plotConsensus(
 tileObject,
 cellPopulations = "All",
 groupColumn = NULL,
 returnPlotList = FALSE,
 returnDFs = FALSE,
 numCores = 1
)

Arguments

tileObject A MultiAssayExperiment object from callOpenTiles,

cellPopulations the cell populations you want to visualize.

groupByColumn Optional parameter, same as in getSampleTileMatrix, which defines whether
 you want to plot reproducibility within each

returnPlotList Instead of one plot with all celltypes/conditions, it returns a list of plots for each
 cell types

returnDFs Instead of a plot, returns a data.frame of the reproducibility across samples. If
 set to false, then it plots the data.frame instead of returning it.

numCores Number of cores to multithread over.

Value

SampleTileObj the input data structure with added gene annotations.

Description

plotRegion Plots the region that you’ve summarized across all cell groupings (groups=initial
getPopFrags() split) with optional motif overlay, chromosome position ideogram, and additional
GRanges tracks. If plotting motif overlay, ensure that motif annotations have been added to your
counts SummarizedExperiment. A basic plot can be rendered with just a counts SummarizedEx-
periment, but additional formatting arguments allow for further customization. Note that to show
specific genes with the option ‘whichGene’ the RMariaDB package must be installed.

Usage

plotRegion(
 countSE,
 plotType = "area",
 base_size = 12,
plotRegion

```
counts_color = NULL,
range_label_size = 2,
legend.position = NULL,
facet_label_side = "top",
counts_color_var = "Groups",
counts_group_colors = NULL,
counts_theme_ls = NULL,
motifSetName = NULL,
motif_y_space_factor = 4,
motif_stagger_labels_y = FALSE,
motif_weights = NULL,
motif_weight_name = "Motif Weight",
motif_weight_colors = c(darkblue = -10, gray = 0, darkred = 10),
motif_lab_size = 1,
motif_lab_alpha = 0.25,
motif_line_alpha = 0.25,
motif_line_size = 0.75,
showGene = TRUE,
whichGene = NULL,
db_id_col = "REFSEQ",
collapseGenes = "None",
gene_theme_ls = NULL,
additionalGRangesTrack = NULL,
linkdf = NULL,
showIdeogram = TRUE,
ideogram_genome = "hg19",
relativeHeights = c(Chr = 0.9, `Normalized Counts` = 7, Links = 1.5, Genes = 2,
                   AdditionalGRanges = 4.5),
verbose = FALSE
```

Arguments

- **countSE**: A SummarizedExperiment from MOCHA::getCoverage
- **plotType**: Options include 'overlaid', 'area', 'line', or 'RidgePlot'. default is 'area', which will plot a separate track for each group with the area filled in under the curve. Setting plotType to 'overlaid' will overlay count plot histograms across samples, instead of faceting out separately. Setting plotType to 'RidgePlot' will generate a RidgePlot across all groups.
- **base_size**: Numeric, default 12. Global plot base text size parameter
- **counts_color**: Optional color palette. A named vector of color values where names are unique values in the 'color_var' column
- **range_label_size**: Numeric value, default 4. Text size for the y-axis range label
- **legend.position**: Any acceptable `legend.position` argument to theme(). Default NULL will place legend for overlaid plots at (0.8,0.8), or to the "right" for faceted plots.
plotRegion

`facet_label_side`
Direction character value, default "top". Can also be "right", "left", or "bottom". Position of facet label.

`counts_color_var`
Character value, default "Groups". Column name from countdf to use to color counts plots. Only used if `counts_group_colors` provided.

`counts_group_colors`
Optional named color vector. Values as colors, names are levels of `counts_color_var`. If provided, will color the plots specifically using `scale_color_manual()`.

`counts_theme_ls`
A list of named theme arguments passed to theme(). For example, `list(axis.ticks = element_blank())`. Default NULL will use `.counts_plot_default_theme`.

`motifSetName`
The name of the motif set in ArchRProj to use for annotation. Example: 'JasparMotifs'

`motif_y_space_factor`
A factor for vertical spacing between motif labels. Default 4. Increase to make labels farther apart, decrease to make labels closer.

`motif_stagger_labels_y`
= FALSE Logical value, default FALSE. If TRUE, will stagger motif labels in adjacent columns in the vertical direction.

`motif_weights`
Optional numeric vector, default NULL. If provided will be used to color motif labels by the weighted values.

`motif_weight_name`
Character value, default "Motif Weight". Used to label the legend for motif colors.

`motif_weight_colors`
Named numeric vector. Names should be color values and breaks should be the corresponding values of `motif_weights`. Values outside the highest and lowest value will appear as max or min defined color value.

`motif_lab_size`
Numeric value, default 1. Size of motif labels.

`motif_lab_alpha`
Numeric value, default 0.25. Alpha for motif labels.

`motif_line_alpha`
Numeric value, default 0.25. Alpha for motif lines.

`motif_line_size`
Numeric value, default 1. Size of motif lines.

`showGene`
Logical value, default TRUE. Whether or not the gene track should be plotted.

`whichGene`
Name of gene for plotting this specific gene in region.

`db_id_col`
Character value. Column in 'OrgDb' containing the output id for `whichGene` plotting. Default "REFSEQ".

`collapseGenes` Options include 'collapseAll', 'longestTx', or 'None' Default 'None' will plot the expanded view of the reference genes, 'collapseAll' if you want collapse the gene tracks into one, and 'longestTx' will only plot the longest transcript of each gene.
gene_theme_ls Named list of parameters passed to `theme()` for the gene plot. Default NULL will use `.gene_plot_theme`

additionalGRangesTrack A GRanges object containing additional track plot data

linkdf A data frame with co-accessible links to display as an additional track

showIdeogram Logical value, default TRUE. If TRUE plots the chromosome ideogram at the top of the multi-track plot

ideogram_genome Character value, a genome name for the ideogram plot. Default 'hg19'

relativeHeights Named numeric vector of relative heights for each of the 4 track plots to enable clean visualization when there are many tracks. Unused tracks will be ignored. Default value = c('Chr' = 0.9, 'Normalized Counts' = 7, 'Genes'= 2, 'AdditionalGRanges' = 4.5)

verbose Set TRUE to display additional messages. Default is FALSE.

Value

The input ggplot object with motif labels overlaid

Examples

```r
## Not run:
# my_count_SE is a counts data frame generated by extractRegion()

# Simple counts + ideogram + all genes:
plotRegion(countSE = my_count_SE)

# Motif overlay for a project my_proj containing "JasparMotifs" annotations:
plotRegion(  
countSE = my_count_SE, motifSetName = "JasparMotifs",
    motif_lab_alpha = 1, motif_line_alpha = 1 
)

# Motif overlay w/ weights:
plotRegion(  
countSE = my_count_SE, motifSetName = "JasparMotifs", motif_lab_alpha = 1,
    motif_line_alpha = 1, motif_weights = my_enrichment_weights 
)

## End(Not run)
```
runLMEM

Run Linear Mixed-Effects Modeling for continuous, non-zero inflated data

Description

runLMEM Runs linear mixed-effects modeling for continuous, non-zero inflated data using lmer

Usage

runLMEM(
 ExperimentObj,
 modelFormula = NULL,
 initialSampling = 5,
 verbose = FALSE,
 numCores = 1
)

Arguments

ExperimentObj A SummarizedExperiment object generated from getSampleTileMatrix, chromosome, or other. It is expected to contain only one assay, or only the first assay will be used for the model. Data should not be zero-inflated.

modelFormula The formula to use with lmerTest::lmer, in the format (exp ~ factors). All factors must be found in column names of the ExperimentObj metadata. modelFormula must start with 'exp' as the response. See lmer.

initialSampling Size of data to use for pilot

verbose Set TRUE to display additional messages. Default is FALSE.

numCores integer. Number of cores to parallelize across.

Value

results a SummarizedExperiment containing LMEM results

Examples

Not run:
modelList <- runLMEM(ExperimentObj,
 modelFormula = NULL,
 initialSampling = 5,
 verbose = FALSE,
 numCores = 1
)

End(Not run)
runZIGLMM

Run Zero-inflated Generalized Linear Mixed Modeling on pseudobulked scATAC data

Description

runZIGLMM Runs linear mixed-effects modeling for zero-inflated data using `glmmTMB`.

Usage

```r
runZIGLMM(
  TSAM_Object,
  cellPopulation = "all",
  continuousFormula = NULL,
  ziformula = NULL,
  zi_threshold = 0,
  initialSampling = 5,
  verbose = FALSE,
  numCores = 1
)
```

Arguments

- **TSAM_Object**: A SummarizedExperiment object generated from getSampleTileMatrix.
- **cellPopulation**: Name of a cell type(s), or 'all'. The function will combine the cell types mentioned into one matrix before running the model.
- **continuousFormula**: The formula for the continuous data that should be used within `glmmTMB`. It should be in the format (exp ~ factors). All factors must be found in column names of the TSAM_Object metadata, except for CellType, FragNumber and CellCount, which will be extracted from the TSAM_Object. modelFormula must start with exp as the response. See `glmmTMB`.
- **ziformula**: The formula for the zero-inflated data that should be used within `glmmTMB`. It should be in the format (~ factors). All factors must be found in column names of the TSAM_Object colData metadata, except for CellType, FragNumber and CellCount, which will be extracted from the TSAM_Object.
- **zi_threshold**: Zero-inflated threshold (range = 0-1), representing the fraction of samples with zeros. When the percentage of zeros in the tile is between 0 and zi_threshold, samples with zeroes are dropped and only the continous formula is used. Use this parameter at your own risk. Default is 0.
- **initialSampling**: Size of data to use for pilot
- **verbose**: Set TRUE to display additional messages. Default is FALSE.
- **numCores**: integer. Number of cores to parallelize across.
StringsToGRanges

Value

results a SummarizedExperiment containing LMEM results

Examples

```r
## Not run:
modelList <- runZIGLMM(STM[c(1:1000), ],
cellPopulation = "CD16 Mono",
continuousFormula = exp ~ Age + Sex + days_since_symptoms + (1 | PTID),
ziformula = ~ FragNumber + Age,
verbose = TRUE,
numCores = 35
)
```

End(Not run)

Description

StringsToGRanges Turns a list of strings in the format chr1:100-200 into a GRanges object

Usage

```r
StringsToGRanges(regionString)
```

Arguments

- **regionString**
 A string or list of strings each in the format chr1:100-200

Value

a GRanges object with ranges representing the input string(s)

subsetMOCHAObject subsetObject

Description

subsetObject subsets a tileResults-type object (from callOpenTiles), or a SummarizedExperiment-type object (from getSampleTileMatrix), either by cell type or sample metadata.
testCoAccessibilityChromVar

Usage

```r
subsetMOCHAObject(
  Object,
  subsetBy,
  groupList,
  removeNA = TRUE,
  subsetPeaks = TRUE,
  verbose = FALSE
)
```

Arguments

- **Object**: A MultiAssayExperiment or RangedSummarizedExperiment.
- **subsetBy**: The variable to subset by. Can either be ‘celltype’, or a column from the sample metadata (see ‘colData(Object)’).
- **groupList**: the list of cell type names or sample-associated data that should be used to subset the Object
- **removeNA**: If TRUE, removes groups in groupList that are NA. If FALSE, keep groups that are NA.
- **subsetPeaks**: If ‘subsetBy’ = ‘celltype’, subset the tile set to tiles only called in those cell types. Default is TRUE.
- **verbose**: Set TRUE to display additional messages. Default is FALSE.

Value

Object the input Object, filtered down to either the cell type or samples desired.

description()

testCoAccessibilityChromVar
testCoAccessibilityChromVar

testCoAccessibilityChromVar takes an input set of tile pairs and tests whether they are significantly different compared to a background set found via ChromVAR

Usage

```r
testCoAccessibilityChromVar(
  SampleTileObj,
  tile1,
  tile2,
  numCores = 1,
  ZI = TRUE,
  backNumber = 1000,
)```
returnBackGround = FALSE,
highMem = FALSE,
verbose = TRUE
)

Arguments

SampleTileObj  The SummarizedExperiment object output from getSampleTileMatrix containing your sample-tile matrices
tile1      vector of indices or tile names (chrX:100-2000) for tile pairs to test (first tile in each pair)
tile2      vector of indices or tile names (chrX:100-2000) for tile pairs to test (second tile in each pair)
numCores   Optional, the number of cores to use with multiprocessing. Default is 1.
ZI         boolean flag that enables zero-inflated (ZI) Spearman correlations to be used. Default is TRUE. If FALSE, skip zero-inflation and calculate the normal Spearman.
backNumber number of ChromVAR-matched background pairs. Default is 1000.
returnBackGround  Boolean, if TRUE return the background correlations as well as foreground. Default is FALSE.
highMem     Boolean to control memory usage. Default is FALSE. Only set highMem to TRUE if you have plenty of memory and want to run this function faster.
verbose     Set TRUE to display additional messages. Default is FALSE.

Value

foreGround A data.frame with Tile1, Tile2, Correlation, and p-value for that correlation compared to the background

Description

testCoAccessibilityRandom takes an input set of tile pairs and tests whether they are significantly different compared to random, non-overlapping background set.
Usage

testCoAccessibilityRandom(
    SampleTileObj, 
    tile1, 
    tile2, 
    numCores = 1, 
    ZI = TRUE, 
    backNumber = 1000, 
    calcPValue = TRUE, 
    returnBackGround = FALSE, 
    verbose = TRUE 
)

Arguments

SampleTileObj The SummarizedExperiment object output from getSampleTileMatrix containing your sample-tile matrices

tile1 vector of indices or tile names (chrX:100-2000) for tile pairs to test (first tile in each pair)

tile2 vector of indices or tile names (chrX:100-2000) for tile pairs to test (second tile in each pair)

numCores Optional, the number of cores to use with multiprocessing. Default is 1.

ZI boolean flag that enables zero-inflated (ZI) Spearman correlations to be used. Default is TRUE. If FALSE, skip zero-inflation and calculate the normal Spearman.

backNumber number of background pairs. Default is 1000.

calcPValue Boolean, if TRUE calculate p-values. Default is TRUE.

returnBackGround Boolean, if TRUE return the background correlations as well as foreground. Default is FALSE.

verbose Set TRUE to display additional messages. Default is FALSE.

Value

foreGround A data.frame with Tile1, Tile2, Correlation, and p-value for that correlation compared to the background

Description

Trained regression model for predicting a cutoff threshold for peak calling. Call: loess(formula = OptimalCutpoint ~ Ncells, data = thresh_df)
youden_threshold

Usage

youden_threshold

Format

A list of 18 regression variables

Details

Number of Observations: 27 Equivalent Number of Parameters: 5.98 Residual Standard Error: 0.02121
**Index**

<table>
<thead>
<tr>
<th>* datasets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>.counts_plot_default_theme</td>
<td>3</td>
</tr>
<tr>
<td>.gene_plot_theme</td>
<td>3</td>
</tr>
<tr>
<td>exampleBlackList</td>
<td>13</td>
</tr>
<tr>
<td>exampleCellColData</td>
<td>13</td>
</tr>
<tr>
<td>exampleFragments</td>
<td>13</td>
</tr>
<tr>
<td>finalModelObject</td>
<td>16</td>
</tr>
<tr>
<td>youden_threshold</td>
<td>38</td>
</tr>
<tr>
<td>.callOpenTiles_ArchR(callOpenTiles), 8</td>
<td></td>
</tr>
<tr>
<td>.counts_plot_default_theme</td>
<td>3</td>
</tr>
<tr>
<td>.gene_plot_theme</td>
<td>3</td>
</tr>
<tr>
<td>addAccessibilityShift</td>
<td>4</td>
</tr>
<tr>
<td>addMotifSet</td>
<td>4</td>
</tr>
<tr>
<td>annotateTiles</td>
<td>5</td>
</tr>
<tr>
<td>bulkDimReduction</td>
<td>6</td>
</tr>
<tr>
<td>bulkUMAP</td>
<td>7</td>
</tr>
<tr>
<td>callOpenTiles</td>
<td>8</td>
</tr>
<tr>
<td>callOpenTiles,ArchRProject-method (callOpenTiles), 8</td>
<td></td>
</tr>
<tr>
<td>callOpenTiles,GRangesList-method (callOpenTiles), 8</td>
<td></td>
</tr>
<tr>
<td>callOpenTiles,list-method (callOpenTiles), 8</td>
<td></td>
</tr>
<tr>
<td>combineSampleTileMatrix</td>
<td>11</td>
</tr>
<tr>
<td>differentialsToGRanges</td>
<td>12</td>
</tr>
<tr>
<td>exampleBlackList</td>
<td>13</td>
</tr>
<tr>
<td>exampleCellColData</td>
<td>13</td>
</tr>
<tr>
<td>exampleFragments</td>
<td>13</td>
</tr>
<tr>
<td>extractRegion</td>
<td>14</td>
</tr>
<tr>
<td>filterCoAccessibleLinks</td>
<td>15</td>
</tr>
<tr>
<td>finalModelObject</td>
<td>16</td>
</tr>
<tr>
<td>getAltTSS</td>
<td>16</td>
</tr>
<tr>
<td>getBSgenome</td>
<td>10</td>
</tr>
<tr>
<td>getCellPopMatrix</td>
<td>17</td>
</tr>
<tr>
<td>getCoAccessibleLinks</td>
<td>18</td>
</tr>
<tr>
<td>getCoverage</td>
<td>19</td>
</tr>
<tr>
<td>getDifferentialAccessibleTiles</td>
<td>20</td>
</tr>
<tr>
<td>getModelValues</td>
<td>22</td>
</tr>
<tr>
<td>getPopFrgs</td>
<td>22</td>
</tr>
<tr>
<td>getSampleTileMatrix</td>
<td>23</td>
</tr>
<tr>
<td>glmmTMB</td>
<td>27, 28, 34</td>
</tr>
<tr>
<td>GRangesToString</td>
<td>25</td>
</tr>
<tr>
<td>lmer</td>
<td>27, 33</td>
</tr>
<tr>
<td>MotifEnrichment</td>
<td>25</td>
</tr>
<tr>
<td>MotifSetEnrichmentAnalysis</td>
<td>26</td>
</tr>
<tr>
<td>pblapply</td>
<td>20</td>
</tr>
<tr>
<td>pilotLMEM</td>
<td>27</td>
</tr>
<tr>
<td>pilotZIGLMM</td>
<td>27</td>
</tr>
<tr>
<td>plotConsensus</td>
<td>28</td>
</tr>
<tr>
<td>plotRegion</td>
<td>29</td>
</tr>
<tr>
<td>runLMEM</td>
<td>33</td>
</tr>
<tr>
<td>runZIGLMM</td>
<td>34</td>
</tr>
<tr>
<td>StringsToGRanges</td>
<td>35</td>
</tr>
<tr>
<td>subsetMOCHAObject</td>
<td>35</td>
</tr>
<tr>
<td>testCoAccessibilityChromVar</td>
<td>36</td>
</tr>
<tr>
<td>testCoAccessibilityRandom</td>
<td>37</td>
</tr>
<tr>
<td>umap</td>
<td>8</td>
</tr>
<tr>
<td>youden_threshold</td>
<td>38</td>
</tr>
</tbody>
</table>