Package ‘MPkn’

May 7, 2018

<table>
<thead>
<tr>
<th>Type</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Calculations of One Discrete Model in Several Time Steps</td>
</tr>
<tr>
<td>Version</td>
<td>0.1.0</td>
</tr>
<tr>
<td>Date</td>
<td>2018-05-03</td>
</tr>
<tr>
<td>Author</td>
<td>Josef Brejcha</td>
</tr>
<tr>
<td>Maintainer</td>
<td>Josef Brejcha <brchjo@gmail.com></td>
</tr>
<tr>
<td>Suggests</td>
<td>knitr, rmarkdown, matrixcalc, markovchain, matlib</td>
</tr>
<tr>
<td>VignetteBuilder</td>
<td>knitr</td>
</tr>
</tbody>
</table>
| **Description** | A matrix discrete model having the form

\[M[i+1] = (I + Q) \times M[i]. \]

The calculation of the values of \(M[i] \) only for pre-selected values of \(i \). The method of calculation is presented in the vignette 'Fundament' ('Base'). Maybe it’s own idea of the author of the package. A weakness is that the method gives information only in selected steps of the process. It mainly refers to cases with matrices that are not Markov chain. If \(Q \) is Markov transition matrix, then MUPlK() may be used to calculate the steady-state distribution \(p \) for

\[p = Q \times p. \]

Matrix power of non integer (matrix.powerni()) gives the same results as a mpower() from package 'matlib'.

References:

<table>
<thead>
<tr>
<th>License</th>
<th>GPL (>= 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoding</td>
<td>UTF-8</td>
</tr>
<tr>
<td>LazyData</td>
<td>true</td>
</tr>
<tr>
<td>RoxygenNote</td>
<td>6.0.1</td>
</tr>
<tr>
<td>NeedsCompilation</td>
<td>no</td>
</tr>
</tbody>
</table>
Calculations of One Discrete Model in Several Time Steps

Description

A matrix discrete model having the form $M[i+1] = (I + Q)\times M[i]$. The calculation of the values of $M[i]$ only for pre-selected values of i. The method of calculation is presented in the vignette 'Fundament' ('Base'). Maybe it's own idea of the author of the package. A weakness is that the method gives information only in selected steps of the process. It mainly refers to cases with matrices that are not Markov chain.

If Q is markov transition matrix, then `MUPkL` may be used to calculate the steady-state distribution p for $p = Q \times p$. See example bottom.

Matrix power of non integer (`matrix.powerni`) gives the same results as a `mpower` from package `matlib`.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>MPkn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>0.1.0</td>
</tr>
<tr>
<td>Date:</td>
<td>2018-05-03</td>
</tr>
<tr>
<td>License:</td>
<td>GPL (>= 3)</td>
</tr>
</tbody>
</table>

Author(s)

Josef Brejcha

Maintainer: Josef Brejcha <brchjo@gmail.com>
References

Donald R. Burleson, Ph.D. "ON NON-INTEGER POWERS OF A SQUARE MATRIX", (2005), http://www.blackmesapress.com/Eigenvalues.htm

Examples

```r
require(MPkn)
require(markovchain)
options(digits = 14)
n = 12
k = 2
rz = 11
P = array(0, c(rz, rz))
for (i in 1:rz){
  po = runif(rz)
  P[i, ] = po/sum(po)
}
I = diag(1, rz, rz)
Myy = MUPkl(P, P, I, n, k, c(1:rz))
StSy = NULL
for (i in 1:rz) StSy = c(StSy, Myy$Navg[1,i][n])
mrkv = new("markovchain", transitionMatrix = P)
StSx = steadyStates(mrkv)
print("MPkn"); print(StSy)
print("markovchain"); print(StSx)
```

matrix.powerni Matrix Power of Non Integer

Description

Square matrix power of non integer.

Usage

matrix.powerni(A, p)

Arguments

A square matrix
p non integer (real) number
Value

square matrix

Author(s)

Josef Brejcha

References

Donald R. Burleson, Ph.D., "ON NON-INTEGRAL POWERS OF A SQUARE MATRIX", http://www.blackmesapress.com/Eigenvalues.htm

Examples

```r
require(MPKl)
require(matrixcalc)
matmult <- function(A, B){
  C = matrix(numeric(4), 2, 2)
  for (i in 1:2){
    for (j in 1:2){ C[i, j] = sum(A[i, ]*B[, j]) }
  }
  return(C)
}

I = diag(1, 2, 2)
P = matrix(c(0.9, 0.3, 0.1, 0.7), 2, 2)
M1 = P
M2 = matmult((I + P), M1)
M4 = matmult((I + t(matrix.power(P, 2))), M2)
M8 = matmult((I + t(matrix.power(P, 4))), M4)
M16 = matmult((I + t(matrix.power(P, 8))), M8)

## ===============
Q = list()
Q[[1]] = M1
Q[[2]] = matmult(M2, matrix.inverse(M1)) - I
Q[[3]] = matrix.powern(matmult(M4, matrix.inverse(M2)) - I, 1/2)
Q[[4]] = matrix.powern(matmult(M8, matrix.inverse(M4)) - I, 1/4)
Q[[5]] = matrix.powern(matmult(M16, matrix.inverse(M8)) - I, 1/8)
print("Q"); print(Q)

S = as.matrix(Q[[1]], 2, 2)
for (i in 2:5){
  S = S + as.matrix(Q[[i]], 2, 2)
} Qs = S/5
print("Qs"); print(Qs)
```

MPKlMatrix

Creates a matrix of specified row of output MPKlLo
Description

Specified row of output \texttt{MUPkLo} is a number step of process which computes \texttt{MUPkLo} function.

Usage

\texttt{MPKLMatrix(Mx, step, nc, sta)}

Arguments

\begin{itemize}
\item \texttt{Mx} \hspace{1cm} output matrix of \texttt{MUPkLo}
\item \texttt{step} \hspace{1cm} row name of matrix \texttt{Mx}
\item \texttt{nc} \hspace{1cm} number of columns of matrix \texttt{Mx}
\item \texttt{sta} \hspace{1cm} vector with column indices of input matrices into \texttt{MUPkLo}
\end{itemize}

Value

The matrix with \texttt{nc} rows and columns.

Author(s)

Josef Brejcha

Examples

\begin{verbatim}
A <- array(c(0.9, 0.6, 0.8, 0.05, 0.2, 0.05, 0.2, 0.05, 0.2, 0.15), c(3, 3))
P <- array(c(0.9, 0.6, 0.8, 0.05, 0.2, 0.05, 0.2, 0.05, 0.2, 0.15), c(3, 3))
U <- array(c(0.8, 0.8, 0.7, 0.06, 0.02, 0.2, 0.14, 0.18, 0.1), c(3, 3))
sta <- c(1, 2, 3)
k <- c(1, 0, 1, 0)
n <- c(5, 7, 12, 17)
Mx <- MUPkLo(A, P, U, n, k, sta)
M100 = MPKLMatrix(Mx, step = 100, nc = 3, sta = c(1, 2, 3))
\end{verbatim}

MUPkL

Calculations of one discrete model in several time steps

Description

\texttt{M[i + 1]} = (\texttt{I} + \texttt{Q}) \times \texttt{M[i]} process in several selected steps.

\texttt{Q} = \texttt{P} \times \texttt{U}, matrix multiplication.

Computation process only in the following steps \texttt{i}:

\begin{verbatim}
c(1 : k, k \times 2^{(1 : (n - k))}) \text{ where } k > 1;
c(2^{(1 : (n - 1))}) \text{ for } k == 0;
seq(1, n, 1) \text{ for } k == 1.
\end{verbatim}
\[M[2 * i] = (I + Q^i) * M[i] \] for \(k = 0 \).

Usage

\[
\text{MUPkL}(A, P, U, n, k, \text{sta})
\]

Arguments

- **A**
 - starting square matrix a process at time 0
- **P**
 - basic transition matrix chain
- **U**
 - correction matrix chain
- **n**
 - The number of steps. The length of the steps depends on the value of \(k \).
- **k**
 - \(k = 0 \) ... step length \(i \) is equal to \(2^i - 1 \), \(i = 1, 2, ..., n \).
 - \(k = 1 \) ... step length \(i \) is equal to 1.
 - \(k > 1 \) ... The first \(n \) steps has a length equal to 1. Other then have a length of twice the previous step.
- **sta**
 - Vector whose values are the indices of the columns of the \(A \) matrix.

Details

Both \(n \) and \(k \) are single positive integers.

Value

A list with following components:

- **N**
 - sum values of entries into state
- **Navg**
 - average \(N \) in interval \((i - 1, i] \)
- **Tavg**
 - \(1/\text{Navg} \)
- **x**
 - steps vector

Author(s)

Josef Brejcha

Examples

```r
A <- array(c(2, 3, 1, 4, 2, 1, 3, 1, 2), c(3, 3))
P <- array(c(0.9, 0.6, 0.8, 0.05, 0.2, 0.05, 0.05, 0.2, 0.15),
c(3, 3))
U <- array(c(0.8, 0.8, 0.7, 0.06, 0.02, 0.2, 0.14, 0.18, 0.1),
c(3, 3))
sta <- c(1, 3)
k <- 3
n <- 8
M33 <- MUPkL(A, P, U, n, k, sta)
print(M33$N)
k <- 1
```
Calculations of one discrete model in several time steps

Description

$M[i+1] = (I + Q) \times M[i]$ process in several selected steps.

$Q = P \times U$, matrix multiplication.

The calculation is performed in steps determined by integer vectors k and n. The sections defined by integers k and n are applied as follows:

\[k[i] = 1 \quad \ldots M[n] = \text{sum}(i = 0, n - 1)(Q^i) \times A \quad \text{for } n = 0, 1, 2, \ldots \]
\[k[i] = 0 \quad \ldots M[2n] = (I + Q^n) \times M[n] \quad \text{for } n = r \times 2^i, i = 1, 2, 3, \ldots \]

where r is the last step before section with $k[i] = 0$

Usage

```
MUPkLo(A, P, U, n, k, sta)
```

Arguments

- A an initial square matrix a process at time 0
- P a basic transition matrix chain
- U a correction matrix chain
- n An integer vector cumulative number of individual process steps.
 $n[1] > 0, n[i] > n[i-1]$.
- k A vector of 0 and 1 identifying the mode of calculation in the stretch step.
 $k[i] = 1$ for $rn[j] = rn[j-1]+1$,
 $k[i] = 0$ for $rn[j] = 2*rn[j-1]$,
 where $rn[j]$ is the j-th row name of the output value matrix.
- sta Vector of indices of the columns of the matrix M. The matrix M contains the cumulative number of inputs m_{ij} from the state of the i to the state j.

```r
M11 <- MUPkLo(A, P, U, n, k, sta)
print(M11$N)
k <- 0
n <- 6
M00 <- MUPkLo(A, P, U, n, k, sta)
print(M00$N)
```
Details

Relationship between k and n:

\[\text{length}(k) = \text{length}(n). \]

It is recommended to determine the value of well vectors n and k.

Value

An array $(r \times \text{slp} \times \text{sta})$ where

\[
\begin{align*}
\text{r} & \quad r = n[\text{length}(n)] \\
\text{slp} & \quad \text{Vector of column indices of the matrix P} \\
\text{sta} & \quad \text{Vector of column indices of the matrix M}
\end{align*}
\]

Row of the output matrix (array) is the column in the matrix M and whose number is specified in the sta. The matrix M contains the cumulative number of inputs m_{ij} from the state of the i to the state j.

Author(s)

Josef Brejcha

Examples

\[
\begin{align*}
\text{A} & \equiv \text{array}(c(-2, -3, 1, 4, -2, 1, 3, -1, -2), c(3, 3)) \\
\text{P} & \equiv \text{array}(c(0.9, 0.5, 0.8, 0.05, 0.2, 0.05, 0.2, 0.05, 0.15), c(3, 3)) \\
\text{U} & \equiv \text{array}(c(0.8, 0.8, 0.7, 0.06, 0.02, 0.2, 0.14, 0.18, 0.1), c(3, 3)) \\
\text{sta} & \equiv 3 \\
\text{Ao} & \equiv \text{A} \\
\text{k} & \equiv c(1, 0, 1, 0) \\
\text{n} & \equiv c(5, 7, 12, 17) \\
\# \text{Steps, in which will compute the value of the Mx:} \\
\# & \equiv 1, 2, 3, 4, 5, 10, 20, 21, 22, 23, 24, 25, 50, 100, 200, 400, 800 \\
\text{Mx} & \equiv \text{MUPkLo}(\text{A}, \text{P}, \text{U}, \text{n}, \text{k}, \text{sta}) \\
\text{print(Mx)} \\
\text{A} & \equiv \text{Ao} \\
\text{Mb} & \equiv \text{MUPkLo}(\text{A}, \text{P}, \text{U}, \text{n} = 100, \text{k} = 1, \text{sta}) \\
\text{Mb}[100,,]
\end{align*}
\]

The Numbers of Rows of the Output Matrix

Description

The numbers of rows of the output matrix. These numbers are determined by the vectors of n and k.
Usage

radekW(n, k)

Arguments

n An integer vector cumulative number of individual process steps.
n[1] > 0, n[i] > n[i-1].
k A vector of 0 and 1 identifying the mode of calculation in the stretch step.
k[i] = 1 for rn[j] = rn[j-1]+1,
k[i] = 0 for rn[j] = 2*rn[j-1],
where rn[j] is the j-th row name of the output value matrix.

Value

Matrix size n[length(n)] x 1.
The values of the rows of the matrix are the numbers of steps of the chain.

Author(s)

Josef Brejcha

Examples

radekW(n = c(3, 5, 8, 9, 11), k = c(1, 0, 1, 0, 0))
Index

*Topic MPKIMatrix
 MPKIMatrix, 4
*Topic MUPkLo
 MUPkLo, 7
*Topic MUPkL
 MUPkL, 5
*Topic matrix.powerni
 matrix.powerni, 3
*Topic radekW
 radekW, 8

matrix.powerni, 3
MPKIMatrix, 4
MPkn-package, 2
MUPkL, 5
MUPkLo, 4, 5, 7

radekW, 8